reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <numeric>
#include <utility>

#define DEBUG_TYPE "simple-loop-unswitch"

using namespace llvm;

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
STATISTIC(NumTrivial, "Number of unswitches that are trivial");
STATISTIC(
    NumCostMultiplierSkipped,
    "Number of unswitch candidates that had their cost multiplier skipped");

static cl::opt<bool> EnableNonTrivialUnswitch(
    "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
    cl::desc("Forcibly enables non-trivial loop unswitching rather than "
             "following the configuration passed into the pass."));

static cl::opt<int>
    UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
                      cl::desc("The cost threshold for unswitching a loop."));

static cl::opt<bool> EnableUnswitchCostMultiplier(
    "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
    cl::desc("Enable unswitch cost multiplier that prohibits exponential "
             "explosion in nontrivial unswitch."));
static cl::opt<int> UnswitchSiblingsToplevelDiv(
    "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
    cl::desc("Toplevel siblings divisor for cost multiplier."));
static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
    "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
    cl::desc("Number of unswitch candidates that are ignored when calculating "
             "cost multiplier."));
static cl::opt<bool> UnswitchGuards(
    "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
    cl::desc("If enabled, simple loop unswitching will also consider "
             "llvm.experimental.guard intrinsics as unswitch candidates."));

/// Collect all of the loop invariant input values transitively used by the
/// homogeneous instruction graph from a given root.
///
/// This essentially walks from a root recursively through loop variant operands
/// which have the exact same opcode and finds all inputs which are loop
/// invariant. For some operations these can be re-associated and unswitched out
/// of the loop entirely.
static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
                                         LoopInfo &LI) {
  assert(!L.isLoopInvariant(&Root) &&
         "Only need to walk the graph if root itself is not invariant.");
  TinyPtrVector<Value *> Invariants;

  // Build a worklist and recurse through operators collecting invariants.
  SmallVector<Instruction *, 4> Worklist;
  SmallPtrSet<Instruction *, 8> Visited;
  Worklist.push_back(&Root);
  Visited.insert(&Root);
  do {
    Instruction &I = *Worklist.pop_back_val();
    for (Value *OpV : I.operand_values()) {
      // Skip constants as unswitching isn't interesting for them.
      if (isa<Constant>(OpV))
        continue;

      // Add it to our result if loop invariant.
      if (L.isLoopInvariant(OpV)) {
        Invariants.push_back(OpV);
        continue;
      }

      // If not an instruction with the same opcode, nothing we can do.
      Instruction *OpI = dyn_cast<Instruction>(OpV);
      if (!OpI || OpI->getOpcode() != Root.getOpcode())
        continue;

      // Visit this operand.
      if (Visited.insert(OpI).second)
        Worklist.push_back(OpI);
    }
  } while (!Worklist.empty());

  return Invariants;
}

static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
                                     Constant &Replacement) {
  assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");

  // Replace uses of LIC in the loop with the given constant.
  for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
    // Grab the use and walk past it so we can clobber it in the use list.
    Use *U = &*UI++;
    Instruction *UserI = dyn_cast<Instruction>(U->getUser());

    // Replace this use within the loop body.
    if (UserI && L.contains(UserI))
      U->set(&Replacement);
  }
}

/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
/// incoming values along this edge.
static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
                                         BasicBlock &ExitBB) {
  for (Instruction &I : ExitBB) {
    auto *PN = dyn_cast<PHINode>(&I);
    if (!PN)
      // No more PHIs to check.
      return true;

    // If the incoming value for this edge isn't loop invariant the unswitch
    // won't be trivial.
    if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
      return false;
  }
  llvm_unreachable("Basic blocks should never be empty!");
}

/// Insert code to test a set of loop invariant values, and conditionally branch
/// on them.
static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
                                                  ArrayRef<Value *> Invariants,
                                                  bool Direction,
                                                  BasicBlock &UnswitchedSucc,
                                                  BasicBlock &NormalSucc) {
  IRBuilder<> IRB(&BB);
  
  Value *Cond = Direction ? IRB.CreateOr(Invariants) :
    IRB.CreateAnd(Invariants);
  IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
                   Direction ? &NormalSucc : &UnswitchedSucc);
}

/// Rewrite the PHI nodes in an unswitched loop exit basic block.
///
/// Requires that the loop exit and unswitched basic block are the same, and
/// that the exiting block was a unique predecessor of that block. Rewrites the
/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
/// PHI nodes from the old preheader that now contains the unswitched
/// terminator.
static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
                                                  BasicBlock &OldExitingBB,
                                                  BasicBlock &OldPH) {
  for (PHINode &PN : UnswitchedBB.phis()) {
    // When the loop exit is directly unswitched we just need to update the
    // incoming basic block. We loop to handle weird cases with repeated
    // incoming blocks, but expect to typically only have one operand here.
    for (auto i : seq<int>(0, PN.getNumOperands())) {
      assert(PN.getIncomingBlock(i) == &OldExitingBB &&
             "Found incoming block different from unique predecessor!");
      PN.setIncomingBlock(i, &OldPH);
    }
  }
}

/// Rewrite the PHI nodes in the loop exit basic block and the split off
/// unswitched block.
///
/// Because the exit block remains an exit from the loop, this rewrites the
/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
/// nodes into the unswitched basic block to select between the value in the
/// old preheader and the loop exit.
static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
                                                      BasicBlock &UnswitchedBB,
                                                      BasicBlock &OldExitingBB,
                                                      BasicBlock &OldPH,
                                                      bool FullUnswitch) {
  assert(&ExitBB != &UnswitchedBB &&
         "Must have different loop exit and unswitched blocks!");
  Instruction *InsertPt = &*UnswitchedBB.begin();
  for (PHINode &PN : ExitBB.phis()) {
    auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
                                  PN.getName() + ".split", InsertPt);

    // Walk backwards over the old PHI node's inputs to minimize the cost of
    // removing each one. We have to do this weird loop manually so that we
    // create the same number of new incoming edges in the new PHI as we expect
    // each case-based edge to be included in the unswitched switch in some
    // cases.
    // FIXME: This is really, really gross. It would be much cleaner if LLVM
    // allowed us to create a single entry for a predecessor block without
    // having separate entries for each "edge" even though these edges are
    // required to produce identical results.
    for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
      if (PN.getIncomingBlock(i) != &OldExitingBB)
        continue;

      Value *Incoming = PN.getIncomingValue(i);
      if (FullUnswitch)
        // No more edge from the old exiting block to the exit block.
        PN.removeIncomingValue(i);

      NewPN->addIncoming(Incoming, &OldPH);
    }

    // Now replace the old PHI with the new one and wire the old one in as an
    // input to the new one.
    PN.replaceAllUsesWith(NewPN);
    NewPN->addIncoming(&PN, &ExitBB);
  }
}

/// Hoist the current loop up to the innermost loop containing a remaining exit.
///
/// Because we've removed an exit from the loop, we may have changed the set of
/// loops reachable and need to move the current loop up the loop nest or even
/// to an entirely separate nest.
static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
                                 DominatorTree &DT, LoopInfo &LI,
                                 MemorySSAUpdater *MSSAU) {
  // If the loop is already at the top level, we can't hoist it anywhere.
  Loop *OldParentL = L.getParentLoop();
  if (!OldParentL)
    return;

  SmallVector<BasicBlock *, 4> Exits;
  L.getExitBlocks(Exits);
  Loop *NewParentL = nullptr;
  for (auto *ExitBB : Exits)
    if (Loop *ExitL = LI.getLoopFor(ExitBB))
      if (!NewParentL || NewParentL->contains(ExitL))
        NewParentL = ExitL;

  if (NewParentL == OldParentL)
    return;

  // The new parent loop (if different) should always contain the old one.
  if (NewParentL)
    assert(NewParentL->contains(OldParentL) &&
           "Can only hoist this loop up the nest!");

  // The preheader will need to move with the body of this loop. However,
  // because it isn't in this loop we also need to update the primary loop map.
  assert(OldParentL == LI.getLoopFor(&Preheader) &&
         "Parent loop of this loop should contain this loop's preheader!");
  LI.changeLoopFor(&Preheader, NewParentL);

  // Remove this loop from its old parent.
  OldParentL->removeChildLoop(&L);

  // Add the loop either to the new parent or as a top-level loop.
  if (NewParentL)
    NewParentL->addChildLoop(&L);
  else
    LI.addTopLevelLoop(&L);

  // Remove this loops blocks from the old parent and every other loop up the
  // nest until reaching the new parent. Also update all of these
  // no-longer-containing loops to reflect the nesting change.
  for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
       OldContainingL = OldContainingL->getParentLoop()) {
    llvm::erase_if(OldContainingL->getBlocksVector(),
                   [&](const BasicBlock *BB) {
                     return BB == &Preheader || L.contains(BB);
                   });

    OldContainingL->getBlocksSet().erase(&Preheader);
    for (BasicBlock *BB : L.blocks())
      OldContainingL->getBlocksSet().erase(BB);

    // Because we just hoisted a loop out of this one, we have essentially
    // created new exit paths from it. That means we need to form LCSSA PHI
    // nodes for values used in the no-longer-nested loop.
    formLCSSA(*OldContainingL, DT, &LI, nullptr);

    // We shouldn't need to form dedicated exits because the exit introduced
    // here is the (just split by unswitching) preheader. However, after trivial
    // unswitching it is possible to get new non-dedicated exits out of parent
    // loop so let's conservatively form dedicated exit blocks and figure out
    // if we can optimize later.
    formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
                            /*PreserveLCSSA*/ true);
  }
}

/// Unswitch a trivial branch if the condition is loop invariant.
///
/// This routine should only be called when loop code leading to the branch has
/// been validated as trivial (no side effects). This routine checks if the
/// condition is invariant and one of the successors is a loop exit. This
/// allows us to unswitch without duplicating the loop, making it trivial.
///
/// If this routine fails to unswitch the branch it returns false.
///
/// If the branch can be unswitched, this routine splits the preheader and
/// hoists the branch above that split. Preserves loop simplified form
/// (splitting the exit block as necessary). It simplifies the branch within
/// the loop to an unconditional branch but doesn't remove it entirely. Further
/// cleanup can be done with some simplify-cfg like pass.
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
                                  LoopInfo &LI, ScalarEvolution *SE,
                                  MemorySSAUpdater *MSSAU) {
  assert(BI.isConditional() && "Can only unswitch a conditional branch!");
  LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");

  // The loop invariant values that we want to unswitch.
  TinyPtrVector<Value *> Invariants;

  // When true, we're fully unswitching the branch rather than just unswitching
  // some input conditions to the branch.
  bool FullUnswitch = false;

  if (L.isLoopInvariant(BI.getCondition())) {
    Invariants.push_back(BI.getCondition());
    FullUnswitch = true;
  } else {
    if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
      Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
    if (Invariants.empty())
      // Couldn't find invariant inputs!
      return false;
  }

  // Check that one of the branch's successors exits, and which one.
  bool ExitDirection = true;
  int LoopExitSuccIdx = 0;
  auto *LoopExitBB = BI.getSuccessor(0);
  if (L.contains(LoopExitBB)) {
    ExitDirection = false;
    LoopExitSuccIdx = 1;
    LoopExitBB = BI.getSuccessor(1);
    if (L.contains(LoopExitBB))
      return false;
  }
  auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
  auto *ParentBB = BI.getParent();
  if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
    return false;

  // When unswitching only part of the branch's condition, we need the exit
  // block to be reached directly from the partially unswitched input. This can
  // be done when the exit block is along the true edge and the branch condition
  // is a graph of `or` operations, or the exit block is along the false edge
  // and the condition is a graph of `and` operations.
  if (!FullUnswitch) {
    if (ExitDirection) {
      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
        return false;
    } else {
      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
        return false;
    }
  }

  LLVM_DEBUG({
    dbgs() << "    unswitching trivial invariant conditions for: " << BI
           << "\n";
    for (Value *Invariant : Invariants) {
      dbgs() << "      " << *Invariant << " == true";
      if (Invariant != Invariants.back())
        dbgs() << " ||";
      dbgs() << "\n";
    }
  });

  // If we have scalar evolutions, we need to invalidate them including this
  // loop and the loop containing the exit block.
  if (SE) {
    if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
      SE->forgetLoop(ExitL);
    else
      // Forget the entire nest as this exits the entire nest.
      SE->forgetTopmostLoop(&L);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Split the preheader, so that we know that there is a safe place to insert
  // the conditional branch. We will change the preheader to have a conditional
  // branch on LoopCond.
  BasicBlock *OldPH = L.getLoopPreheader();
  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we are
  // unswitching. We need to split this if there are other loop predecessors.
  // Because the loop is in simplified form, *any* other predecessor is enough.
  BasicBlock *UnswitchedBB;
  if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
    assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
           "A branch's parent isn't a predecessor!");
    UnswitchedBB = LoopExitBB;
  } else {
    UnswitchedBB =
        SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Actually move the invariant uses into the unswitched position. If possible,
  // we do this by moving the instructions, but when doing partial unswitching
  // we do it by building a new merge of the values in the unswitched position.
  OldPH->getTerminator()->eraseFromParent();
  if (FullUnswitch) {
    // If fully unswitching, we can use the existing branch instruction.
    // Splice it into the old PH to gate reaching the new preheader and re-point
    // its successors.
    OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
                                BI);
    if (MSSAU) {
      // Temporarily clone the terminator, to make MSSA update cheaper by
      // separating "insert edge" updates from "remove edge" ones.
      ParentBB->getInstList().push_back(BI.clone());
    } else {
      // Create a new unconditional branch that will continue the loop as a new
      // terminator.
      BranchInst::Create(ContinueBB, ParentBB);
    }
    BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
    BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
  } else {
    // Only unswitching a subset of inputs to the condition, so we will need to
    // build a new branch that merges the invariant inputs.
    if (ExitDirection)
      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                 Instruction::Or &&
             "Must have an `or` of `i1`s for the condition!");
    else
      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                 Instruction::And &&
             "Must have an `and` of `i1`s for the condition!");
    buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
                                          *UnswitchedBB, *NewPH);
  }

  // Update the dominator tree with the added edge.
  DT.insertEdge(OldPH, UnswitchedBB);

  // After the dominator tree was updated with the added edge, update MemorySSA
  // if available.
  if (MSSAU) {
    SmallVector<CFGUpdate, 1> Updates;
    Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
    MSSAU->applyInsertUpdates(Updates, DT);
  }

  // Finish updating dominator tree and memory ssa for full unswitch.
  if (FullUnswitch) {
    if (MSSAU) {
      // Remove the cloned branch instruction.
      ParentBB->getTerminator()->eraseFromParent();
      // Create unconditional branch now.
      BranchInst::Create(ContinueBB, ParentBB);
      MSSAU->removeEdge(ParentBB, LoopExitBB);
    }
    DT.deleteEdge(ParentBB, LoopExitBB);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Rewrite the relevant PHI nodes.
  if (UnswitchedBB == LoopExitBB)
    rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
  else
    rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
                                              *ParentBB, *OldPH, FullUnswitch);

  // The constant we can replace all of our invariants with inside the loop
  // body. If any of the invariants have a value other than this the loop won't
  // be entered.
  ConstantInt *Replacement = ExitDirection
                                 ? ConstantInt::getFalse(BI.getContext())
                                 : ConstantInt::getTrue(BI.getContext());

  // Since this is an i1 condition we can also trivially replace uses of it
  // within the loop with a constant.
  for (Value *Invariant : Invariants)
    replaceLoopInvariantUses(L, Invariant, *Replacement);

  // If this was full unswitching, we may have changed the nesting relationship
  // for this loop so hoist it to its correct parent if needed.
  if (FullUnswitch)
    hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
  ++NumTrivial;
  ++NumBranches;
  return true;
}

/// Unswitch a trivial switch if the condition is loop invariant.
///
/// This routine should only be called when loop code leading to the switch has
/// been validated as trivial (no side effects). This routine checks if the
/// condition is invariant and that at least one of the successors is a loop
/// exit. This allows us to unswitch without duplicating the loop, making it
/// trivial.
///
/// If this routine fails to unswitch the switch it returns false.
///
/// If the switch can be unswitched, this routine splits the preheader and
/// copies the switch above that split. If the default case is one of the
/// exiting cases, it copies the non-exiting cases and points them at the new
/// preheader. If the default case is not exiting, it copies the exiting cases
/// and points the default at the preheader. It preserves loop simplified form
/// (splitting the exit blocks as necessary). It simplifies the switch within
/// the loop by removing now-dead cases. If the default case is one of those
/// unswitched, it replaces its destination with a new basic block containing
/// only unreachable. Such basic blocks, while technically loop exits, are not
/// considered for unswitching so this is a stable transform and the same
/// switch will not be revisited. If after unswitching there is only a single
/// in-loop successor, the switch is further simplified to an unconditional
/// branch. Still more cleanup can be done with some simplify-cfg like pass.
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
                                  LoopInfo &LI, ScalarEvolution *SE,
                                  MemorySSAUpdater *MSSAU) {
  LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
  Value *LoopCond = SI.getCondition();

  // If this isn't switching on an invariant condition, we can't unswitch it.
  if (!L.isLoopInvariant(LoopCond))
    return false;

  auto *ParentBB = SI.getParent();

  SmallVector<int, 4> ExitCaseIndices;
  for (auto Case : SI.cases()) {
    auto *SuccBB = Case.getCaseSuccessor();
    if (!L.contains(SuccBB) &&
        areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
      ExitCaseIndices.push_back(Case.getCaseIndex());
  }
  BasicBlock *DefaultExitBB = nullptr;
  SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
      SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
  if (!L.contains(SI.getDefaultDest()) &&
      areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
      !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
    DefaultExitBB = SI.getDefaultDest();
  } else if (ExitCaseIndices.empty())
    return false;

  LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // We may need to invalidate SCEVs for the outermost loop reached by any of
  // the exits.
  Loop *OuterL = &L;

  if (DefaultExitBB) {
    // Clear out the default destination temporarily to allow accurate
    // predecessor lists to be examined below.
    SI.setDefaultDest(nullptr);
    // Check the loop containing this exit.
    Loop *ExitL = LI.getLoopFor(DefaultExitBB);
    if (!ExitL || ExitL->contains(OuterL))
      OuterL = ExitL;
  }

  // Store the exit cases into a separate data structure and remove them from
  // the switch.
  SmallVector<std::tuple<ConstantInt *, BasicBlock *,
                         SwitchInstProfUpdateWrapper::CaseWeightOpt>,
              4> ExitCases;
  ExitCases.reserve(ExitCaseIndices.size());
  SwitchInstProfUpdateWrapper SIW(SI);
  // We walk the case indices backwards so that we remove the last case first
  // and don't disrupt the earlier indices.
  for (unsigned Index : reverse(ExitCaseIndices)) {
    auto CaseI = SI.case_begin() + Index;
    // Compute the outer loop from this exit.
    Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
    if (!ExitL || ExitL->contains(OuterL))
      OuterL = ExitL;
    // Save the value of this case.
    auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
    ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
    // Delete the unswitched cases.
    SIW.removeCase(CaseI);
  }

  if (SE) {
    if (OuterL)
      SE->forgetLoop(OuterL);
    else
      SE->forgetTopmostLoop(&L);
  }

  // Check if after this all of the remaining cases point at the same
  // successor.
  BasicBlock *CommonSuccBB = nullptr;
  if (SI.getNumCases() > 0 &&
      std::all_of(std::next(SI.case_begin()), SI.case_end(),
                  [&SI](const SwitchInst::CaseHandle &Case) {
                    return Case.getCaseSuccessor() ==
                           SI.case_begin()->getCaseSuccessor();
                  }))
    CommonSuccBB = SI.case_begin()->getCaseSuccessor();
  if (!DefaultExitBB) {
    // If we're not unswitching the default, we need it to match any cases to
    // have a common successor or if we have no cases it is the common
    // successor.
    if (SI.getNumCases() == 0)
      CommonSuccBB = SI.getDefaultDest();
    else if (SI.getDefaultDest() != CommonSuccBB)
      CommonSuccBB = nullptr;
  }

  // Split the preheader, so that we know that there is a safe place to insert
  // the switch.
  BasicBlock *OldPH = L.getLoopPreheader();
  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
  OldPH->getTerminator()->eraseFromParent();

  // Now add the unswitched switch.
  auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
  SwitchInstProfUpdateWrapper NewSIW(*NewSI);

  // Rewrite the IR for the unswitched basic blocks. This requires two steps.
  // First, we split any exit blocks with remaining in-loop predecessors. Then
  // we update the PHIs in one of two ways depending on if there was a split.
  // We walk in reverse so that we split in the same order as the cases
  // appeared. This is purely for convenience of reading the resulting IR, but
  // it doesn't cost anything really.
  SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
  SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
  // Handle the default exit if necessary.
  // FIXME: It'd be great if we could merge this with the loop below but LLVM's
  // ranges aren't quite powerful enough yet.
  if (DefaultExitBB) {
    if (pred_empty(DefaultExitBB)) {
      UnswitchedExitBBs.insert(DefaultExitBB);
      rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
    } else {
      auto *SplitBB =
          SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
      rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
                                                *ParentBB, *OldPH,
                                                /*FullUnswitch*/ true);
      DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
    }
  }
  // Note that we must use a reference in the for loop so that we update the
  // container.
  for (auto &ExitCase : reverse(ExitCases)) {
    // Grab a reference to the exit block in the pair so that we can update it.
    BasicBlock *ExitBB = std::get<1>(ExitCase);

    // If this case is the last edge into the exit block, we can simply reuse it
    // as it will no longer be a loop exit. No mapping necessary.
    if (pred_empty(ExitBB)) {
      // Only rewrite once.
      if (UnswitchedExitBBs.insert(ExitBB).second)
        rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
      continue;
    }

    // Otherwise we need to split the exit block so that we retain an exit
    // block from the loop and a target for the unswitched condition.
    BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
    if (!SplitExitBB) {
      // If this is the first time we see this, do the split and remember it.
      SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
      rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
                                                *ParentBB, *OldPH,
                                                /*FullUnswitch*/ true);
    }
    // Update the case pair to point to the split block.
    std::get<1>(ExitCase) = SplitExitBB;
  }

  // Now add the unswitched cases. We do this in reverse order as we built them
  // in reverse order.
  for (auto &ExitCase : reverse(ExitCases)) {
    ConstantInt *CaseVal = std::get<0>(ExitCase);
    BasicBlock *UnswitchedBB = std::get<1>(ExitCase);

    NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
  }

  // If the default was unswitched, re-point it and add explicit cases for
  // entering the loop.
  if (DefaultExitBB) {
    NewSIW->setDefaultDest(DefaultExitBB);
    NewSIW.setSuccessorWeight(0, DefaultCaseWeight);

    // We removed all the exit cases, so we just copy the cases to the
    // unswitched switch.
    for (const auto &Case : SI.cases())
      NewSIW.addCase(Case.getCaseValue(), NewPH,
                     SIW.getSuccessorWeight(Case.getSuccessorIndex()));
  } else if (DefaultCaseWeight) {
    // We have to set branch weight of the default case.
    uint64_t SW = *DefaultCaseWeight;
    for (const auto &Case : SI.cases()) {
      auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
      assert(W &&
             "case weight must be defined as default case weight is defined");
      SW += *W;
    }
    NewSIW.setSuccessorWeight(0, SW);
  }

  // If we ended up with a common successor for every path through the switch
  // after unswitching, rewrite it to an unconditional branch to make it easy
  // to recognize. Otherwise we potentially have to recognize the default case
  // pointing at unreachable and other complexity.
  if (CommonSuccBB) {
    BasicBlock *BB = SI.getParent();
    // We may have had multiple edges to this common successor block, so remove
    // them as predecessors. We skip the first one, either the default or the
    // actual first case.
    bool SkippedFirst = DefaultExitBB == nullptr;
    for (auto Case : SI.cases()) {
      assert(Case.getCaseSuccessor() == CommonSuccBB &&
             "Non-common successor!");
      (void)Case;
      if (!SkippedFirst) {
        SkippedFirst = true;
        continue;
      }
      CommonSuccBB->removePredecessor(BB,
                                      /*KeepOneInputPHIs*/ true);
    }
    // Now nuke the switch and replace it with a direct branch.
    SIW.eraseFromParent();
    BranchInst::Create(CommonSuccBB, BB);
  } else if (DefaultExitBB) {
    assert(SI.getNumCases() > 0 &&
           "If we had no cases we'd have a common successor!");
    // Move the last case to the default successor. This is valid as if the
    // default got unswitched it cannot be reached. This has the advantage of
    // being simple and keeping the number of edges from this switch to
    // successors the same, and avoiding any PHI update complexity.
    auto LastCaseI = std::prev(SI.case_end());

    SI.setDefaultDest(LastCaseI->getCaseSuccessor());
    SIW.setSuccessorWeight(
        0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
    SIW.removeCase(LastCaseI);
  }

  // Walk the unswitched exit blocks and the unswitched split blocks and update
  // the dominator tree based on the CFG edits. While we are walking unordered
  // containers here, the API for applyUpdates takes an unordered list of
  // updates and requires them to not contain duplicates.
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
  for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
    DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
    DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
  }
  for (auto SplitUnswitchedPair : SplitExitBBMap) {
    DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
    DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
  }
  DT.applyUpdates(DTUpdates);

  if (MSSAU) {
    MSSAU->applyUpdates(DTUpdates, DT);
    if (VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();
  }

  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  // We may have changed the nesting relationship for this loop so hoist it to
  // its correct parent if needed.
  hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  ++NumTrivial;
  ++NumSwitches;
  LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
  return true;
}

/// This routine scans the loop to find a branch or switch which occurs before
/// any side effects occur. These can potentially be unswitched without
/// duplicating the loop. If a branch or switch is successfully unswitched the
/// scanning continues to see if subsequent branches or switches have become
/// trivial. Once all trivial candidates have been unswitched, this routine
/// returns.
///
/// The return value indicates whether anything was unswitched (and therefore
/// changed).
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
                                         LoopInfo &LI, ScalarEvolution *SE,
                                         MemorySSAUpdater *MSSAU) {
  bool Changed = false;

  // If loop header has only one reachable successor we should keep looking for
  // trivial condition candidates in the successor as well. An alternative is
  // to constant fold conditions and merge successors into loop header (then we
  // only need to check header's terminator). The reason for not doing this in
  // LoopUnswitch pass is that it could potentially break LoopPassManager's
  // invariants. Folding dead branches could either eliminate the current loop
  // or make other loops unreachable. LCSSA form might also not be preserved
  // after deleting branches. The following code keeps traversing loop header's
  // successors until it finds the trivial condition candidate (condition that
  // is not a constant). Since unswitching generates branches with constant
  // conditions, this scenario could be very common in practice.
  BasicBlock *CurrentBB = L.getHeader();
  SmallPtrSet<BasicBlock *, 8> Visited;
  Visited.insert(CurrentBB);
  do {
    // Check if there are any side-effecting instructions (e.g. stores, calls,
    // volatile loads) in the part of the loop that the code *would* execute
    // without unswitching.
    if (MSSAU) // Possible early exit with MSSA
      if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
        if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
          return Changed;
    if (llvm::any_of(*CurrentBB,
                     [](Instruction &I) { return I.mayHaveSideEffects(); }))
      return Changed;

    Instruction *CurrentTerm = CurrentBB->getTerminator();

    if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
      // Don't bother trying to unswitch past a switch with a constant
      // condition. This should be removed prior to running this pass by
      // simplify-cfg.
      if (isa<Constant>(SI->getCondition()))
        return Changed;

      if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
        // Couldn't unswitch this one so we're done.
        return Changed;

      // Mark that we managed to unswitch something.
      Changed = true;

      // If unswitching turned the terminator into an unconditional branch then
      // we can continue. The unswitching logic specifically works to fold any
      // cases it can into an unconditional branch to make it easier to
      // recognize here.
      auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
      if (!BI || BI->isConditional())
        return Changed;

      CurrentBB = BI->getSuccessor(0);
      continue;
    }

    auto *BI = dyn_cast<BranchInst>(CurrentTerm);
    if (!BI)
      // We do not understand other terminator instructions.
      return Changed;

    // Don't bother trying to unswitch past an unconditional branch or a branch
    // with a constant value. These should be removed by simplify-cfg prior to
    // running this pass.
    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
      return Changed;

    // Found a trivial condition candidate: non-foldable conditional branch. If
    // we fail to unswitch this, we can't do anything else that is trivial.
    if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
      return Changed;

    // Mark that we managed to unswitch something.
    Changed = true;

    // If we only unswitched some of the conditions feeding the branch, we won't
    // have collapsed it to a single successor.
    BI = cast<BranchInst>(CurrentBB->getTerminator());
    if (BI->isConditional())
      return Changed;

    // Follow the newly unconditional branch into its successor.
    CurrentBB = BI->getSuccessor(0);

    // When continuing, if we exit the loop or reach a previous visited block,
    // then we can not reach any trivial condition candidates (unfoldable
    // branch instructions or switch instructions) and no unswitch can happen.
  } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);

  return Changed;
}

/// Build the cloned blocks for an unswitched copy of the given loop.
///
/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
/// after the split block (`SplitBB`) that will be used to select between the
/// cloned and original loop.
///
/// This routine handles cloning all of the necessary loop blocks and exit
/// blocks including rewriting their instructions and the relevant PHI nodes.
/// Any loop blocks or exit blocks which are dominated by a different successor
/// than the one for this clone of the loop blocks can be trivially skipped. We
/// use the `DominatingSucc` map to determine whether a block satisfies that
/// property with a simple map lookup.
///
/// It also correctly creates the unconditional branch in the cloned
/// unswitched parent block to only point at the unswitched successor.
///
/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
/// block splitting is correctly reflected in `LoopInfo`, essentially all of
/// the cloned blocks (and their loops) are left without full `LoopInfo`
/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
/// blocks to them but doesn't create the cloned `DominatorTree` structure and
/// instead the caller must recompute an accurate DT. It *does* correctly
/// update the `AssumptionCache` provided in `AC`.
static BasicBlock *buildClonedLoopBlocks(
    Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
    ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
    BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
    const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
    ValueToValueMapTy &VMap,
    SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  SmallVector<BasicBlock *, 4> NewBlocks;
  NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());

  // We will need to clone a bunch of blocks, wrap up the clone operation in
  // a helper.
  auto CloneBlock = [&](BasicBlock *OldBB) {
    // Clone the basic block and insert it before the new preheader.
    BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
    NewBB->moveBefore(LoopPH);

    // Record this block and the mapping.
    NewBlocks.push_back(NewBB);
    VMap[OldBB] = NewBB;

    return NewBB;
  };

  // We skip cloning blocks when they have a dominating succ that is not the
  // succ we are cloning for.
  auto SkipBlock = [&](BasicBlock *BB) {
    auto It = DominatingSucc.find(BB);
    return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
  };

  // First, clone the preheader.
  auto *ClonedPH = CloneBlock(LoopPH);

  // Then clone all the loop blocks, skipping the ones that aren't necessary.
  for (auto *LoopBB : L.blocks())
    if (!SkipBlock(LoopBB))
      CloneBlock(LoopBB);

  // Split all the loop exit edges so that when we clone the exit blocks, if
  // any of the exit blocks are *also* a preheader for some other loop, we
  // don't create multiple predecessors entering the loop header.
  for (auto *ExitBB : ExitBlocks) {
    if (SkipBlock(ExitBB))
      continue;

    // When we are going to clone an exit, we don't need to clone all the
    // instructions in the exit block and we want to ensure we have an easy
    // place to merge the CFG, so split the exit first. This is always safe to
    // do because there cannot be any non-loop predecessors of a loop exit in
    // loop simplified form.
    auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);

    // Rearrange the names to make it easier to write test cases by having the
    // exit block carry the suffix rather than the merge block carrying the
    // suffix.
    MergeBB->takeName(ExitBB);
    ExitBB->setName(Twine(MergeBB->getName()) + ".split");

    // Now clone the original exit block.
    auto *ClonedExitBB = CloneBlock(ExitBB);
    assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
           "Cloned exit block has the wrong successor!");

    // Remap any cloned instructions and create a merge phi node for them.
    for (auto ZippedInsts : llvm::zip_first(
             llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
             llvm::make_range(ClonedExitBB->begin(),
                              std::prev(ClonedExitBB->end())))) {
      Instruction &I = std::get<0>(ZippedInsts);
      Instruction &ClonedI = std::get<1>(ZippedInsts);

      // The only instructions in the exit block should be PHI nodes and
      // potentially a landing pad.
      assert(
          (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
          "Bad instruction in exit block!");
      // We should have a value map between the instruction and its clone.
      assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");

      auto *MergePN =
          PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
                          &*MergeBB->getFirstInsertionPt());
      I.replaceAllUsesWith(MergePN);
      MergePN->addIncoming(&I, ExitBB);
      MergePN->addIncoming(&ClonedI, ClonedExitBB);
    }
  }

  // Rewrite the instructions in the cloned blocks to refer to the instructions
  // in the cloned blocks. We have to do this as a second pass so that we have
  // everything available. Also, we have inserted new instructions which may
  // include assume intrinsics, so we update the assumption cache while
  // processing this.
  for (auto *ClonedBB : NewBlocks)
    for (Instruction &I : *ClonedBB) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC.registerAssumption(II);
    }

  // Update any PHI nodes in the cloned successors of the skipped blocks to not
  // have spurious incoming values.
  for (auto *LoopBB : L.blocks())
    if (SkipBlock(LoopBB))
      for (auto *SuccBB : successors(LoopBB))
        if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
          for (PHINode &PN : ClonedSuccBB->phis())
            PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);

  // Remove the cloned parent as a predecessor of any successor we ended up
  // cloning other than the unswitched one.
  auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
  for (auto *SuccBB : successors(ParentBB)) {
    if (SuccBB == UnswitchedSuccBB)
      continue;

    auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
    if (!ClonedSuccBB)
      continue;

    ClonedSuccBB->removePredecessor(ClonedParentBB,
                                    /*KeepOneInputPHIs*/ true);
  }

  // Replace the cloned branch with an unconditional branch to the cloned
  // unswitched successor.
  auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
  ClonedParentBB->getTerminator()->eraseFromParent();
  BranchInst::Create(ClonedSuccBB, ClonedParentBB);

  // If there are duplicate entries in the PHI nodes because of multiple edges
  // to the unswitched successor, we need to nuke all but one as we replaced it
  // with a direct branch.
  for (PHINode &PN : ClonedSuccBB->phis()) {
    bool Found = false;
    // Loop over the incoming operands backwards so we can easily delete as we
    // go without invalidating the index.
    for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
      if (PN.getIncomingBlock(i) != ClonedParentBB)
        continue;
      if (!Found) {
        Found = true;
        continue;
      }
      PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
    }
  }

  // Record the domtree updates for the new blocks.
  SmallPtrSet<BasicBlock *, 4> SuccSet;
  for (auto *ClonedBB : NewBlocks) {
    for (auto *SuccBB : successors(ClonedBB))
      if (SuccSet.insert(SuccBB).second)
        DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
    SuccSet.clear();
  }

  return ClonedPH;
}

/// Recursively clone the specified loop and all of its children.
///
/// The target parent loop for the clone should be provided, or can be null if
/// the clone is a top-level loop. While cloning, all the blocks are mapped
/// with the provided value map. The entire original loop must be present in
/// the value map. The cloned loop is returned.
static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
                           const ValueToValueMapTy &VMap, LoopInfo &LI) {
  auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
    assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
    ClonedL.reserveBlocks(OrigL.getNumBlocks());
    for (auto *BB : OrigL.blocks()) {
      auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
      ClonedL.addBlockEntry(ClonedBB);
      if (LI.getLoopFor(BB) == &OrigL)
        LI.changeLoopFor(ClonedBB, &ClonedL);
    }
  };

  // We specially handle the first loop because it may get cloned into
  // a different parent and because we most commonly are cloning leaf loops.
  Loop *ClonedRootL = LI.AllocateLoop();
  if (RootParentL)
    RootParentL->addChildLoop(ClonedRootL);
  else
    LI.addTopLevelLoop(ClonedRootL);
  AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);

  if (OrigRootL.empty())
    return ClonedRootL;

  // If we have a nest, we can quickly clone the entire loop nest using an
  // iterative approach because it is a tree. We keep the cloned parent in the
  // data structure to avoid repeatedly querying through a map to find it.
  SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
  // Build up the loops to clone in reverse order as we'll clone them from the
  // back.
  for (Loop *ChildL : llvm::reverse(OrigRootL))
    LoopsToClone.push_back({ClonedRootL, ChildL});
  do {
    Loop *ClonedParentL, *L;
    std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
    Loop *ClonedL = LI.AllocateLoop();
    ClonedParentL->addChildLoop(ClonedL);
    AddClonedBlocksToLoop(*L, *ClonedL);
    for (Loop *ChildL : llvm::reverse(*L))
      LoopsToClone.push_back({ClonedL, ChildL});
  } while (!LoopsToClone.empty());

  return ClonedRootL;
}

/// Build the cloned loops of an original loop from unswitching.
///
/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
/// operation. We need to re-verify that there even is a loop (as the backedge
/// may not have been cloned), and even if there are remaining backedges the
/// backedge set may be different. However, we know that each child loop is
/// undisturbed, we only need to find where to place each child loop within
/// either any parent loop or within a cloned version of the original loop.
///
/// Because child loops may end up cloned outside of any cloned version of the
/// original loop, multiple cloned sibling loops may be created. All of them
/// are returned so that the newly introduced loop nest roots can be
/// identified.
static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
                             const ValueToValueMapTy &VMap, LoopInfo &LI,
                             SmallVectorImpl<Loop *> &NonChildClonedLoops) {
  Loop *ClonedL = nullptr;

  auto *OrigPH = OrigL.getLoopPreheader();
  auto *OrigHeader = OrigL.getHeader();

  auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
  auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));

  // We need to know the loops of the cloned exit blocks to even compute the
  // accurate parent loop. If we only clone exits to some parent of the
  // original parent, we want to clone into that outer loop. We also keep track
  // of the loops that our cloned exit blocks participate in.
  Loop *ParentL = nullptr;
  SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
  SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
  ClonedExitsInLoops.reserve(ExitBlocks.size());
  for (auto *ExitBB : ExitBlocks)
    if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
      if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
        ExitLoopMap[ClonedExitBB] = ExitL;
        ClonedExitsInLoops.push_back(ClonedExitBB);
        if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
          ParentL = ExitL;
      }
  assert((!ParentL || ParentL == OrigL.getParentLoop() ||
          ParentL->contains(OrigL.getParentLoop())) &&
         "The computed parent loop should always contain (or be) the parent of "
         "the original loop.");

  // We build the set of blocks dominated by the cloned header from the set of
  // cloned blocks out of the original loop. While not all of these will
  // necessarily be in the cloned loop, it is enough to establish that they
  // aren't in unreachable cycles, etc.
  SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
  for (auto *BB : OrigL.blocks())
    if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
      ClonedLoopBlocks.insert(ClonedBB);

  // Rebuild the set of blocks that will end up in the cloned loop. We may have
  // skipped cloning some region of this loop which can in turn skip some of
  // the backedges so we have to rebuild the blocks in the loop based on the
  // backedges that remain after cloning.
  SmallVector<BasicBlock *, 16> Worklist;
  SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
  for (auto *Pred : predecessors(ClonedHeader)) {
    // The only possible non-loop header predecessor is the preheader because
    // we know we cloned the loop in simplified form.
    if (Pred == ClonedPH)
      continue;

    // Because the loop was in simplified form, the only non-loop predecessor
    // should be the preheader.
    assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
                                           "header other than the preheader "
                                           "that is not part of the loop!");

    // Insert this block into the loop set and on the first visit (and if it
    // isn't the header we're currently walking) put it into the worklist to
    // recurse through.
    if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
      Worklist.push_back(Pred);
  }

  // If we had any backedges then there *is* a cloned loop. Put the header into
  // the loop set and then walk the worklist backwards to find all the blocks
  // that remain within the loop after cloning.
  if (!BlocksInClonedLoop.empty()) {
    BlocksInClonedLoop.insert(ClonedHeader);

    while (!Worklist.empty()) {
      BasicBlock *BB = Worklist.pop_back_val();
      assert(BlocksInClonedLoop.count(BB) &&
             "Didn't put block into the loop set!");

      // Insert any predecessors that are in the possible set into the cloned
      // set, and if the insert is successful, add them to the worklist. Note
      // that we filter on the blocks that are definitely reachable via the
      // backedge to the loop header so we may prune out dead code within the
      // cloned loop.
      for (auto *Pred : predecessors(BB))
        if (ClonedLoopBlocks.count(Pred) &&
            BlocksInClonedLoop.insert(Pred).second)
          Worklist.push_back(Pred);
    }

    ClonedL = LI.AllocateLoop();
    if (ParentL) {
      ParentL->addBasicBlockToLoop(ClonedPH, LI);
      ParentL->addChildLoop(ClonedL);
    } else {
      LI.addTopLevelLoop(ClonedL);
    }
    NonChildClonedLoops.push_back(ClonedL);

    ClonedL->reserveBlocks(BlocksInClonedLoop.size());
    // We don't want to just add the cloned loop blocks based on how we
    // discovered them. The original order of blocks was carefully built in
    // a way that doesn't rely on predecessor ordering. Rather than re-invent
    // that logic, we just re-walk the original blocks (and those of the child
    // loops) and filter them as we add them into the cloned loop.
    for (auto *BB : OrigL.blocks()) {
      auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
      if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
        continue;

      // Directly add the blocks that are only in this loop.
      if (LI.getLoopFor(BB) == &OrigL) {
        ClonedL->addBasicBlockToLoop(ClonedBB, LI);
        continue;
      }

      // We want to manually add it to this loop and parents.
      // Registering it with LoopInfo will happen when we clone the top
      // loop for this block.
      for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
        PL->addBlockEntry(ClonedBB);
    }

    // Now add each child loop whose header remains within the cloned loop. All
    // of the blocks within the loop must satisfy the same constraints as the
    // header so once we pass the header checks we can just clone the entire
    // child loop nest.
    for (Loop *ChildL : OrigL) {
      auto *ClonedChildHeader =
          cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
      if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
        continue;

#ifndef NDEBUG
      // We should never have a cloned child loop header but fail to have
      // all of the blocks for that child loop.
      for (auto *ChildLoopBB : ChildL->blocks())
        assert(BlocksInClonedLoop.count(
                   cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
               "Child cloned loop has a header within the cloned outer "
               "loop but not all of its blocks!");
#endif

      cloneLoopNest(*ChildL, ClonedL, VMap, LI);
    }
  }

  // Now that we've handled all the components of the original loop that were
  // cloned into a new loop, we still need to handle anything from the original
  // loop that wasn't in a cloned loop.

  // Figure out what blocks are left to place within any loop nest containing
  // the unswitched loop. If we never formed a loop, the cloned PH is one of
  // them.
  SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
  if (BlocksInClonedLoop.empty())
    UnloopedBlockSet.insert(ClonedPH);
  for (auto *ClonedBB : ClonedLoopBlocks)
    if (!BlocksInClonedLoop.count(ClonedBB))
      UnloopedBlockSet.insert(ClonedBB);

  // Copy the cloned exits and sort them in ascending loop depth, we'll work
  // backwards across these to process them inside out. The order shouldn't
  // matter as we're just trying to build up the map from inside-out; we use
  // the map in a more stably ordered way below.
  auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
  llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
    return ExitLoopMap.lookup(LHS)->getLoopDepth() <
           ExitLoopMap.lookup(RHS)->getLoopDepth();
  });

  // Populate the existing ExitLoopMap with everything reachable from each
  // exit, starting from the inner most exit.
  while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
    assert(Worklist.empty() && "Didn't clear worklist!");

    BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
    Loop *ExitL = ExitLoopMap.lookup(ExitBB);

    // Walk the CFG back until we hit the cloned PH adding everything reachable
    // and in the unlooped set to this exit block's loop.
    Worklist.push_back(ExitBB);
    do {
      BasicBlock *BB = Worklist.pop_back_val();
      // We can stop recursing at the cloned preheader (if we get there).
      if (BB == ClonedPH)
        continue;

      for (BasicBlock *PredBB : predecessors(BB)) {
        // If this pred has already been moved to our set or is part of some
        // (inner) loop, no update needed.
        if (!UnloopedBlockSet.erase(PredBB)) {
          assert(
              (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
              "Predecessor not mapped to a loop!");
          continue;
        }

        // We just insert into the loop set here. We'll add these blocks to the
        // exit loop after we build up the set in an order that doesn't rely on
        // predecessor order (which in turn relies on use list order).
        bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
        (void)Inserted;
        assert(Inserted && "Should only visit an unlooped block once!");

        // And recurse through to its predecessors.
        Worklist.push_back(PredBB);
      }
    } while (!Worklist.empty());
  }

  // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
  // blocks to their outer loops, walk the cloned blocks and the cloned exits
  // in their original order adding them to the correct loop.

  // We need a stable insertion order. We use the order of the original loop
  // order and map into the correct parent loop.
  for (auto *BB : llvm::concat<BasicBlock *const>(
           makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
    if (Loop *OuterL = ExitLoopMap.lookup(BB))
      OuterL->addBasicBlockToLoop(BB, LI);

#ifndef NDEBUG
  for (auto &BBAndL : ExitLoopMap) {
    auto *BB = BBAndL.first;
    auto *OuterL = BBAndL.second;
    assert(LI.getLoopFor(BB) == OuterL &&
           "Failed to put all blocks into outer loops!");
  }
#endif

  // Now that all the blocks are placed into the correct containing loop in the
  // absence of child loops, find all the potentially cloned child loops and
  // clone them into whatever outer loop we placed their header into.
  for (Loop *ChildL : OrigL) {
    auto *ClonedChildHeader =
        cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
    if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
      continue;

#ifndef NDEBUG
    for (auto *ChildLoopBB : ChildL->blocks())
      assert(VMap.count(ChildLoopBB) &&
             "Cloned a child loop header but not all of that loops blocks!");
#endif

    NonChildClonedLoops.push_back(cloneLoopNest(
        *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
  }
}

static void
deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
                       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
                       DominatorTree &DT, MemorySSAUpdater *MSSAU) {
  // Find all the dead clones, and remove them from their successors.
  SmallVector<BasicBlock *, 16> DeadBlocks;
  for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
    for (auto &VMap : VMaps)
      if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
        if (!DT.isReachableFromEntry(ClonedBB)) {
          for (BasicBlock *SuccBB : successors(ClonedBB))
            SuccBB->removePredecessor(ClonedBB);
          DeadBlocks.push_back(ClonedBB);
        }

  // Remove all MemorySSA in the dead blocks
  if (MSSAU) {
    SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
                                                 DeadBlocks.end());
    MSSAU->removeBlocks(DeadBlockSet);
  }

  // Drop any remaining references to break cycles.
  for (BasicBlock *BB : DeadBlocks)
    BB->dropAllReferences();
  // Erase them from the IR.
  for (BasicBlock *BB : DeadBlocks)
    BB->eraseFromParent();
}

static void deleteDeadBlocksFromLoop(Loop &L,
                                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
                                     DominatorTree &DT, LoopInfo &LI,
                                     MemorySSAUpdater *MSSAU) {
  // Find all the dead blocks tied to this loop, and remove them from their
  // successors.
  SmallSetVector<BasicBlock *, 8> DeadBlockSet;

  // Start with loop/exit blocks and get a transitive closure of reachable dead
  // blocks.
  SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
                                                ExitBlocks.end());
  DeathCandidates.append(L.blocks().begin(), L.blocks().end());
  while (!DeathCandidates.empty()) {
    auto *BB = DeathCandidates.pop_back_val();
    if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
      for (BasicBlock *SuccBB : successors(BB)) {
        SuccBB->removePredecessor(BB);
        DeathCandidates.push_back(SuccBB);
      }
      DeadBlockSet.insert(BB);
    }
  }

  // Remove all MemorySSA in the dead blocks
  if (MSSAU)
    MSSAU->removeBlocks(DeadBlockSet);

  // Filter out the dead blocks from the exit blocks list so that it can be
  // used in the caller.
  llvm::erase_if(ExitBlocks,
                 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });

  // Walk from this loop up through its parents removing all of the dead blocks.
  for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
    for (auto *BB : DeadBlockSet)
      ParentL->getBlocksSet().erase(BB);
    llvm::erase_if(ParentL->getBlocksVector(),
                   [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
  }

  // Now delete the dead child loops. This raw delete will clear them
  // recursively.
  llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
    if (!DeadBlockSet.count(ChildL->getHeader()))
      return false;

    assert(llvm::all_of(ChildL->blocks(),
                        [&](BasicBlock *ChildBB) {
                          return DeadBlockSet.count(ChildBB);
                        }) &&
           "If the child loop header is dead all blocks in the child loop must "
           "be dead as well!");
    LI.destroy(ChildL);
    return true;
  });

  // Remove the loop mappings for the dead blocks and drop all the references
  // from these blocks to others to handle cyclic references as we start
  // deleting the blocks themselves.
  for (auto *BB : DeadBlockSet) {
    // Check that the dominator tree has already been updated.
    assert(!DT.getNode(BB) && "Should already have cleared domtree!");
    LI.changeLoopFor(BB, nullptr);
    BB->dropAllReferences();
  }

  // Actually delete the blocks now that they've been fully unhooked from the
  // IR.
  for (auto *BB : DeadBlockSet)
    BB->eraseFromParent();
}

/// Recompute the set of blocks in a loop after unswitching.
///
/// This walks from the original headers predecessors to rebuild the loop. We
/// take advantage of the fact that new blocks can't have been added, and so we
/// filter by the original loop's blocks. This also handles potentially
/// unreachable code that we don't want to explore but might be found examining
/// the predecessors of the header.
///
/// If the original loop is no longer a loop, this will return an empty set. If
/// it remains a loop, all the blocks within it will be added to the set
/// (including those blocks in inner loops).
static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
                                                                 LoopInfo &LI) {
  SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;

  auto *PH = L.getLoopPreheader();
  auto *Header = L.getHeader();

  // A worklist to use while walking backwards from the header.
  SmallVector<BasicBlock *, 16> Worklist;

  // First walk the predecessors of the header to find the backedges. This will
  // form the basis of our walk.
  for (auto *Pred : predecessors(Header)) {
    // Skip the preheader.
    if (Pred == PH)
      continue;

    // Because the loop was in simplified form, the only non-loop predecessor
    // is the preheader.
    assert(L.contains(Pred) && "Found a predecessor of the loop header other "
                               "than the preheader that is not part of the "
                               "loop!");

    // Insert this block into the loop set and on the first visit and, if it
    // isn't the header we're currently walking, put it into the worklist to
    // recurse through.
    if (LoopBlockSet.insert(Pred).second && Pred != Header)
      Worklist.push_back(Pred);
  }

  // If no backedges were found, we're done.
  if (LoopBlockSet.empty())
    return LoopBlockSet;

  // We found backedges, recurse through them to identify the loop blocks.
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();
    assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");

    // No need to walk past the header.
    if (BB == Header)
      continue;

    // Because we know the inner loop structure remains valid we can use the
    // loop structure to jump immediately across the entire nested loop.
    // Further, because it is in loop simplified form, we can directly jump
    // to its preheader afterward.
    if (Loop *InnerL = LI.getLoopFor(BB))
      if (InnerL != &L) {
        assert(L.contains(InnerL) &&
               "Should not reach a loop *outside* this loop!");
        // The preheader is the only possible predecessor of the loop so
        // insert it into the set and check whether it was already handled.
        auto *InnerPH = InnerL->getLoopPreheader();
        assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
                                      "but not contain the inner loop "
                                      "preheader!");
        if (!LoopBlockSet.insert(InnerPH).second)
          // The only way to reach the preheader is through the loop body
          // itself so if it has been visited the loop is already handled.
          continue;

        // Insert all of the blocks (other than those already present) into
        // the loop set. We expect at least the block that led us to find the
        // inner loop to be in the block set, but we may also have other loop
        // blocks if they were already enqueued as predecessors of some other
        // outer loop block.
        for (auto *InnerBB : InnerL->blocks()) {
          if (InnerBB == BB) {
            assert(LoopBlockSet.count(InnerBB) &&
                   "Block should already be in the set!");
            continue;
          }

          LoopBlockSet.insert(InnerBB);
        }

        // Add the preheader to the worklist so we will continue past the
        // loop body.
        Worklist.push_back(InnerPH);
        continue;
      }

    // Insert any predecessors that were in the original loop into the new
    // set, and if the insert is successful, add them to the worklist.
    for (auto *Pred : predecessors(BB))
      if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
        Worklist.push_back(Pred);
  }

  assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");

  // We've found all the blocks participating in the loop, return our completed
  // set.
  return LoopBlockSet;
}

/// Rebuild a loop after unswitching removes some subset of blocks and edges.
///
/// The removal may have removed some child loops entirely but cannot have
/// disturbed any remaining child loops. However, they may need to be hoisted
/// to the parent loop (or to be top-level loops). The original loop may be
/// completely removed.
///
/// The sibling loops resulting from this update are returned. If the original
/// loop remains a valid loop, it will be the first entry in this list with all
/// of the newly sibling loops following it.
///
/// Returns true if the loop remains a loop after unswitching, and false if it
/// is no longer a loop after unswitching (and should not continue to be
/// referenced).
static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
                                     LoopInfo &LI,
                                     SmallVectorImpl<Loop *> &HoistedLoops) {
  auto *PH = L.getLoopPreheader();

  // Compute the actual parent loop from the exit blocks. Because we may have
  // pruned some exits the loop may be different from the original parent.
  Loop *ParentL = nullptr;
  SmallVector<Loop *, 4> ExitLoops;
  SmallVector<BasicBlock *, 4> ExitsInLoops;
  ExitsInLoops.reserve(ExitBlocks.size());
  for (auto *ExitBB : ExitBlocks)
    if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
      ExitLoops.push_back(ExitL);
      ExitsInLoops.push_back(ExitBB);
      if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
        ParentL = ExitL;
    }

  // Recompute the blocks participating in this loop. This may be empty if it
  // is no longer a loop.
  auto LoopBlockSet = recomputeLoopBlockSet(L, LI);

  // If we still have a loop, we need to re-set the loop's parent as the exit
  // block set changing may have moved it within the loop nest. Note that this
  // can only happen when this loop has a parent as it can only hoist the loop
  // *up* the nest.
  if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
    // Remove this loop's (original) blocks from all of the intervening loops.
    for (Loop *IL = L.getParentLoop(); IL != ParentL;
         IL = IL->getParentLoop()) {
      IL->getBlocksSet().erase(PH);
      for (auto *BB : L.blocks())
        IL->getBlocksSet().erase(BB);
      llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
        return BB == PH || L.contains(BB);
      });
    }

    LI.changeLoopFor(PH, ParentL);
    L.getParentLoop()->removeChildLoop(&L);
    if (ParentL)
      ParentL->addChildLoop(&L);
    else
      LI.addTopLevelLoop(&L);
  }

  // Now we update all the blocks which are no longer within the loop.
  auto &Blocks = L.getBlocksVector();
  auto BlocksSplitI =
      LoopBlockSet.empty()
          ? Blocks.begin()
          : std::stable_partition(
                Blocks.begin(), Blocks.end(),
                [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });

  // Before we erase the list of unlooped blocks, build a set of them.
  SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
  if (LoopBlockSet.empty())
    UnloopedBlocks.insert(PH);

  // Now erase these blocks from the loop.
  for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
    L.getBlocksSet().erase(BB);
  Blocks.erase(BlocksSplitI, Blocks.end());

  // Sort the exits in ascending loop depth, we'll work backwards across these
  // to process them inside out.
  llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
    return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
  });

  // We'll build up a set for each exit loop.
  SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
  Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.

  auto RemoveUnloopedBlocksFromLoop =
      [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
        for (auto *BB : UnloopedBlocks)
          L.getBlocksSet().erase(BB);
        llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
          return UnloopedBlocks.count(BB);
        });
      };

  SmallVector<BasicBlock *, 16> Worklist;
  while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
    assert(Worklist.empty() && "Didn't clear worklist!");
    assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");

    // Grab the next exit block, in decreasing loop depth order.
    BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
    Loop &ExitL = *LI.getLoopFor(ExitBB);
    assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");

    // Erase all of the unlooped blocks from the loops between the previous
    // exit loop and this exit loop. This works because the ExitInLoops list is
    // sorted in increasing order of loop depth and thus we visit loops in
    // decreasing order of loop depth.
    for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
      RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);

    // Walk the CFG back until we hit the cloned PH adding everything reachable
    // and in the unlooped set to this exit block's loop.
    Worklist.push_back(ExitBB);
    do {
      BasicBlock *BB = Worklist.pop_back_val();
      // We can stop recursing at the cloned preheader (if we get there).
      if (BB == PH)
        continue;

      for (BasicBlock *PredBB : predecessors(BB)) {
        // If this pred has already been moved to our set or is part of some
        // (inner) loop, no update needed.
        if (!UnloopedBlocks.erase(PredBB)) {
          assert((NewExitLoopBlocks.count(PredBB) ||
                  ExitL.contains(LI.getLoopFor(PredBB))) &&
                 "Predecessor not in a nested loop (or already visited)!");
          continue;
        }

        // We just insert into the loop set here. We'll add these blocks to the
        // exit loop after we build up the set in a deterministic order rather
        // than the predecessor-influenced visit order.
        bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
        (void)Inserted;
        assert(Inserted && "Should only visit an unlooped block once!");

        // And recurse through to its predecessors.
        Worklist.push_back(PredBB);
      }
    } while (!Worklist.empty());

    // If blocks in this exit loop were directly part of the original loop (as
    // opposed to a child loop) update the map to point to this exit loop. This
    // just updates a map and so the fact that the order is unstable is fine.
    for (auto *BB : NewExitLoopBlocks)
      if (Loop *BBL = LI.getLoopFor(BB))
        if (BBL == &L || !L.contains(BBL))
          LI.changeLoopFor(BB, &ExitL);

    // We will remove the remaining unlooped blocks from this loop in the next
    // iteration or below.
    NewExitLoopBlocks.clear();
  }

  // Any remaining unlooped blocks are no longer part of any loop unless they
  // are part of some child loop.
  for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
    RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
  for (auto *BB : UnloopedBlocks)
    if (Loop *BBL = LI.getLoopFor(BB))
      if (BBL == &L || !L.contains(BBL))
        LI.changeLoopFor(BB, nullptr);

  // Sink all the child loops whose headers are no longer in the loop set to
  // the parent (or to be top level loops). We reach into the loop and directly
  // update its subloop vector to make this batch update efficient.
  auto &SubLoops = L.getSubLoopsVector();
  auto SubLoopsSplitI =
      LoopBlockSet.empty()
          ? SubLoops.begin()
          : std::stable_partition(
                SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
                  return LoopBlockSet.count(SubL->getHeader());
                });
  for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
    HoistedLoops.push_back(HoistedL);
    HoistedL->setParentLoop(nullptr);

    // To compute the new parent of this hoisted loop we look at where we
    // placed the preheader above. We can't lookup the header itself because we
    // retained the mapping from the header to the hoisted loop. But the
    // preheader and header should have the exact same new parent computed
    // based on the set of exit blocks from the original loop as the preheader
    // is a predecessor of the header and so reached in the reverse walk. And
    // because the loops were all in simplified form the preheader of the
    // hoisted loop can't be part of some *other* loop.
    if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
      NewParentL->addChildLoop(HoistedL);
    else
      LI.addTopLevelLoop(HoistedL);
  }
  SubLoops.erase(SubLoopsSplitI, SubLoops.end());

  // Actually delete the loop if nothing remained within it.
  if (Blocks.empty()) {
    assert(SubLoops.empty() &&
           "Failed to remove all subloops from the original loop!");
    if (Loop *ParentL = L.getParentLoop())
      ParentL->removeChildLoop(llvm::find(*ParentL, &L));
    else
      LI.removeLoop(llvm::find(LI, &L));
    LI.destroy(&L);
    return false;
  }

  return true;
}

/// Helper to visit a dominator subtree, invoking a callable on each node.
///
/// Returning false at any point will stop walking past that node of the tree.
template <typename CallableT>
void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
  SmallVector<DomTreeNode *, 4> DomWorklist;
  DomWorklist.push_back(DT[BB]);
#ifndef NDEBUG
  SmallPtrSet<DomTreeNode *, 4> Visited;
  Visited.insert(DT[BB]);
#endif
  do {
    DomTreeNode *N = DomWorklist.pop_back_val();

    // Visit this node.
    if (!Callable(N->getBlock()))
      continue;

    // Accumulate the child nodes.
    for (DomTreeNode *ChildN : *N) {
      assert(Visited.insert(ChildN).second &&
             "Cannot visit a node twice when walking a tree!");
      DomWorklist.push_back(ChildN);
    }
  } while (!DomWorklist.empty());
}

static void unswitchNontrivialInvariants(
    Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
    SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
    AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
    ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  auto *ParentBB = TI.getParent();
  BranchInst *BI = dyn_cast<BranchInst>(&TI);
  SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);

  // We can only unswitch switches, conditional branches with an invariant
  // condition, or combining invariant conditions with an instruction.
  assert((SI || (BI && BI->isConditional())) &&
         "Can only unswitch switches and conditional branch!");
  bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
  if (FullUnswitch)
    assert(Invariants.size() == 1 &&
           "Cannot have other invariants with full unswitching!");
  else
    assert(isa<Instruction>(BI->getCondition()) &&
           "Partial unswitching requires an instruction as the condition!");

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Constant and BBs tracking the cloned and continuing successor. When we are
  // unswitching the entire condition, this can just be trivially chosen to
  // unswitch towards `true`. However, when we are unswitching a set of
  // invariants combined with `and` or `or`, the combining operation determines
  // the best direction to unswitch: we want to unswitch the direction that will
  // collapse the branch.
  bool Direction = true;
  int ClonedSucc = 0;
  if (!FullUnswitch) {
    if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
      assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
                 Instruction::And &&
             "Only `or` and `and` instructions can combine invariants being "
             "unswitched.");
      Direction = false;
      ClonedSucc = 1;
    }
  }

  BasicBlock *RetainedSuccBB =
      BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
  SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
  if (BI)
    UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
  else
    for (auto Case : SI->cases())
      if (Case.getCaseSuccessor() != RetainedSuccBB)
        UnswitchedSuccBBs.insert(Case.getCaseSuccessor());

  assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
         "Should not unswitch the same successor we are retaining!");

  // The branch should be in this exact loop. Any inner loop's invariant branch
  // should be handled by unswitching that inner loop. The caller of this
  // routine should filter out any candidates that remain (but were skipped for
  // whatever reason).
  assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");

  // Compute the parent loop now before we start hacking on things.
  Loop *ParentL = L.getParentLoop();
  // Get blocks in RPO order for MSSA update, before changing the CFG.
  LoopBlocksRPO LBRPO(&L);
  if (MSSAU)
    LBRPO.perform(&LI);

  // Compute the outer-most loop containing one of our exit blocks. This is the
  // furthest up our loopnest which can be mutated, which we will use below to
  // update things.
  Loop *OuterExitL = &L;
  for (auto *ExitBB : ExitBlocks) {
    Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
    if (!NewOuterExitL) {
      // We exited the entire nest with this block, so we're done.
      OuterExitL = nullptr;
      break;
    }
    if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
      OuterExitL = NewOuterExitL;
  }

  // At this point, we're definitely going to unswitch something so invalidate
  // any cached information in ScalarEvolution for the outer most loop
  // containing an exit block and all nested loops.
  if (SE) {
    if (OuterExitL)
      SE->forgetLoop(OuterExitL);
    else
      SE->forgetTopmostLoop(&L);
  }

  // If the edge from this terminator to a successor dominates that successor,
  // store a map from each block in its dominator subtree to it. This lets us
  // tell when cloning for a particular successor if a block is dominated by
  // some *other* successor with a single data structure. We use this to
  // significantly reduce cloning.
  SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
  for (auto *SuccBB : llvm::concat<BasicBlock *const>(
           makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
    if (SuccBB->getUniquePredecessor() ||
        llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
          return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
        }))
      visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
        DominatingSucc[BB] = SuccBB;
        return true;
      });

  // Split the preheader, so that we know that there is a safe place to insert
  // the conditional branch. We will change the preheader to have a conditional
  // branch on LoopCond. The original preheader will become the split point
  // between the unswitched versions, and we will have a new preheader for the
  // original loop.
  BasicBlock *SplitBB = L.getLoopPreheader();
  BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);

  // Keep track of the dominator tree updates needed.
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;

  // Clone the loop for each unswitched successor.
  SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
  VMaps.reserve(UnswitchedSuccBBs.size());
  SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
  for (auto *SuccBB : UnswitchedSuccBBs) {
    VMaps.emplace_back(new ValueToValueMapTy());
    ClonedPHs[SuccBB] = buildClonedLoopBlocks(
        L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
        DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
  }

  // The stitching of the branched code back together depends on whether we're
  // doing full unswitching or not with the exception that we always want to
  // nuke the initial terminator placed in the split block.
  SplitBB->getTerminator()->eraseFromParent();
  if (FullUnswitch) {
    // Splice the terminator from the original loop and rewrite its
    // successors.
    SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);

    // Keep a clone of the terminator for MSSA updates.
    Instruction *NewTI = TI.clone();
    ParentBB->getInstList().push_back(NewTI);

    // First wire up the moved terminator to the preheaders.
    if (BI) {
      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
      BI->setSuccessor(ClonedSucc, ClonedPH);
      BI->setSuccessor(1 - ClonedSucc, LoopPH);
      DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
    } else {
      assert(SI && "Must either be a branch or switch!");

      // Walk the cases and directly update their successors.
      assert(SI->getDefaultDest() == RetainedSuccBB &&
             "Not retaining default successor!");
      SI->setDefaultDest(LoopPH);
      for (auto &Case : SI->cases())
        if (Case.getCaseSuccessor() == RetainedSuccBB)
          Case.setSuccessor(LoopPH);
        else
          Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);

      // We need to use the set to populate domtree updates as even when there
      // are multiple cases pointing at the same successor we only want to
      // remove and insert one edge in the domtree.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        DTUpdates.push_back(
            {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
    }

    if (MSSAU) {
      DT.applyUpdates(DTUpdates);
      DTUpdates.clear();

      // Remove all but one edge to the retained block and all unswitched
      // blocks. This is to avoid having duplicate entries in the cloned Phis,
      // when we know we only keep a single edge for each case.
      MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);

      for (auto &VMap : VMaps)
        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
                                   /*IgnoreIncomingWithNoClones=*/true);
      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);

      // Remove all edges to unswitched blocks.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        MSSAU->removeEdge(ParentBB, SuccBB);
    }

    // Now unhook the successor relationship as we'll be replacing
    // the terminator with a direct branch. This is much simpler for branches
    // than switches so we handle those first.
    if (BI) {
      // Remove the parent as a predecessor of the unswitched successor.
      assert(UnswitchedSuccBBs.size() == 1 &&
             "Only one possible unswitched block for a branch!");
      BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
      UnswitchedSuccBB->removePredecessor(ParentBB,
                                          /*KeepOneInputPHIs*/ true);
      DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
    } else {
      // Note that we actually want to remove the parent block as a predecessor
      // of *every* case successor. The case successor is either unswitched,
      // completely eliminating an edge from the parent to that successor, or it
      // is a duplicate edge to the retained successor as the retained successor
      // is always the default successor and as we'll replace this with a direct
      // branch we no longer need the duplicate entries in the PHI nodes.
      SwitchInst *NewSI = cast<SwitchInst>(NewTI);
      assert(NewSI->getDefaultDest() == RetainedSuccBB &&
             "Not retaining default successor!");
      for (auto &Case : NewSI->cases())
        Case.getCaseSuccessor()->removePredecessor(
            ParentBB,
            /*KeepOneInputPHIs*/ true);

      // We need to use the set to populate domtree updates as even when there
      // are multiple cases pointing at the same successor we only want to
      // remove and insert one edge in the domtree.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
    }

    // After MSSAU update, remove the cloned terminator instruction NewTI.
    ParentBB->getTerminator()->eraseFromParent();

    // Create a new unconditional branch to the continuing block (as opposed to
    // the one cloned).
    BranchInst::Create(RetainedSuccBB, ParentBB);
  } else {
    assert(BI && "Only branches have partial unswitching.");
    assert(UnswitchedSuccBBs.size() == 1 &&
           "Only one possible unswitched block for a branch!");
    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
    // When doing a partial unswitch, we have to do a bit more work to build up
    // the branch in the split block.
    buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
                                          *ClonedPH, *LoopPH);
    DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});

    if (MSSAU) {
      DT.applyUpdates(DTUpdates);
      DTUpdates.clear();

      // Perform MSSA cloning updates.
      for (auto &VMap : VMaps)
        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
                                   /*IgnoreIncomingWithNoClones=*/true);
      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
    }
  }

  // Apply the updates accumulated above to get an up-to-date dominator tree.
  DT.applyUpdates(DTUpdates);

  // Now that we have an accurate dominator tree, first delete the dead cloned
  // blocks so that we can accurately build any cloned loops. It is important to
  // not delete the blocks from the original loop yet because we still want to
  // reference the original loop to understand the cloned loop's structure.
  deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);

  // Build the cloned loop structure itself. This may be substantially
  // different from the original structure due to the simplified CFG. This also
  // handles inserting all the cloned blocks into the correct loops.
  SmallVector<Loop *, 4> NonChildClonedLoops;
  for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
    buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);

  // Now that our cloned loops have been built, we can update the original loop.
  // First we delete the dead blocks from it and then we rebuild the loop
  // structure taking these deletions into account.
  deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  SmallVector<Loop *, 4> HoistedLoops;
  bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // This transformation has a high risk of corrupting the dominator tree, and
  // the below steps to rebuild loop structures will result in hard to debug
  // errors in that case so verify that the dominator tree is sane first.
  // FIXME: Remove this when the bugs stop showing up and rely on existing
  // verification steps.
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  if (BI) {
    // If we unswitched a branch which collapses the condition to a known
    // constant we want to replace all the uses of the invariants within both
    // the original and cloned blocks. We do this here so that we can use the
    // now updated dominator tree to identify which side the users are on.
    assert(UnswitchedSuccBBs.size() == 1 &&
           "Only one possible unswitched block for a branch!");
    BasicBlock *ClonedPH = ClonedPHs.begin()->second;

    // When considering multiple partially-unswitched invariants
    // we cant just go replace them with constants in both branches.
    //
    // For 'AND' we infer that true branch ("continue") means true
    // for each invariant operand.
    // For 'OR' we can infer that false branch ("continue") means false
    // for each invariant operand.
    // So it happens that for multiple-partial case we dont replace
    // in the unswitched branch.
    bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);

    ConstantInt *UnswitchedReplacement =
        Direction ? ConstantInt::getTrue(BI->getContext())
                  : ConstantInt::getFalse(BI->getContext());
    ConstantInt *ContinueReplacement =
        Direction ? ConstantInt::getFalse(BI->getContext())
                  : ConstantInt::getTrue(BI->getContext());
    for (Value *Invariant : Invariants)
      for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
           UI != UE;) {
        // Grab the use and walk past it so we can clobber it in the use list.
        Use *U = &*UI++;
        Instruction *UserI = dyn_cast<Instruction>(U->getUser());
        if (!UserI)
          continue;

        // Replace it with the 'continue' side if in the main loop body, and the
        // unswitched if in the cloned blocks.
        if (DT.dominates(LoopPH, UserI->getParent()))
          U->set(ContinueReplacement);
        else if (ReplaceUnswitched &&
                 DT.dominates(ClonedPH, UserI->getParent()))
          U->set(UnswitchedReplacement);
      }
  }

  // We can change which blocks are exit blocks of all the cloned sibling
  // loops, the current loop, and any parent loops which shared exit blocks
  // with the current loop. As a consequence, we need to re-form LCSSA for
  // them. But we shouldn't need to re-form LCSSA for any child loops.
  // FIXME: This could be made more efficient by tracking which exit blocks are
  // new, and focusing on them, but that isn't likely to be necessary.
  //
  // In order to reasonably rebuild LCSSA we need to walk inside-out across the
  // loop nest and update every loop that could have had its exits changed. We
  // also need to cover any intervening loops. We add all of these loops to
  // a list and sort them by loop depth to achieve this without updating
  // unnecessary loops.
  auto UpdateLoop = [&](Loop &UpdateL) {
#ifndef NDEBUG
    UpdateL.verifyLoop();
    for (Loop *ChildL : UpdateL) {
      ChildL->verifyLoop();
      assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
             "Perturbed a child loop's LCSSA form!");
    }
#endif
    // First build LCSSA for this loop so that we can preserve it when
    // forming dedicated exits. We don't want to perturb some other loop's
    // LCSSA while doing that CFG edit.
    formLCSSA(UpdateL, DT, &LI, nullptr);

    // For loops reached by this loop's original exit blocks we may
    // introduced new, non-dedicated exits. At least try to re-form dedicated
    // exits for these loops. This may fail if they couldn't have dedicated
    // exits to start with.
    formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
  };

  // For non-child cloned loops and hoisted loops, we just need to update LCSSA
  // and we can do it in any order as they don't nest relative to each other.
  //
  // Also check if any of the loops we have updated have become top-level loops
  // as that will necessitate widening the outer loop scope.
  for (Loop *UpdatedL :
       llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
    UpdateLoop(*UpdatedL);
    if (!UpdatedL->getParentLoop())
      OuterExitL = nullptr;
  }
  if (IsStillLoop) {
    UpdateLoop(L);
    if (!L.getParentLoop())
      OuterExitL = nullptr;
  }

  // If the original loop had exit blocks, walk up through the outer most loop
  // of those exit blocks to update LCSSA and form updated dedicated exits.
  if (OuterExitL != &L)
    for (Loop *OuterL = ParentL; OuterL != OuterExitL;
         OuterL = OuterL->getParentLoop())
      UpdateLoop(*OuterL);

#ifndef NDEBUG
  // Verify the entire loop structure to catch any incorrect updates before we
  // progress in the pass pipeline.
  LI.verify(DT);
#endif

  // Now that we've unswitched something, make callbacks to report the changes.
  // For that we need to merge together the updated loops and the cloned loops
  // and check whether the original loop survived.
  SmallVector<Loop *, 4> SibLoops;
  for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
    if (UpdatedL->getParentLoop() == ParentL)
      SibLoops.push_back(UpdatedL);
  UnswitchCB(IsStillLoop, SibLoops);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  if (BI)
    ++NumBranches;
  else
    ++NumSwitches;
}

/// Recursively compute the cost of a dominator subtree based on the per-block
/// cost map provided.
///
/// The recursive computation is memozied into the provided DT-indexed cost map
/// to allow querying it for most nodes in the domtree without it becoming
/// quadratic.
static int
computeDomSubtreeCost(DomTreeNode &N,
                      const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
                      SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
  // Don't accumulate cost (or recurse through) blocks not in our block cost
  // map and thus not part of the duplication cost being considered.
  auto BBCostIt = BBCostMap.find(N.getBlock());
  if (BBCostIt == BBCostMap.end())
    return 0;

  // Lookup this node to see if we already computed its cost.
  auto DTCostIt = DTCostMap.find(&N);
  if (DTCostIt != DTCostMap.end())
    return DTCostIt->second;

  // If not, we have to compute it. We can't use insert above and update
  // because computing the cost may insert more things into the map.
  int Cost = std::accumulate(
      N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
        return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
      });
  bool Inserted = DTCostMap.insert({&N, Cost}).second;
  (void)Inserted;
  assert(Inserted && "Should not insert a node while visiting children!");
  return Cost;
}

/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
/// making the following replacement:
///
///   --code before guard--
///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
///   --code after guard--
///
/// into
///
///   --code before guard--
///   br i1 %cond, label %guarded, label %deopt
///
/// guarded:
///   --code after guard--
///
/// deopt:
///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
///   unreachable
///
/// It also makes all relevant DT and LI updates, so that all structures are in
/// valid state after this transform.
static BranchInst *
turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
                    SmallVectorImpl<BasicBlock *> &ExitBlocks,
                    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
  LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
  BasicBlock *CheckBB = GI->getParent();

  if (MSSAU && VerifyMemorySSA)
     MSSAU->getMemorySSA()->verifyMemorySSA();

  // Remove all CheckBB's successors from DomTree. A block can be seen among
  // successors more than once, but for DomTree it should be added only once.
  SmallPtrSet<BasicBlock *, 4> Successors;
  for (auto *Succ : successors(CheckBB))
    if (Successors.insert(Succ).second)
      DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});

  Instruction *DeoptBlockTerm =
      SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
  BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
  // SplitBlockAndInsertIfThen inserts control flow that branches to
  // DeoptBlockTerm if the condition is true.  We want the opposite.
  CheckBI->swapSuccessors();

  BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
  GuardedBlock->setName("guarded");
  CheckBI->getSuccessor(1)->setName("deopt");
  BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);

  // We now have a new exit block.
  ExitBlocks.push_back(CheckBI->getSuccessor(1));

  if (MSSAU)
    MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);

  GI->moveBefore(DeoptBlockTerm);
  GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));

  // Add new successors of CheckBB into DomTree.
  for (auto *Succ : successors(CheckBB))
    DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});

  // Now the blocks that used to be CheckBB's successors are GuardedBlock's
  // successors.
  for (auto *Succ : Successors)
    DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});

  // Make proper changes to DT.
  DT.applyUpdates(DTUpdates);
  // Inform LI of a new loop block.
  L.addBasicBlockToLoop(GuardedBlock, LI);

  if (MSSAU) {
    MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
    MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
    if (VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();
  }

  ++NumGuards;
  return CheckBI;
}

/// Cost multiplier is a way to limit potentially exponential behavior
/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
/// candidates available. Also accounting for the number of "sibling" loops with
/// the idea to account for previous unswitches that already happened on this
/// cluster of loops. There was an attempt to keep this formula simple,
/// just enough to limit the worst case behavior. Even if it is not that simple
/// now it is still not an attempt to provide a detailed heuristic size
/// prediction.
///
/// TODO: Make a proper accounting of "explosion" effect for all kinds of
/// unswitch candidates, making adequate predictions instead of wild guesses.
/// That requires knowing not just the number of "remaining" candidates but
/// also costs of unswitching for each of these candidates.
static int calculateUnswitchCostMultiplier(
    Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
    ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
        UnswitchCandidates) {

  // Guards and other exiting conditions do not contribute to exponential
  // explosion as soon as they dominate the latch (otherwise there might be
  // another path to the latch remaining that does not allow to eliminate the
  // loop copy on unswitch).
  BasicBlock *Latch = L.getLoopLatch();
  BasicBlock *CondBlock = TI.getParent();
  if (DT.dominates(CondBlock, Latch) &&
      (isGuard(&TI) ||
       llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
         return L.contains(SuccBB);
       }) <= 1)) {
    NumCostMultiplierSkipped++;
    return 1;
  }

  auto *ParentL = L.getParentLoop();
  int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
                               : std::distance(LI.begin(), LI.end()));
  // Count amount of clones that all the candidates might cause during
  // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
  int UnswitchedClones = 0;
  for (auto Candidate : UnswitchCandidates) {
    Instruction *CI = Candidate.first;
    BasicBlock *CondBlock = CI->getParent();
    bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
    if (isGuard(CI)) {
      if (!SkipExitingSuccessors)
        UnswitchedClones++;
      continue;
    }
    int NonExitingSuccessors = llvm::count_if(
        successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
          return !SkipExitingSuccessors || L.contains(SuccBB);
        });
    UnswitchedClones += Log2_32(NonExitingSuccessors);
  }

  // Ignore up to the "unscaled candidates" number of unswitch candidates
  // when calculating the power-of-two scaling of the cost. The main idea
  // with this control is to allow a small number of unswitches to happen
  // and rely more on siblings multiplier (see below) when the number
  // of candidates is small.
  unsigned ClonesPower =
      std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);

  // Allowing top-level loops to spread a bit more than nested ones.
  int SiblingsMultiplier =
      std::max((ParentL ? SiblingsCount
                        : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
               1);
  // Compute the cost multiplier in a way that won't overflow by saturating
  // at an upper bound.
  int CostMultiplier;
  if (ClonesPower > Log2_32(UnswitchThreshold) ||
      SiblingsMultiplier > UnswitchThreshold)
    CostMultiplier = UnswitchThreshold;
  else
    CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
                              (int)UnswitchThreshold);

  LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
                    << " (siblings " << SiblingsMultiplier << " * clones "
                    << (1 << ClonesPower) << ")"
                    << " for unswitch candidate: " << TI << "\n");
  return CostMultiplier;
}

static bool
unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
                      AssumptionCache &AC, TargetTransformInfo &TTI,
                      function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
                      ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  // Collect all invariant conditions within this loop (as opposed to an inner
  // loop which would be handled when visiting that inner loop).
  SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
      UnswitchCandidates;

  // Whether or not we should also collect guards in the loop.
  bool CollectGuards = false;
  if (UnswitchGuards) {
    auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
        Intrinsic::getName(Intrinsic::experimental_guard));
    if (GuardDecl && !GuardDecl->use_empty())
      CollectGuards = true;
  }

  for (auto *BB : L.blocks()) {
    if (LI.getLoopFor(BB) != &L)
      continue;

    if (CollectGuards)
      for (auto &I : *BB)
        if (isGuard(&I)) {
          auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
          // TODO: Support AND, OR conditions and partial unswitching.
          if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
            UnswitchCandidates.push_back({&I, {Cond}});
        }

    if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      // We can only consider fully loop-invariant switch conditions as we need
      // to completely eliminate the switch after unswitching.
      if (!isa<Constant>(SI->getCondition()) &&
          L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
        UnswitchCandidates.push_back({SI, {SI->getCondition()}});
      continue;
    }

    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
        BI->getSuccessor(0) == BI->getSuccessor(1))
      continue;

    if (L.isLoopInvariant(BI->getCondition())) {
      UnswitchCandidates.push_back({BI, {BI->getCondition()}});
      continue;
    }

    Instruction &CondI = *cast<Instruction>(BI->getCondition());
    if (CondI.getOpcode() != Instruction::And &&
      CondI.getOpcode() != Instruction::Or)
      continue;

    TinyPtrVector<Value *> Invariants =
        collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
    if (Invariants.empty())
      continue;

    UnswitchCandidates.push_back({BI, std::move(Invariants)});
  }

  // If we didn't find any candidates, we're done.
  if (UnswitchCandidates.empty())
    return false;

  // Check if there are irreducible CFG cycles in this loop. If so, we cannot
  // easily unswitch non-trivial edges out of the loop. Doing so might turn the
  // irreducible control flow into reducible control flow and introduce new
  // loops "out of thin air". If we ever discover important use cases for doing
  // this, we can add support to loop unswitch, but it is a lot of complexity
  // for what seems little or no real world benefit.
  LoopBlocksRPO RPOT(&L);
  RPOT.perform(&LI);
  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
    return false;

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L.getUniqueExitBlocks(ExitBlocks);

  // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
  // don't know how to split those exit blocks.
  // FIXME: We should teach SplitBlock to handle this and remove this
  // restriction.
  for (auto *ExitBB : ExitBlocks)
    if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
      dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
      return false;
    }

  LLVM_DEBUG(
      dbgs() << "Considering " << UnswitchCandidates.size()
             << " non-trivial loop invariant conditions for unswitching.\n");

  // Given that unswitching these terminators will require duplicating parts of
  // the loop, so we need to be able to model that cost. Compute the ephemeral
  // values and set up a data structure to hold per-BB costs. We cache each
  // block's cost so that we don't recompute this when considering different
  // subsets of the loop for duplication during unswitching.
  SmallPtrSet<const Value *, 4> EphValues;
  CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
  SmallDenseMap<BasicBlock *, int, 4> BBCostMap;

  // Compute the cost of each block, as well as the total loop cost. Also, bail
  // out if we see instructions which are incompatible with loop unswitching
  // (convergent, noduplicate, or cross-basic-block tokens).
  // FIXME: We might be able to safely handle some of these in non-duplicated
  // regions.
  int LoopCost = 0;
  for (auto *BB : L.blocks()) {
    int Cost = 0;
    for (auto &I : *BB) {
      if (EphValues.count(&I))
        continue;

      if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
        return false;
      if (auto CS = CallSite(&I))
        if (CS.isConvergent() || CS.cannotDuplicate())
          return false;

      Cost += TTI.getUserCost(&I);
    }
    assert(Cost >= 0 && "Must not have negative costs!");
    LoopCost += Cost;
    assert(LoopCost >= 0 && "Must not have negative loop costs!");
    BBCostMap[BB] = Cost;
  }
  LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");

  // Now we find the best candidate by searching for the one with the following
  // properties in order:
  //
  // 1) An unswitching cost below the threshold
  // 2) The smallest number of duplicated unswitch candidates (to avoid
  //    creating redundant subsequent unswitching)
  // 3) The smallest cost after unswitching.
  //
  // We prioritize reducing fanout of unswitch candidates provided the cost
  // remains below the threshold because this has a multiplicative effect.
  //
  // This requires memoizing each dominator subtree to avoid redundant work.
  //
  // FIXME: Need to actually do the number of candidates part above.
  SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
  // Given a terminator which might be unswitched, computes the non-duplicated
  // cost for that terminator.
  auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
    BasicBlock &BB = *TI.getParent();
    SmallPtrSet<BasicBlock *, 4> Visited;

    int Cost = LoopCost;
    for (BasicBlock *SuccBB : successors(&BB)) {
      // Don't count successors more than once.
      if (!Visited.insert(SuccBB).second)
        continue;

      // If this is a partial unswitch candidate, then it must be a conditional
      // branch with a condition of either `or` or `and`. In that case, one of
      // the successors is necessarily duplicated, so don't even try to remove
      // its cost.
      if (!FullUnswitch) {
        auto &BI = cast<BranchInst>(TI);
        if (cast<Instruction>(BI.getCondition())->getOpcode() ==
            Instruction::And) {
          if (SuccBB == BI.getSuccessor(1))
            continue;
        } else {
          assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                     Instruction::Or &&
                 "Only `and` and `or` conditions can result in a partial "
                 "unswitch!");
          if (SuccBB == BI.getSuccessor(0))
            continue;
        }
      }

      // This successor's domtree will not need to be duplicated after
      // unswitching if the edge to the successor dominates it (and thus the
      // entire tree). This essentially means there is no other path into this
      // subtree and so it will end up live in only one clone of the loop.
      if (SuccBB->getUniquePredecessor() ||
          llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
            return PredBB == &BB || DT.dominates(SuccBB, PredBB);
          })) {
        Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
        assert(Cost >= 0 &&
               "Non-duplicated cost should never exceed total loop cost!");
      }
    }

    // Now scale the cost by the number of unique successors minus one. We
    // subtract one because there is already at least one copy of the entire
    // loop. This is computing the new cost of unswitching a condition.
    // Note that guards always have 2 unique successors that are implicit and
    // will be materialized if we decide to unswitch it.
    int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
    assert(SuccessorsCount > 1 &&
           "Cannot unswitch a condition without multiple distinct successors!");
    return Cost * (SuccessorsCount - 1);
  };
  Instruction *BestUnswitchTI = nullptr;
  int BestUnswitchCost = 0;
  ArrayRef<Value *> BestUnswitchInvariants;
  for (auto &TerminatorAndInvariants : UnswitchCandidates) {
    Instruction &TI = *TerminatorAndInvariants.first;
    ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
    BranchInst *BI = dyn_cast<BranchInst>(&TI);
    int CandidateCost = ComputeUnswitchedCost(
        TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
                                     Invariants[0] == BI->getCondition()));
    // Calculate cost multiplier which is a tool to limit potentially
    // exponential behavior of loop-unswitch.
    if (EnableUnswitchCostMultiplier) {
      int CostMultiplier =
          calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
      assert(
          (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
          "cost multiplier needs to be in the range of 1..UnswitchThreshold");
      CandidateCost *= CostMultiplier;
      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
                        << " (multiplier: " << CostMultiplier << ")"
                        << " for unswitch candidate: " << TI << "\n");
    } else {
      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
                        << " for unswitch candidate: " << TI << "\n");
    }

    if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
      BestUnswitchTI = &TI;
      BestUnswitchCost = CandidateCost;
      BestUnswitchInvariants = Invariants;
    }
  }
  assert(BestUnswitchTI && "Failed to find loop unswitch candidate");

  if (BestUnswitchCost >= UnswitchThreshold) {
    LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
                      << BestUnswitchCost << "\n");
    return false;
  }

  // If the best candidate is a guard, turn it into a branch.
  if (isGuard(BestUnswitchTI))
    BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
                                         ExitBlocks, DT, LI, MSSAU);

  LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
                    << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
                    << "\n");
  unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
                               ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
  return true;
}

/// Unswitch control flow predicated on loop invariant conditions.
///
/// This first hoists all branches or switches which are trivial (IE, do not
/// require duplicating any part of the loop) out of the loop body. It then
/// looks at other loop invariant control flows and tries to unswitch those as
/// well by cloning the loop if the result is small enough.
///
/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
/// updated based on the unswitch.
/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
///
/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
/// true, we will attempt to do non-trivial unswitching as well as trivial
/// unswitching.
///
/// The `UnswitchCB` callback provided will be run after unswitching is
/// complete, with the first parameter set to `true` if the provided loop
/// remains a loop, and a list of new sibling loops created.
///
/// If `SE` is non-null, we will update that analysis based on the unswitching
/// done.
static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
                         AssumptionCache &AC, TargetTransformInfo &TTI,
                         bool NonTrivial,
                         function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  assert(L.isRecursivelyLCSSAForm(DT, LI) &&
         "Loops must be in LCSSA form before unswitching.");
  bool Changed = false;

  // Must be in loop simplified form: we need a preheader and dedicated exits.
  if (!L.isLoopSimplifyForm())
    return false;

  // Try trivial unswitch first before loop over other basic blocks in the loop.
  if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
    // If we unswitched successfully we will want to clean up the loop before
    // processing it further so just mark it as unswitched and return.
    UnswitchCB(/*CurrentLoopValid*/ true, {});
    return true;
  }

  // If we're not doing non-trivial unswitching, we're done. We both accept
  // a parameter but also check a local flag that can be used for testing
  // a debugging.
  if (!NonTrivial && !EnableNonTrivialUnswitch)
    return false;

  // For non-trivial unswitching, because it often creates new loops, we rely on
  // the pass manager to iterate on the loops rather than trying to immediately
  // reach a fixed point. There is no substantial advantage to iterating
  // internally, and if any of the new loops are simplified enough to contain
  // trivial unswitching we want to prefer those.

  // Try to unswitch the best invariant condition. We prefer this full unswitch to
  // a partial unswitch when possible below the threshold.
  if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
    return true;

  // No other opportunities to unswitch.
  return Changed;
}

PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
                                              LoopStandardAnalysisResults &AR,
                                              LPMUpdater &U) {
  Function &F = *L.getHeader()->getParent();
  (void)F;

  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
                    << "\n");

  // Save the current loop name in a variable so that we can report it even
  // after it has been deleted.
  std::string LoopName = L.getName();

  auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
                                        ArrayRef<Loop *> NewLoops) {
    // If we did a non-trivial unswitch, we have added new (cloned) loops.
    if (!NewLoops.empty())
      U.addSiblingLoops(NewLoops);

    // If the current loop remains valid, we should revisit it to catch any
    // other unswitch opportunities. Otherwise, we need to mark it as deleted.
    if (CurrentLoopValid)
      U.revisitCurrentLoop();
    else
      U.markLoopAsDeleted(L, LoopName);
  };

  Optional<MemorySSAUpdater> MSSAU;
  if (AR.MSSA) {
    MSSAU = MemorySSAUpdater(AR.MSSA);
    if (VerifyMemorySSA)
      AR.MSSA->verifyMemorySSA();
  }
  if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
                    &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
    return PreservedAnalyses::all();

  if (AR.MSSA && VerifyMemorySSA)
    AR.MSSA->verifyMemorySSA();

  // Historically this pass has had issues with the dominator tree so verify it
  // in asserts builds.
  assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

namespace {

class SimpleLoopUnswitchLegacyPass : public LoopPass {
  bool NonTrivial;

public:
  static char ID; // Pass ID, replacement for typeid

  explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
      : LoopPass(ID), NonTrivial(NonTrivial) {
    initializeSimpleLoopUnswitchLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    if (EnableMSSALoopDependency) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  Function &F = *L->getHeader()->getParent();

  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
                    << "\n");

  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  MemorySSA *MSSA = nullptr;
  Optional<MemorySSAUpdater> MSSAU;
  if (EnableMSSALoopDependency) {
    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    MSSAU = MemorySSAUpdater(MSSA);
  }

  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
  auto *SE = SEWP ? &SEWP->getSE() : nullptr;

  auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
                               ArrayRef<Loop *> NewLoops) {
    // If we did a non-trivial unswitch, we have added new (cloned) loops.
    for (auto *NewL : NewLoops)
      LPM.addLoop(*NewL);

    // If the current loop remains valid, re-add it to the queue. This is
    // a little wasteful as we'll finish processing the current loop as well,
    // but it is the best we can do in the old PM.
    if (CurrentLoopValid)
      LPM.addLoop(*L);
    else
      LPM.markLoopAsDeleted(*L);
  };

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
                              MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  // If anything was unswitched, also clear any cached information about this
  // loop.
  LPM.deleteSimpleAnalysisLoop(L);

  // Historically this pass has had issues with the dominator tree so verify it
  // in asserts builds.
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  return Changed;
}

char SimpleLoopUnswitchLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
                      "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
                    "Simple unswitch loops", false, false)

Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
  return new SimpleLoopUnswitchLegacyPass(NonTrivial);
}