reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
protected:
  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = nullptr)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }

public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp() ||
           I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> :
  public FixedNumOperandTraits<UnaryInstruction, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                                UnaryOperator Class
//===----------------------------------------------------------------------===//

class UnaryOperator : public UnaryInstruction {
  void AssertOK();

protected:
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, Instruction *InsertBefore);
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  UnaryOperator *cloneImpl() const;

public:

  /// Construct a unary instruction, given the opcode and an operand.
  /// Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name = Twine(),
                               Instruction *InsertBefore = nullptr);

  /// Construct a unary instruction, given the opcode and an operand.
  /// Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name,
                               BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
    return Create(Instruction::OPC, V, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    BasicBlock *BB) {\
    return Create(Instruction::OPC, V, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    Instruction *I) {\
    return Create(Instruction::OPC, V, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static UnaryOperator *CreateWithCopiedFlags(UnaryOps Opc,
                                              Value *V,
                                              Instruction *CopyO,
                                              const Twine &Name = "") {
    UnaryOperator *UO = Create(Opc, V, Name);
    UO->copyIRFlags(CopyO);
    return UO;
  }

  static UnaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
                                      const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FNeg, Op, FMFSource, Name);
  }

  UnaryOps getOpcode() const {
    return static_cast<UnaryOps>(Instruction::getOpcode());
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void AssertOK();

protected:
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  BinaryOperator *cloneImpl() const;

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = nullptr);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
                                               Value *V1, Value *V2,
                                               Instruction *CopyO,
                                               const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->copyIRFlags(CopyO);
    return BO;
  }

  static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
                                       const Twine &Name = "") {
    Value *Zero = ConstantFP::getNegativeZero(Op->getType());
    return CreateWithCopiedFlags(Instruction::FSub, Zero, Op, FMFSource, Name);
  }

  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
                                                  const Twine &Name = "") {    \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
  }

  DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
  DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
  DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
  DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
  DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
  DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
  DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
  DEFINE_HELPERS(Shl, NUW) // CreateNUWShl

  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr

#undef DEFINE_HELPERS

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// Create the NEG and NOT instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
                                    Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
                                    BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> :
  public FixedNumOperandTraits<BinaryOperator, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// Base class of casting instructions.
class CastInst : public UnaryInstruction {
protected:
  /// Constructor with insert-before-instruction semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }

public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
  ///
  /// If the value is a pointer type and the destination an integer type,
  /// creates a PtrToInt cast. If the value is an integer type and the
  /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
  /// a bitcast.
  static CastInst *CreateBitOrPointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Check whether a bitcast between these types is valid
  static bool isBitCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
  /// types is valid and a no-op.
  ///
  /// This ensures that any pointer<->integer cast has enough bits in the
  /// integer and any other cast is a bitcast.
  static bool isBitOrNoopPointerCastable(
      Type *SrcTy,  ///< The Type from which the value should be cast.
      Type *DestTy, ///< The Type to which the value should be cast.
      const DataLayout &DL);

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// DataLayout argument is to determine the pointer size when examining casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform.
  /// Determine if the described cast is a no-op cast.
  static bool isNoopCast(
    Instruction::CastOps Opcode, ///< Opcode of cast
    Type *SrcTy,         ///< SrcTy of cast
    Type *DstTy,         ///< DstTy of cast
    const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
  );

  /// Determine if this cast is a no-op cast.
  ///
  /// \param DL is the DataLayout to determine pointer size.
  bool isNoopCast(const DataLayout &DL) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
  /// returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    Type *SrcTy, ///< SrcTy of 1st cast
    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    Type *DstTy, ///< DstTy of 2nd cast
    Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
  );

  /// Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// Return the source type, as a convenience
  Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// Return the destination type, as a convenience
  Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isCast();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// Abstract base class of comparison instructions.
class CmpInst : public Instruction {
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  ///
  /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
  /// FCMP_* values. Changing the bit patterns requires a potential change to
  /// those passes.
  enum Predicate {
    // Opcode              U L G E    Intuitive operation
    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  ///< equal
    ICMP_NE    = 33,  ///< not equal
    ICMP_UGT   = 34,  ///< unsigned greater than
    ICMP_UGE   = 35,  ///< unsigned greater or equal
    ICMP_ULT   = 36,  ///< unsigned less than
    ICMP_ULE   = 37,  ///< unsigned less or equal
    ICMP_SGT   = 38,  ///< signed greater than
    ICMP_SGE   = 39,  ///< signed greater or equal
    ICMP_SLT   = 40,  ///< signed less than
    ICMP_SLE   = 41,  ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

protected:
  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = nullptr,
          Instruction *FlagsSource = nullptr);

  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = nullptr);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);

  /// Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// Return the predicate for this instruction.
  Predicate getPredicate() const {
    return Predicate(getSubclassDataFromInstruction());
  }

  /// Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setInstructionSubclassData(P); }

  static bool isFPPredicate(Predicate P) {
    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
  }

  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }

  static StringRef getPredicateName(Predicate P);

  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
  /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
  /// does not support other kind of predicates.
  /// @returns the predicate that does not contains is equal to zero if
  /// it had and vice versa.
  /// Return the flipped strictness of predicate
  Predicate getFlippedStrictnessPredicate() const {
    return getFlippedStrictnessPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the flipped strictness of predicate
  static Predicate getFlippedStrictnessPredicate(Predicate pred);

  /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
  /// Returns the non-strict version of strict comparisons.
  Predicate getNonStrictPredicate() const {
    return getNonStrictPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns the non-strict version of comparison provided in \p pred.
  /// If \p pred is not a strict comparison predicate, returns \p pred.
  /// Returns the non-strict version of strict comparisons.
  static Predicate getNonStrictPredicate(Predicate pred);

  /// Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// Determine if this CmpInst is commutative.
  bool isCommutative() const;

  /// This is just a convenience that dispatches to the subclasses.
  /// Determine if this is an equals/not equals predicate.
  bool isEquality() const;

  /// @returns true if the comparison is signed, false otherwise.
  /// Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the unsigned predicate pred.
  /// return the signed version of a predicate
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the predicate for this instruction (which
  /// has to be an unsigned predicate).
  /// return the signed version of a predicate
  Predicate getSignedPredicate() {
    return getSignedPredicate(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// Determine if the predicate is an unsigned operation.
  static bool isUnsigned(Predicate predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// Determine if the predicate is an signed operation.
  static bool isSigned(Predicate predicate);

  /// Determine if the predicate is an ordered operation.
  static bool isOrdered(Predicate predicate);

  /// Determine if the predicate is an unordered operation.
  static bool isUnordered(Predicate predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(Predicate predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(Predicate predicate);

  /// Determine if Pred1 implies Pred2 is true when two compares have matching
  /// operands.
  static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Determine if Pred1 implies Pred2 is false when two compares have matching
  /// operands.
  static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  /// Create a result type for fcmp/icmp
  static Type* makeCmpResultType(Type* opnd_type) {
    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getElementCount());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

/// A lightweight accessor for an operand bundle meant to be passed
/// around by value.
struct OperandBundleUse {
  ArrayRef<Use> Inputs;

  OperandBundleUse() = default;
  explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
      : Inputs(Inputs), Tag(Tag) {}

  /// Return true if the operand at index \p Idx in this operand bundle
  /// has the attribute A.
  bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
    if (isDeoptOperandBundle())
      if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
        return Inputs[Idx]->getType()->isPointerTy();

    // Conservative answer:  no operands have any attributes.
    return false;
  }

  /// Return the tag of this operand bundle as a string.
  StringRef getTagName() const {
    return Tag->getKey();
  }

  /// Return the tag of this operand bundle as an integer.
  ///
  /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
  /// and this function returns the unique integer getOrInsertBundleTag
  /// associated the tag of this operand bundle to.
  uint32_t getTagID() const {
    return Tag->getValue();
  }

  /// Return true if this is a "deopt" operand bundle.
  bool isDeoptOperandBundle() const {
    return getTagID() == LLVMContext::OB_deopt;
  }

  /// Return true if this is a "funclet" operand bundle.
  bool isFuncletOperandBundle() const {
    return getTagID() == LLVMContext::OB_funclet;
  }

  /// Return true if this is a "cfguardtarget" operand bundle.
  bool isCFGuardTargetOperandBundle() const {
    return getTagID() == LLVMContext::OB_cfguardtarget;
  }

private:
  /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
  StringMapEntry<uint32_t> *Tag;
};

/// A container for an operand bundle being viewed as a set of values
/// rather than a set of uses.
///
/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
/// so it is possible to create and pass around "self-contained" instances of
/// OperandBundleDef and ConstOperandBundleDef.
template <typename InputTy> class OperandBundleDefT {
  std::string Tag;
  std::vector<InputTy> Inputs;

public:
  explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
  explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(Inputs) {}

  explicit OperandBundleDefT(const OperandBundleUse &OBU) {
    Tag = OBU.getTagName();
    Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
  }

  ArrayRef<InputTy> inputs() const { return Inputs; }

  using input_iterator = typename std::vector<InputTy>::const_iterator;

  size_t input_size() const { return Inputs.size(); }
  input_iterator input_begin() const { return Inputs.begin(); }
  input_iterator input_end() const { return Inputs.end(); }

  StringRef getTag() const { return Tag; }
};

using OperandBundleDef = OperandBundleDefT<Value *>;
using ConstOperandBundleDef = OperandBundleDefT<const Value *>;

//===----------------------------------------------------------------------===//
//                               CallBase Class
//===----------------------------------------------------------------------===//

/// Base class for all callable instructions (InvokeInst and CallInst)
/// Holds everything related to calling a function.
///
/// All call-like instructions are required to use a common operand layout:
/// - Zero or more arguments to the call,
/// - Zero or more operand bundles with zero or more operand inputs each
///   bundle,
/// - Zero or more subclass controlled operands
/// - The called function.
///
/// This allows this base class to easily access the called function and the
/// start of the arguments without knowing how many other operands a particular
/// subclass requires. Note that accessing the end of the argument list isn't
/// as cheap as most other operations on the base class.
class CallBase : public Instruction {
protected:
  /// The last operand is the called operand.
  static constexpr int CalledOperandOpEndIdx = -1;

  AttributeList Attrs; ///< parameter attributes for callable
  FunctionType *FTy;

  template <class... ArgsTy>
  CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
      : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}

  using Instruction::Instruction;

  bool hasDescriptor() const { return Value::HasDescriptor; }

  unsigned getNumSubclassExtraOperands() const {
    switch (getOpcode()) {
    case Instruction::Call:
      return 0;
    case Instruction::Invoke:
      return 2;
    case Instruction::CallBr:
      return getNumSubclassExtraOperandsDynamic();
    }
    llvm_unreachable("Invalid opcode!");
  }

  /// Get the number of extra operands for instructions that don't have a fixed
  /// number of extra operands.
  unsigned getNumSubclassExtraOperandsDynamic() const;

public:
  using Instruction::getContext;

  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call ||
           I->getOpcode() == Instruction::Invoke ||
           I->getOpcode() == Instruction::CallBr;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  FunctionType *getFunctionType() const { return FTy; }

  void mutateFunctionType(FunctionType *FTy) {
    Value::mutateType(FTy->getReturnType());
    this->FTy = FTy;
  }

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// data_operands_begin/data_operands_end - Return iterators iterating over
  /// the call / invoke argument list and bundle operands.  For invokes, this is
  /// the set of instruction operands except the invoke target and the two
  /// successor blocks; and for calls this is the set of instruction operands
  /// except the call target.
  User::op_iterator data_operands_begin() { return op_begin(); }
  User::const_op_iterator data_operands_begin() const {
    return const_cast<CallBase *>(this)->data_operands_begin();
  }
  User::op_iterator data_operands_end() {
    // Walk from the end of the operands over the called operand and any
    // subclass operands.
    return op_end() - getNumSubclassExtraOperands() - 1;
  }
  User::const_op_iterator data_operands_end() const {
    return const_cast<CallBase *>(this)->data_operands_end();
  }
  iterator_range<User::op_iterator> data_ops() {
    return make_range(data_operands_begin(), data_operands_end());
  }
  iterator_range<User::const_op_iterator> data_ops() const {
    return make_range(data_operands_begin(), data_operands_end());
  }
  bool data_operands_empty() const {
    return data_operands_end() == data_operands_begin();
  }
  unsigned data_operands_size() const {
    return std::distance(data_operands_begin(), data_operands_end());
  }

  bool isDataOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return data_operands_begin() <= U && U < data_operands_end();
  }
  bool isDataOperand(Value::const_user_iterator UI) const {
    return isDataOperand(&UI.getUse());
  }

  /// Given a value use iterator, return the data operand corresponding to it.
  /// Iterator must actually correspond to a data operand.
  unsigned getDataOperandNo(Value::const_user_iterator UI) const {
    return getDataOperandNo(&UI.getUse());
  }

  /// Given a use for a data operand, get the data operand number that
  /// corresponds to it.
  unsigned getDataOperandNo(const Use *U) const {
    assert(isDataOperand(U) && "Data operand # out of range!");
    return U - data_operands_begin();
  }

  /// Return the iterator pointing to the beginning of the argument list.
  User::op_iterator arg_begin() { return op_begin(); }
  User::const_op_iterator arg_begin() const {
    return const_cast<CallBase *>(this)->arg_begin();
  }

  /// Return the iterator pointing to the end of the argument list.
  User::op_iterator arg_end() {
    // From the end of the data operands, walk backwards past the bundle
    // operands.
    return data_operands_end() - getNumTotalBundleOperands();
  }
  User::const_op_iterator arg_end() const {
    return const_cast<CallBase *>(this)->arg_end();
  }

  /// Iteration adapter for range-for loops.
  iterator_range<User::op_iterator> args() {
    return make_range(arg_begin(), arg_end());
  }
  iterator_range<User::const_op_iterator> args() const {
    return make_range(arg_begin(), arg_end());
  }
  bool arg_empty() const { return arg_end() == arg_begin(); }
  unsigned arg_size() const { return arg_end() - arg_begin(); }

  // Legacy API names that duplicate the above and will be removed once users
  // are migrated.
  iterator_range<User::op_iterator> arg_operands() {
    return make_range(arg_begin(), arg_end());
  }
  iterator_range<User::const_op_iterator> arg_operands() const {
    return make_range(arg_begin(), arg_end());
  }
  unsigned getNumArgOperands() const { return arg_size(); }

  Value *getArgOperand(unsigned i) const {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return getOperand(i);
  }

  void setArgOperand(unsigned i, Value *v) {
    assert(i < getNumArgOperands() && "Out of bounds!");
    setOperand(i, v);
  }

  /// Wrappers for getting the \c Use of a call argument.
  const Use &getArgOperandUse(unsigned i) const {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return User::getOperandUse(i);
  }
  Use &getArgOperandUse(unsigned i) {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return User::getOperandUse(i);
  }

  bool isArgOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return arg_begin() <= U && U < arg_end();
  }
  bool isArgOperand(Value::const_user_iterator UI) const {
    return isArgOperand(&UI.getUse());
  }

  /// Returns true if this CallSite passes the given Value* as an argument to
  /// the called function.
  bool hasArgument(const Value *V) const {
    return llvm::any_of(args(), [V](const Value *Arg) { return Arg == V; });
  }

  Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }

  // DEPRECATED: This routine will be removed in favor of `getCalledOperand` in
  // the near future.
  Value *getCalledValue() const { return getCalledOperand(); }

  const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
  Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }

  /// Returns the function called, or null if this is an
  /// indirect function invocation.
  Function *getCalledFunction() const {
    return dyn_cast_or_null<Function>(getCalledOperand());
  }

  /// Return true if the callsite is an indirect call.
  bool isIndirectCall() const;

  /// Determine whether the passed iterator points to the callee operand's Use.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Determine whether this Use is the callee operand's Use.
  bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }

  /// Helper to get the caller (the parent function).
  Function *getCaller();
  const Function *getCaller() const {
    return const_cast<CallBase *>(this)->getCaller();
  }

  /// Tests if this call site must be tail call optimized. Only a CallInst can
  /// be tail call optimized.
  bool isMustTailCall() const;

  /// Tests if this call site is marked as a tail call.
  bool isTailCall() const;

  /// Returns the intrinsic ID of the intrinsic called or
  /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
  /// this is an indirect call.
  Intrinsic::ID getIntrinsicID() const;

  void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(Function *Fn) {
    setCalledFunction(Fn->getFunctionType(), Fn);
  }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(FunctionCallee Fn) {
    setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
  }

  /// Sets the function called, including updating to the specified function
  /// type.
  void setCalledFunction(FunctionType *FTy, Value *Fn) {
    this->FTy = FTy;
    assert(FTy == cast<FunctionType>(
                      cast<PointerType>(Fn->getType())->getElementType()));
    // This function doesn't mutate the return type, only the function
    // type. Seems broken, but I'm just gonna stick an assert in for now.
    assert(getType() == FTy->getReturnType());
    setCalledOperand(Fn);
  }

  CallingConv::ID getCallingConv() const {
    return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
  }

  void setCallingConv(CallingConv::ID CC) {
    auto ID = static_cast<unsigned>(CC);
    assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
    setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
                               (ID << 2));
  }

  /// Check if this call is an inline asm statement.
  bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }

  /// \name Attribute API
  ///
  /// These methods access and modify attributes on this call (including
  /// looking through to the attributes on the called function when necessary).
  ///@{

  /// Return the parameter attributes for this call.
  ///
  AttributeList getAttributes() const { return Attrs; }

  /// Set the parameter attributes for this call.
  ///
  void setAttributes(AttributeList A) { Attrs = A; }

  /// Determine whether this call has the given attribute.
  bool hasFnAttr(Attribute::AttrKind Kind) const {
    assert(Kind != Attribute::NoBuiltin &&
           "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin");
    return hasFnAttrImpl(Kind);
  }

  /// Determine whether this call has the given attribute.
  bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }

  /// adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attribute::AttrKind Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attribute Attr) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addAttribute(getContext(), i, Attr);
    setAttributes(PAL);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute Attr) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
    setAttributes(PAL);
  }

  /// removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.removeAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, StringRef Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.removeAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, StringRef Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// adds the dereferenceable attribute to the list of attributes.
  void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
    setAttributes(PAL);
  }

  /// adds the dereferenceable_or_null attribute to the list of
  /// attributes.
  void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
    setAttributes(PAL);
  }

  /// Determine whether the return value has the given attribute.
  bool hasRetAttr(Attribute::AttrKind Kind) const;

  /// Determine whether the argument or parameter has the given attribute.
  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;

  /// Get the attribute of a given kind at a position.
  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
    return getAttributes().getAttribute(i, Kind);
  }

  /// Get the attribute of a given kind at a position.
  Attribute getAttribute(unsigned i, StringRef Kind) const {
    return getAttributes().getAttribute(i, Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Return true if the data operand at index \p i has the attribute \p
  /// A.
  ///
  /// Data operands include call arguments and values used in operand bundles,
  /// but does not include the callee operand.  This routine dispatches to the
  /// underlying AttributeList or the OperandBundleUser as appropriate.
  ///
  /// The index \p i is interpreted as
  ///
  ///  \p i == Attribute::ReturnIndex  -> the return value
  ///  \p i in [1, arg_size + 1)  -> argument number (\p i - 1)
  ///  \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
  ///     (\p i - 1) in the operand list.
  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
    // Note that we have to add one because `i` isn't zero-indexed.
    assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&
           "Data operand index out of bounds!");

    // The attribute A can either be directly specified, if the operand in
    // question is a call argument; or be indirectly implied by the kind of its
    // containing operand bundle, if the operand is a bundle operand.

    if (i == AttributeList::ReturnIndex)
      return hasRetAttr(Kind);

    // FIXME: Avoid these i - 1 calculations and update the API to use
    // zero-based indices.
    if (i < (getNumArgOperands() + 1))
      return paramHasAttr(i - 1, Kind);

    assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
           "Must be either a call argument or an operand bundle!");
    return bundleOperandHasAttr(i - 1, Kind);
  }

  /// Determine whether this data operand is not captured.
  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotCapture(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
  }

  /// Determine whether this argument is passed by value.
  bool isByValArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal);
  }

  /// Determine whether this argument is passed in an alloca.
  bool isInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine whether this argument is passed by value or in an alloca.
  bool isByValOrInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal) ||
           paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine if there are is an inalloca argument. Only the last argument can
  /// have the inalloca attribute.
  bool hasInAllocaArgument() const {
    return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotAccessMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool onlyReadsMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotReadMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  /// Extract the alignment of the return value.
  unsigned getRetAlignment() const {
    if (const auto MA = Attrs.getRetAlignment())
      return MA->value();
    return 0;
  }

  /// Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned ArgNo) const {
    if (const auto MA = Attrs.getParamAlignment(ArgNo))
      return MA->value();
    return 0;
  }

  /// Extract the byval type for a call or parameter.
  Type *getParamByValType(unsigned ArgNo) const {
    Type *Ty = Attrs.getParamByValType(ArgNo);
    return Ty ? Ty : getArgOperand(ArgNo)->getType()->getPointerElementType();
  }

  /// Extract the number of dereferenceable bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableBytes(unsigned i) const {
    return Attrs.getDereferenceableBytes(i);
  }

  /// Extract the number of dereferenceable_or_null bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
    return Attrs.getDereferenceableOrNullBytes(i);
  }

  /// Return true if the return value is known to be not null.
  /// This may be because it has the nonnull attribute, or because at least
  /// one byte is dereferenceable and the pointer is in addrspace(0).
  bool isReturnNonNull() const;

  /// Determine if the return value is marked with NoAlias attribute.
  bool returnDoesNotAlias() const {
    return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
  }

  /// If one of the arguments has the 'returned' attribute, returns its
  /// operand value. Otherwise, return nullptr.
  Value *getReturnedArgOperand() const;

  /// Return true if the call should not be treated as a call to a
  /// builtin.
  bool isNoBuiltin() const {
    return hasFnAttrImpl(Attribute::NoBuiltin) &&
           !hasFnAttrImpl(Attribute::Builtin);
  }

  /// Determine if the call requires strict floating point semantics.
  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }

  /// Return true if the call should not be inlined.
  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
  void setIsNoInline() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
  }
  /// Determine if the call does not access memory.
  bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
  void setDoesNotAccessMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
  }

  /// Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
  }
  void setOnlyReadsMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
  }

  /// Determine if the call does not access or only writes memory.
  bool doesNotReadMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
  }
  void setDoesNotReadMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
  }

  /// Determine if the call can access memmory only using pointers based
  /// on its arguments.
  bool onlyAccessesArgMemory() const {
    return hasFnAttr(Attribute::ArgMemOnly);
  }
  void setOnlyAccessesArgMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
  }

  /// Determine if the function may only access memory that is
  /// inaccessible from the IR.
  bool onlyAccessesInaccessibleMemory() const {
    return hasFnAttr(Attribute::InaccessibleMemOnly);
  }
  void setOnlyAccessesInaccessibleMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
  }

  /// Determine if the function may only access memory that is
  /// either inaccessible from the IR or pointed to by its arguments.
  bool onlyAccessesInaccessibleMemOrArgMem() const {
    return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
  }
  void setOnlyAccessesInaccessibleMemOrArgMem() {
    addAttribute(AttributeList::FunctionIndex,
                 Attribute::InaccessibleMemOrArgMemOnly);
  }
  /// Determine if the call cannot return.
  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
  void setDoesNotReturn() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
  }

  /// Determine if the call should not perform indirect branch tracking.
  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }

  /// Determine if the call cannot unwind.
  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
  void setDoesNotThrow() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
  }

  /// Determine if the invoke cannot be duplicated.
  bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
  void setCannotDuplicate() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
  }

  /// Determine if the invoke is convergent
  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
  void setConvergent() {
    addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
  }
  void setNotConvergent() {
    removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
  }

  /// Determine if the call returns a structure through first
  /// pointer argument.
  bool hasStructRetAttr() const {
    if (getNumArgOperands() == 0)
      return false;

    // Be friendly and also check the callee.
    return paramHasAttr(0, Attribute::StructRet);
  }

  /// Determine if any call argument is an aggregate passed by value.
  bool hasByValArgument() const {
    return Attrs.hasAttrSomewhere(Attribute::ByVal);
  }

  ///@{
  // End of attribute API.

  /// \name Operand Bundle API
  ///
  /// This group of methods provides the API to access and manipulate operand
  /// bundles on this call.
  /// @{

  /// Return the number of operand bundles associated with this User.
  unsigned getNumOperandBundles() const {
    return std::distance(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return true if this User has any operand bundles.
  bool hasOperandBundles() const { return getNumOperandBundles() != 0; }

  /// Return the index of the first bundle operand in the Use array.
  unsigned getBundleOperandsStartIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_begin()->Begin;
  }

  /// Return the index of the last bundle operand in the Use array.
  unsigned getBundleOperandsEndIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_end()[-1].End;
  }

  /// Return true if the operand at index \p Idx is a bundle operand.
  bool isBundleOperand(unsigned Idx) const {
    return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
           Idx < getBundleOperandsEndIndex();
  }

  /// Returns true if the use is a bundle operand.
  bool isBundleOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return hasOperandBundles() && isBundleOperand(U - op_begin());
  }
  bool isBundleOperand(Value::const_user_iterator UI) const {
    return isBundleOperand(&UI.getUse());
  }

  /// Return the total number operands (not operand bundles) used by
  /// every operand bundle in this OperandBundleUser.
  unsigned getNumTotalBundleOperands() const {
    if (!hasOperandBundles())
      return 0;

    unsigned Begin = getBundleOperandsStartIndex();
    unsigned End = getBundleOperandsEndIndex();

    assert(Begin <= End && "Should be!");
    return End - Begin;
  }

  /// Return the operand bundle at a specific index.
  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    assert(Index < getNumOperandBundles() && "Index out of bounds!");
    return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
  }

  /// Return the number of operand bundles with the tag Name attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(StringRef Name) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagName() == Name)
        Count++;

    return Count;
  }

  /// Return the number of operand bundles with the tag ID attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(uint32_t ID) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagID() == ID)
        Count++;

    return Count;
  }

  /// Return an operand bundle by name, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagName() == Name)
        return U;
    }

    return None;
  }

  /// Return an operand bundle by tag ID, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagID() == ID)
        return U;
    }

    return None;
  }

  /// Return the list of operand bundles attached to this instruction as
  /// a vector of OperandBundleDefs.
  ///
  /// This function copies the OperandBundeUse instances associated with this
  /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
  /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
  /// representations of operand bundles (see documentation above).
  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      Defs.emplace_back(getOperandBundleAt(i));
  }

  /// Return the operand bundle for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
    return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
  }

  /// Return true if this operand bundle user has operand bundles that
  /// may read from the heap.
  bool hasReadingOperandBundles() const {
    // Implementation note: this is a conservative implementation of operand
    // bundle semantics, where *any* operand bundle forces a callsite to be at
    // least readonly.
    return hasOperandBundles();
  }

  /// Return true if this operand bundle user has operand bundles that
  /// may write to the heap.
  bool hasClobberingOperandBundles() const {
    for (auto &BOI : bundle_op_infos()) {
      if (BOI.Tag->second == LLVMContext::OB_deopt ||
          BOI.Tag->second == LLVMContext::OB_funclet)
        continue;

      // This instruction has an operand bundle that is not known to us.
      // Assume the worst.
      return true;
    }

    return false;
  }

  /// Return true if the bundle operand at index \p OpIdx has the
  /// attribute \p A.
  bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
    auto &BOI = getBundleOpInfoForOperand(OpIdx);
    auto OBU = operandBundleFromBundleOpInfo(BOI);
    return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
  }

  /// Return true if \p Other has the same sequence of operand bundle
  /// tags with the same number of operands on each one of them as this
  /// OperandBundleUser.
  bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
    if (getNumOperandBundles() != Other.getNumOperandBundles())
      return false;

    return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
                      Other.bundle_op_info_begin());
  }

  /// Return true if this operand bundle user contains operand bundles
  /// with tags other than those specified in \p IDs.
  bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      uint32_t ID = getOperandBundleAt(i).getTagID();
      if (!is_contained(IDs, ID))
        return true;
    }
    return false;
  }

  /// Is the function attribute S disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(StringRef S) const {
    // Operand bundles only possibly disallow readnone, readonly and argmenonly
    // attributes.  All String attributes are fine.
    return false;
  }

  /// Is the function attribute A disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
    switch (A) {
    default:
      return false;

    case Attribute::InaccessibleMemOrArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::InaccessibleMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ReadNone:
      return hasReadingOperandBundles();

    case Attribute::ReadOnly:
      return hasClobberingOperandBundles();
    }

    llvm_unreachable("switch has a default case!");
  }

  /// Used to keep track of an operand bundle.  See the main comment on
  /// OperandBundleUser above.
  struct BundleOpInfo {
    /// The operand bundle tag, interned by
    /// LLVMContextImpl::getOrInsertBundleTag.
    StringMapEntry<uint32_t> *Tag;

    /// The index in the Use& vector where operands for this operand
    /// bundle starts.
    uint32_t Begin;

    /// The index in the Use& vector where operands for this operand
    /// bundle ends.
    uint32_t End;

    bool operator==(const BundleOpInfo &Other) const {
      return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
    }
  };

  /// Simple helper function to map a BundleOpInfo to an
  /// OperandBundleUse.
  OperandBundleUse
  operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
    auto begin = op_begin();
    ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
    return OperandBundleUse(BOI.Tag, Inputs);
  }

  using bundle_op_iterator = BundleOpInfo *;
  using const_bundle_op_iterator = const BundleOpInfo *;

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  ///
  /// OperandBundleUser uses the descriptor area co-allocated with the host User
  /// to store some meta information about which operands are "normal" operands,
  /// and which ones belong to some operand bundle.
  ///
  /// The layout of an operand bundle user is
  ///
  ///          +-----------uint32_t End-------------------------------------+
  ///          |                                                            |
  ///          |  +--------uint32_t Begin--------------------+              |
  ///          |  |                                          |              |
  ///          ^  ^                                          v              v
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///   v  v                                  ^              ^
  ///   |  |                                  |              |
  ///   |  +--------uint32_t Begin------------+              |
  ///   |                                                    |
  ///   +-----------uint32_t End-----------------------------+
  ///
  ///
  /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
  /// list. These descriptions are installed and managed by this class, and
  /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
  ///
  /// DU is an additional descriptor installed by User's 'operator new' to keep
  /// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
  /// access or modify DU in any way, it's an implementation detail private to
  /// User.
  ///
  /// The regular Use& vector for the User starts at U0.  The operand bundle
  /// uses are part of the Use& vector, just like normal uses.  In the diagram
  /// above, the operand bundle uses start at BOI0_U0.  Each instance of
  /// BundleOpInfo has information about a contiguous set of uses constituting
  /// an operand bundle, and the total set of operand bundle uses themselves
  /// form a contiguous set of uses (i.e. there are no gaps between uses
  /// corresponding to individual operand bundles).
  ///
  /// This class does not know the location of the set of operand bundle uses
  /// within the use list -- that is decided by the User using this class via
  /// the BeginIdx argument in populateBundleOperandInfos.
  ///
  /// Currently operand bundle users with hung-off operands are not supported.
  bundle_op_iterator bundle_op_info_begin() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesBegin = getDescriptor().begin();
    return reinterpret_cast<bundle_op_iterator>(BytesBegin);
  }

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_begin() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_begin();
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_end() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesEnd = getDescriptor().end();
    return reinterpret_cast<bundle_op_iterator>(BytesEnd);
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_end() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_end();
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<bundle_op_iterator> bundle_op_infos() {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Populate the BundleOpInfo instances and the Use& vector from \p
  /// Bundles.  Return the op_iterator pointing to the Use& one past the last
  /// last bundle operand use.
  ///
  /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
  /// instance allocated in this User's descriptor.
  op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
                                         const unsigned BeginIndex);

  /// Return the BundleOpInfo for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
    for (auto &BOI : bundle_op_infos())
      if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
        return BOI;

    llvm_unreachable("Did not find operand bundle for operand!");
  }

protected:
  /// Return the total number of values used in \p Bundles.
  static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
    unsigned Total = 0;
    for (auto &B : Bundles)
      Total += B.input_size();
    return Total;
  }

  /// @}
  // End of operand bundle API.

private:
  bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
  bool hasFnAttrOnCalledFunction(StringRef Kind) const;

  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
    if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
      return true;

    // Operand bundles override attributes on the called function, but don't
    // override attributes directly present on the call instruction.
    if (isFnAttrDisallowedByOpBundle(Kind))
      return false;

    return hasFnAttrOnCalledFunction(Kind);
  }
};

template <>
struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)

//===----------------------------------------------------------------------===//
//                           FuncletPadInst Class
//===----------------------------------------------------------------------===//
class FuncletPadInst : public Instruction {
private:
  FuncletPadInst(const FuncletPadInst &CPI);

  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, Instruction *InsertBefore);
  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, BasicBlock *InsertAtEnd);

  void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);

protected:
  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  friend class CatchPadInst;
  friend class CleanupPadInst;

  FuncletPadInst *cloneImpl() const;

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumArgOperands - Return the number of funcletpad arguments.
  ///
  unsigned getNumArgOperands() const { return getNumOperands() - 1; }

  /// Convenience accessors

  /// Return the outer EH-pad this funclet is nested within.
  ///
  /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
  /// is a CatchPadInst.
  Value *getParentPad() const { return Op<-1>(); }
  void setParentPad(Value *ParentPad) {
    assert(ParentPad);
    Op<-1>() = ParentPad;
  }

  /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
  ///
  Value *getArgOperand(unsigned i) const { return getOperand(i); }
  void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }

  /// arg_operands - iteration adapter for range-for loops.
  op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }

  /// arg_operands - iteration adapter for range-for loops.
  const_op_range arg_operands() const {
    return const_op_range(op_begin(), op_end() - 1);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) { return I->isFuncletPad(); }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<FuncletPadInst>
    : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)

} // end namespace llvm

#endif // LLVM_IR_INSTRTYPES_H