reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file exposes an interface to building/using memory SSA to
/// walk memory instructions using a use/def graph.
///
/// Memory SSA class builds an SSA form that links together memory access
/// instructions such as loads, stores, atomics, and calls. Additionally, it
/// does a trivial form of "heap versioning" Every time the memory state changes
/// in the program, we generate a new heap version. It generates
/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
///
/// As a trivial example,
/// define i32 @main() #0 {
/// entry:
///   %call = call noalias i8* @_Znwm(i64 4) #2
///   %0 = bitcast i8* %call to i32*
///   %call1 = call noalias i8* @_Znwm(i64 4) #2
///   %1 = bitcast i8* %call1 to i32*
///   store i32 5, i32* %0, align 4
///   store i32 7, i32* %1, align 4
///   %2 = load i32* %0, align 4
///   %3 = load i32* %1, align 4
///   %add = add nsw i32 %2, %3
///   ret i32 %add
/// }
///
/// Will become
/// define i32 @main() #0 {
/// entry:
///   ; 1 = MemoryDef(0)
///   %call = call noalias i8* @_Znwm(i64 4) #3
///   %2 = bitcast i8* %call to i32*
///   ; 2 = MemoryDef(1)
///   %call1 = call noalias i8* @_Znwm(i64 4) #3
///   %4 = bitcast i8* %call1 to i32*
///   ; 3 = MemoryDef(2)
///   store i32 5, i32* %2, align 4
///   ; 4 = MemoryDef(3)
///   store i32 7, i32* %4, align 4
///   ; MemoryUse(3)
///   %7 = load i32* %2, align 4
///   ; MemoryUse(4)
///   %8 = load i32* %4, align 4
///   %add = add nsw i32 %7, %8
///   ret i32 %add
/// }
///
/// Given this form, all the stores that could ever effect the load at %8 can be
/// gotten by using the MemoryUse associated with it, and walking from use to
/// def until you hit the top of the function.
///
/// Each def also has a list of users associated with it, so you can walk from
/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
/// but not the RHS of MemoryDefs. You can see this above at %7, which would
/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
/// store, all the MemoryUses on its use lists are may-aliases of that store
/// (but the MemoryDefs on its use list may not be).
///
/// MemoryDefs are not disambiguated because it would require multiple reaching
/// definitions, which would require multiple phis, and multiple memoryaccesses
/// per instruction.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_MEMORYSSA_H
#define LLVM_ANALYSIS_MEMORYSSA_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DerivedUser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>

namespace llvm {

/// Enables memory ssa as a dependency for loop passes.
extern cl::opt<bool> EnableMSSALoopDependency;

class Function;
class Instruction;
class MemoryAccess;
class MemorySSAWalker;
class LLVMContext;
class raw_ostream;

namespace MSSAHelpers {

struct AllAccessTag {};
struct DefsOnlyTag {};

} // end namespace MSSAHelpers

enum : unsigned {
  // Used to signify what the default invalid ID is for MemoryAccess's
  // getID()
  INVALID_MEMORYACCESS_ID = -1U
};

template <class T> class memoryaccess_def_iterator_base;
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
using const_memoryaccess_def_iterator =
    memoryaccess_def_iterator_base<const MemoryAccess>;

// The base for all memory accesses. All memory accesses in a block are
// linked together using an intrusive list.
class MemoryAccess
    : public DerivedUser,
      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
public:
  using AllAccessType =
      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
  using DefsOnlyType =
      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;

  MemoryAccess(const MemoryAccess &) = delete;
  MemoryAccess &operator=(const MemoryAccess &) = delete;

  void *operator new(size_t) = delete;

  // Methods for support type inquiry through isa, cast, and
  // dyn_cast
  static bool classof(const Value *V) {
    unsigned ID = V->getValueID();
    return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
  }

  BasicBlock *getBlock() const { return Block; }

  void print(raw_ostream &OS) const;
  void dump() const;

  /// The user iterators for a memory access
  using iterator = user_iterator;
  using const_iterator = const_user_iterator;

  /// This iterator walks over all of the defs in a given
  /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
  /// MemoryUse/MemoryDef, this walks the defining access.
  memoryaccess_def_iterator defs_begin();
  const_memoryaccess_def_iterator defs_begin() const;
  memoryaccess_def_iterator defs_end();
  const_memoryaccess_def_iterator defs_end() const;

  /// Get the iterators for the all access list and the defs only list
  /// We default to the all access list.
  AllAccessType::self_iterator getIterator() {
    return this->AllAccessType::getIterator();
  }
  AllAccessType::const_self_iterator getIterator() const {
    return this->AllAccessType::getIterator();
  }
  AllAccessType::reverse_self_iterator getReverseIterator() {
    return this->AllAccessType::getReverseIterator();
  }
  AllAccessType::const_reverse_self_iterator getReverseIterator() const {
    return this->AllAccessType::getReverseIterator();
  }
  DefsOnlyType::self_iterator getDefsIterator() {
    return this->DefsOnlyType::getIterator();
  }
  DefsOnlyType::const_self_iterator getDefsIterator() const {
    return this->DefsOnlyType::getIterator();
  }
  DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
    return this->DefsOnlyType::getReverseIterator();
  }
  DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
    return this->DefsOnlyType::getReverseIterator();
  }

protected:
  friend class MemoryDef;
  friend class MemoryPhi;
  friend class MemorySSA;
  friend class MemoryUse;
  friend class MemoryUseOrDef;

  /// Used by MemorySSA to change the block of a MemoryAccess when it is
  /// moved.
  void setBlock(BasicBlock *BB) { Block = BB; }

  /// Used for debugging and tracking things about MemoryAccesses.
  /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
  inline unsigned getID() const;

  MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
               BasicBlock *BB, unsigned NumOperands)
      : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
        Block(BB) {}

  // Use deleteValue() to delete a generic MemoryAccess.
  ~MemoryAccess() = default;

private:
  BasicBlock *Block;
};

template <>
struct ilist_alloc_traits<MemoryAccess> {
  static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
};

inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
  MA.print(OS);
  return OS;
}

/// Class that has the common methods + fields of memory uses/defs. It's
/// a little awkward to have, but there are many cases where we want either a
/// use or def, and there are many cases where uses are needed (defs aren't
/// acceptable), and vice-versa.
///
/// This class should never be instantiated directly; make a MemoryUse or
/// MemoryDef instead.
class MemoryUseOrDef : public MemoryAccess {
public:
  void *operator new(size_t) = delete;

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);

  /// Get the instruction that this MemoryUse represents.
  Instruction *getMemoryInst() const { return MemoryInstruction; }

  /// Get the access that produces the memory state used by this Use.
  MemoryAccess *getDefiningAccess() const { return getOperand(0); }

  static bool classof(const Value *MA) {
    return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
  }

  // Sadly, these have to be public because they are needed in some of the
  // iterators.
  inline bool isOptimized() const;
  inline MemoryAccess *getOptimized() const;
  inline void setOptimized(MemoryAccess *);

  // Retrieve AliasResult type of the optimized access. Ideally this would be
  // returned by the caching walker and may go away in the future.
  Optional<AliasResult> getOptimizedAccessType() const {
    return OptimizedAccessAlias;
  }

  /// Reset the ID of what this MemoryUse was optimized to, causing it to
  /// be rewalked by the walker if necessary.
  /// This really should only be called by tests.
  inline void resetOptimized();

protected:
  friend class MemorySSA;
  friend class MemorySSAUpdater;

  MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
                 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
                 unsigned NumOperands)
      : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
        MemoryInstruction(MI), OptimizedAccessAlias(MayAlias) {
    setDefiningAccess(DMA);
  }

  // Use deleteValue() to delete a generic MemoryUseOrDef.
  ~MemoryUseOrDef() = default;

  void setOptimizedAccessType(Optional<AliasResult> AR) {
    OptimizedAccessAlias = AR;
  }

  void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
                         Optional<AliasResult> AR = MayAlias) {
    if (!Optimized) {
      setOperand(0, DMA);
      return;
    }
    setOptimized(DMA);
    setOptimizedAccessType(AR);
  }

private:
  Instruction *MemoryInstruction;
  Optional<AliasResult> OptimizedAccessAlias;
};

/// Represents read-only accesses to memory
///
/// In particular, the set of Instructions that will be represented by
/// MemoryUse's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Ref".
class MemoryUse final : public MemoryUseOrDef {
public:
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);

  MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
      : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
                       /*NumOperands=*/1) {}

  // allocate space for exactly one operand
  void *operator new(size_t s) { return User::operator new(s, 1); }

  static bool classof(const Value *MA) {
    return MA->getValueID() == MemoryUseVal;
  }

  void print(raw_ostream &OS) const;

  void setOptimized(MemoryAccess *DMA) {
    OptimizedID = DMA->getID();
    setOperand(0, DMA);
  }

  bool isOptimized() const {
    return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
  }

  MemoryAccess *getOptimized() const {
    return getDefiningAccess();
  }

  void resetOptimized() {
    OptimizedID = INVALID_MEMORYACCESS_ID;
  }

protected:
  friend class MemorySSA;

private:
  static void deleteMe(DerivedUser *Self);

  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
};

template <>
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)

/// Represents a read-write access to memory, whether it is a must-alias,
/// or a may-alias.
///
/// In particular, the set of Instructions that will be represented by
/// MemoryDef's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
/// Note that, in order to provide def-def chains, all defs also have a use
/// associated with them. This use points to the nearest reaching
/// MemoryDef/MemoryPhi.
class MemoryDef final : public MemoryUseOrDef {
public:
  friend class MemorySSA;

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);

  MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
            unsigned Ver)
      : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
                       /*NumOperands=*/2),
        ID(Ver) {}

  // allocate space for exactly two operands
  void *operator new(size_t s) { return User::operator new(s, 2); }

  static bool classof(const Value *MA) {
    return MA->getValueID() == MemoryDefVal;
  }

  void setOptimized(MemoryAccess *MA) {
    setOperand(1, MA);
    OptimizedID = MA->getID();
  }

  MemoryAccess *getOptimized() const {
    return cast_or_null<MemoryAccess>(getOperand(1));
  }

  bool isOptimized() const {
    return getOptimized() && OptimizedID == getOptimized()->getID();
  }

  void resetOptimized() {
    OptimizedID = INVALID_MEMORYACCESS_ID;
    setOperand(1, nullptr);
  }

  void print(raw_ostream &OS) const;

  unsigned getID() const { return ID; }

private:
  static void deleteMe(DerivedUser *Self);

  const unsigned ID;
  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
};

template <>
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)

template <>
struct OperandTraits<MemoryUseOrDef> {
  static Use *op_begin(MemoryUseOrDef *MUD) {
    if (auto *MU = dyn_cast<MemoryUse>(MUD))
      return OperandTraits<MemoryUse>::op_begin(MU);
    return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
  }

  static Use *op_end(MemoryUseOrDef *MUD) {
    if (auto *MU = dyn_cast<MemoryUse>(MUD))
      return OperandTraits<MemoryUse>::op_end(MU);
    return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
  }

  static unsigned operands(const MemoryUseOrDef *MUD) {
    if (const auto *MU = dyn_cast<MemoryUse>(MUD))
      return OperandTraits<MemoryUse>::operands(MU);
    return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
  }
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)

/// Represents phi nodes for memory accesses.
///
/// These have the same semantic as regular phi nodes, with the exception that
/// only one phi will ever exist in a given basic block.
/// Guaranteeing one phi per block means guaranteeing there is only ever one
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
/// a MemoryPhi's operands.
/// That is, given
/// if (a) {
///   store %a
///   store %b
/// }
/// it *must* be transformed into
/// if (a) {
///    1 = MemoryDef(liveOnEntry)
///    store %a
///    2 = MemoryDef(1)
///    store %b
/// }
/// and *not*
/// if (a) {
///    1 = MemoryDef(liveOnEntry)
///    store %a
///    2 = MemoryDef(liveOnEntry)
///    store %b
/// }
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
/// end of the branch, and if there are not two phi nodes, one will be
/// disconnected completely from the SSA graph below that point.
/// Because MemoryUse's do not generate new definitions, they do not have this
/// issue.
class MemoryPhi final : public MemoryAccess {
  // allocate space for exactly zero operands
  void *operator new(size_t s) { return User::operator new(s); }

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);

  MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
      : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
        ReservedSpace(NumPreds) {
    allocHungoffUses(ReservedSpace);
  }

  // Block iterator interface. This provides access to the list of incoming
  // basic blocks, which parallels the list of incoming values.
  using block_iterator = BasicBlock **;
  using const_block_iterator = BasicBlock *const *;

  block_iterator block_begin() {
    auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
    return reinterpret_cast<block_iterator>(Ref + 1);
  }

  const_block_iterator block_begin() const {
    const auto *Ref =
        reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
    return reinterpret_cast<const_block_iterator>(Ref + 1);
  }

  block_iterator block_end() { return block_begin() + getNumOperands(); }

  const_block_iterator block_end() const {
    return block_begin() + getNumOperands();
  }

  iterator_range<block_iterator> blocks() {
    return make_range(block_begin(), block_end());
  }

  iterator_range<const_block_iterator> blocks() const {
    return make_range(block_begin(), block_end());
  }

  op_range incoming_values() { return operands(); }

  const_op_range incoming_values() const { return operands(); }

  /// Return the number of incoming edges
  unsigned getNumIncomingValues() const { return getNumOperands(); }

  /// Return incoming value number x
  MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
  void setIncomingValue(unsigned I, MemoryAccess *V) {
    assert(V && "PHI node got a null value!");
    setOperand(I, V);
  }

  static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
  static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }

  /// Return incoming basic block number @p i.
  BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }

  /// Return incoming basic block corresponding
  /// to an operand of the PHI.
  BasicBlock *getIncomingBlock(const Use &U) const {
    assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
    return getIncomingBlock(unsigned(&U - op_begin()));
  }

  /// Return incoming basic block corresponding
  /// to value use iterator.
  BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
    return getIncomingBlock(I.getUse());
  }

  void setIncomingBlock(unsigned I, BasicBlock *BB) {
    assert(BB && "PHI node got a null basic block!");
    block_begin()[I] = BB;
  }

  /// Add an incoming value to the end of the PHI list
  void addIncoming(MemoryAccess *V, BasicBlock *BB) {
    if (getNumOperands() == ReservedSpace)
      growOperands(); // Get more space!
    // Initialize some new operands.
    setNumHungOffUseOperands(getNumOperands() + 1);
    setIncomingValue(getNumOperands() - 1, V);
    setIncomingBlock(getNumOperands() - 1, BB);
  }

  /// Return the first index of the specified basic
  /// block in the value list for this PHI.  Returns -1 if no instance.
  int getBasicBlockIndex(const BasicBlock *BB) const {
    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
      if (block_begin()[I] == BB)
        return I;
    return -1;
  }

  MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
    int Idx = getBasicBlockIndex(BB);
    assert(Idx >= 0 && "Invalid basic block argument!");
    return getIncomingValue(Idx);
  }

  // After deleting incoming position I, the order of incoming may be changed.
  void unorderedDeleteIncoming(unsigned I) {
    unsigned E = getNumOperands();
    assert(I < E && "Cannot remove out of bounds Phi entry.");
    // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
    // itself should be deleted.
    assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
                     "at least 2 values.");
    setIncomingValue(I, getIncomingValue(E - 1));
    setIncomingBlock(I, block_begin()[E - 1]);
    setOperand(E - 1, nullptr);
    block_begin()[E - 1] = nullptr;
    setNumHungOffUseOperands(getNumOperands() - 1);
  }

  // After deleting entries that satisfy Pred, remaining entries may have
  // changed order.
  template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
      if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
        unorderedDeleteIncoming(I);
        E = getNumOperands();
        --I;
      }
    assert(getNumOperands() >= 1 &&
           "Cannot remove all incoming blocks in a MemoryPhi.");
  }

  // After deleting incoming block BB, the incoming blocks order may be changed.
  void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
    unorderedDeleteIncomingIf(
        [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
  }

  // After deleting incoming memory access MA, the incoming accesses order may
  // be changed.
  void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
    unorderedDeleteIncomingIf(
        [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
  }

  static bool classof(const Value *V) {
    return V->getValueID() == MemoryPhiVal;
  }

  void print(raw_ostream &OS) const;

  unsigned getID() const { return ID; }

protected:
  friend class MemorySSA;

  /// this is more complicated than the generic
  /// User::allocHungoffUses, because we have to allocate Uses for the incoming
  /// values and pointers to the incoming blocks, all in one allocation.
  void allocHungoffUses(unsigned N) {
    User::allocHungoffUses(N, /* IsPhi */ true);
  }

private:
  // For debugging only
  const unsigned ID;
  unsigned ReservedSpace;

  /// This grows the operand list in response to a push_back style of
  /// operation.  This grows the number of ops by 1.5 times.
  void growOperands() {
    unsigned E = getNumOperands();
    // 2 op PHI nodes are VERY common, so reserve at least enough for that.
    ReservedSpace = std::max(E + E / 2, 2u);
    growHungoffUses(ReservedSpace, /* IsPhi */ true);
  }

  static void deleteMe(DerivedUser *Self);
};

inline unsigned MemoryAccess::getID() const {
  assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
         "only memory defs and phis have ids");
  if (const auto *MD = dyn_cast<MemoryDef>(this))
    return MD->getID();
  return cast<MemoryPhi>(this)->getID();
}

inline bool MemoryUseOrDef::isOptimized() const {
  if (const auto *MD = dyn_cast<MemoryDef>(this))
    return MD->isOptimized();
  return cast<MemoryUse>(this)->isOptimized();
}

inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
  if (const auto *MD = dyn_cast<MemoryDef>(this))
    return MD->getOptimized();
  return cast<MemoryUse>(this)->getOptimized();
}

inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
  if (auto *MD = dyn_cast<MemoryDef>(this))
    MD->setOptimized(MA);
  else
    cast<MemoryUse>(this)->setOptimized(MA);
}

inline void MemoryUseOrDef::resetOptimized() {
  if (auto *MD = dyn_cast<MemoryDef>(this))
    MD->resetOptimized();
  else
    cast<MemoryUse>(this)->resetOptimized();
}

template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)

/// Encapsulates MemorySSA, including all data associated with memory
/// accesses.
class MemorySSA {
public:
  MemorySSA(Function &, AliasAnalysis *, DominatorTree *);

  // MemorySSA must remain where it's constructed; Walkers it creates store
  // pointers to it.
  MemorySSA(MemorySSA &&) = delete;

  ~MemorySSA();

  MemorySSAWalker *getWalker();
  MemorySSAWalker *getSkipSelfWalker();

  /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
  /// access associated with it. If passed a basic block gets the memory phi
  /// node that exists for that block, if there is one. Otherwise, this will get
  /// a MemoryUseOrDef.
  MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
    return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
  }

  MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
    return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
  }

  void dump() const;
  void print(raw_ostream &) const;

  /// Return true if \p MA represents the live on entry value
  ///
  /// Loads and stores from pointer arguments and other global values may be
  /// defined by memory operations that do not occur in the current function, so
  /// they may be live on entry to the function. MemorySSA represents such
  /// memory state by the live on entry definition, which is guaranteed to occur
  /// before any other memory access in the function.
  inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
    return MA == LiveOnEntryDef.get();
  }

  inline MemoryAccess *getLiveOnEntryDef() const {
    return LiveOnEntryDef.get();
  }

  // Sadly, iplists, by default, owns and deletes pointers added to the
  // list. It's not currently possible to have two iplists for the same type,
  // where one owns the pointers, and one does not. This is because the traits
  // are per-type, not per-tag.  If this ever changes, we should make the
  // DefList an iplist.
  using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
  using DefsList =
      simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;

  /// Return the list of MemoryAccess's for a given basic block.
  ///
  /// This list is not modifiable by the user.
  const AccessList *getBlockAccesses(const BasicBlock *BB) const {
    return getWritableBlockAccesses(BB);
  }

  /// Return the list of MemoryDef's and MemoryPhi's for a given basic
  /// block.
  ///
  /// This list is not modifiable by the user.
  const DefsList *getBlockDefs(const BasicBlock *BB) const {
    return getWritableBlockDefs(BB);
  }

  /// Given two memory accesses in the same basic block, determine
  /// whether MemoryAccess \p A dominates MemoryAccess \p B.
  bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;

  /// Given two memory accesses in potentially different blocks,
  /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
  bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;

  /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
  /// dominates Use \p B.
  bool dominates(const MemoryAccess *A, const Use &B) const;

  /// Verify that MemorySSA is self consistent (IE definitions dominate
  /// all uses, uses appear in the right places).  This is used by unit tests.
  void verifyMemorySSA() const;

  /// Used in various insertion functions to specify whether we are talking
  /// about the beginning or end of a block.
  enum InsertionPlace { Beginning, End };

protected:
  // Used by Memory SSA annotater, dumpers, and wrapper pass
  friend class MemorySSAAnnotatedWriter;
  friend class MemorySSAPrinterLegacyPass;
  friend class MemorySSAUpdater;

  void verifyPrevDefInPhis(Function &F) const;
  void verifyDefUses(Function &F) const;
  void verifyDomination(Function &F) const;
  void verifyOrdering(Function &F) const;
  void verifyDominationNumbers(const Function &F) const;

  // This is used by the use optimizer and updater.
  AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
    auto It = PerBlockAccesses.find(BB);
    return It == PerBlockAccesses.end() ? nullptr : It->second.get();
  }

  // This is used by the use optimizer and updater.
  DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
    auto It = PerBlockDefs.find(BB);
    return It == PerBlockDefs.end() ? nullptr : It->second.get();
  }

  // These is used by the updater to perform various internal MemorySSA
  // machinsations.  They do not always leave the IR in a correct state, and
  // relies on the updater to fixup what it breaks, so it is not public.

  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
  void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);

  // Rename the dominator tree branch rooted at BB.
  void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
                  SmallPtrSetImpl<BasicBlock *> &Visited) {
    renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
  }

  void removeFromLookups(MemoryAccess *);
  void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
  void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
                               InsertionPlace);
  void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
                             AccessList::iterator);
  MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
                                      const MemoryUseOrDef *Template = nullptr,
                                      bool CreationMustSucceed = true);

private:
  template <class AliasAnalysisType> class ClobberWalkerBase;
  template <class AliasAnalysisType> class CachingWalker;
  template <class AliasAnalysisType> class SkipSelfWalker;
  class OptimizeUses;

  CachingWalker<AliasAnalysis> *getWalkerImpl();
  void buildMemorySSA(BatchAAResults &BAA);
  void optimizeUses();

  void prepareForMoveTo(MemoryAccess *, BasicBlock *);
  void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;

  using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
  using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;

  void
  determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
  void markUnreachableAsLiveOnEntry(BasicBlock *BB);
  bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
  MemoryPhi *createMemoryPhi(BasicBlock *BB);
  template <typename AliasAnalysisType>
  MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
                                  const MemoryUseOrDef *Template = nullptr);
  MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
  void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
  MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
  void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
  void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
                  SmallPtrSetImpl<BasicBlock *> &Visited,
                  bool SkipVisited = false, bool RenameAllUses = false);
  AccessList *getOrCreateAccessList(const BasicBlock *);
  DefsList *getOrCreateDefsList(const BasicBlock *);
  void renumberBlock(const BasicBlock *) const;
  AliasAnalysis *AA;
  DominatorTree *DT;
  Function &F;

  // Memory SSA mappings
  DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;

  // These two mappings contain the main block to access/def mappings for
  // MemorySSA. The list contained in PerBlockAccesses really owns all the
  // MemoryAccesses.
  // Both maps maintain the invariant that if a block is found in them, the
  // corresponding list is not empty, and if a block is not found in them, the
  // corresponding list is empty.
  AccessMap PerBlockAccesses;
  DefsMap PerBlockDefs;
  std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;

  // Domination mappings
  // Note that the numbering is local to a block, even though the map is
  // global.
  mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
  mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;

  // Memory SSA building info
  std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
  std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
  std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
  unsigned NextID;
};

// Internal MemorySSA utils, for use by MemorySSA classes and walkers
class MemorySSAUtil {
protected:
  friend class GVNHoist;
  friend class MemorySSAWalker;

  // This function should not be used by new passes.
  static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
                                  AliasAnalysis &AA);
};

// This pass does eager building and then printing of MemorySSA. It is used by
// the tests to be able to build, dump, and verify Memory SSA.
class MemorySSAPrinterLegacyPass : public FunctionPass {
public:
  MemorySSAPrinterLegacyPass();

  bool runOnFunction(Function &) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  static char ID;
};

/// An analysis that produces \c MemorySSA for a function.
///
class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
  friend AnalysisInfoMixin<MemorySSAAnalysis>;

  static AnalysisKey Key;

public:
  // Wrap MemorySSA result to ensure address stability of internal MemorySSA
  // pointers after construction.  Use a wrapper class instead of plain
  // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
  struct Result {
    Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}

    MemorySSA &getMSSA() { return *MSSA.get(); }

    std::unique_ptr<MemorySSA> MSSA;

    bool invalidate(Function &F, const PreservedAnalyses &PA,
                    FunctionAnalysisManager::Invalidator &Inv);
  };

  Result run(Function &F, FunctionAnalysisManager &AM);
};

/// Printer pass for \c MemorySSA.
class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
  raw_ostream &OS;

public:
  explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// Verifier pass for \c MemorySSA.
struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// Legacy analysis pass which computes \c MemorySSA.
class MemorySSAWrapperPass : public FunctionPass {
public:
  MemorySSAWrapperPass();

  static char ID;

  bool runOnFunction(Function &) override;
  void releaseMemory() override;
  MemorySSA &getMSSA() { return *MSSA; }
  const MemorySSA &getMSSA() const { return *MSSA; }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  void verifyAnalysis() const override;
  void print(raw_ostream &OS, const Module *M = nullptr) const override;

private:
  std::unique_ptr<MemorySSA> MSSA;
};

/// This is the generic walker interface for walkers of MemorySSA.
/// Walkers are used to be able to further disambiguate the def-use chains
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
/// you.
/// In particular, while the def-use chains provide basic information, and are
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
/// information. In particular, they may want to use SCEV info to further
/// disambiguate memory accesses, or they may want the nearest dominating
/// may-aliasing MemoryDef for a call or a store. This API enables a
/// standardized interface to getting and using that info.
class MemorySSAWalker {
public:
  MemorySSAWalker(MemorySSA *);
  virtual ~MemorySSAWalker() = default;

  using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;

  /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
  /// will give you the nearest dominating MemoryAccess that Mod's the location
  /// the instruction accesses (by skipping any def which AA can prove does not
  /// alias the location(s) accessed by the instruction given).
  ///
  /// Note that this will return a single access, and it must dominate the
  /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
  /// this will return the MemoryPhi, not the operand. This means that
  /// given:
  /// if (a) {
  ///   1 = MemoryDef(liveOnEntry)
  ///   store %a
  /// } else {
  ///   2 = MemoryDef(liveOnEntry)
  ///   store %b
  /// }
  /// 3 = MemoryPhi(2, 1)
  /// MemoryUse(3)
  /// load %a
  ///
  /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
  /// in the if (a) branch.
  MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
    MemoryAccess *MA = MSSA->getMemoryAccess(I);
    assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
    return getClobberingMemoryAccess(MA);
  }

  /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
  /// but takes a MemoryAccess instead of an Instruction.
  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;

  /// Given a potentially clobbering memory access and a new location,
  /// calling this will give you the nearest dominating clobbering MemoryAccess
  /// (by skipping non-aliasing def links).
  ///
  /// This version of the function is mainly used to disambiguate phi translated
  /// pointers, where the value of a pointer may have changed from the initial
  /// memory access. Note that this expects to be handed either a MemoryUse,
  /// or an already potentially clobbering access. Unlike the above API, if
  /// given a MemoryDef that clobbers the pointer as the starting access, it
  /// will return that MemoryDef, whereas the above would return the clobber
  /// starting from the use side of  the memory def.
  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
                                                  const MemoryLocation &) = 0;

  /// Given a memory access, invalidate anything this walker knows about
  /// that access.
  /// This API is used by walkers that store information to perform basic cache
  /// invalidation.  This will be called by MemorySSA at appropriate times for
  /// the walker it uses or returns.
  virtual void invalidateInfo(MemoryAccess *) {}

protected:
  friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
                          // constructor.
  MemorySSA *MSSA;
};

/// A MemorySSAWalker that does no alias queries, or anything else. It
/// simply returns the links as they were constructed by the builder.
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
public:
  // Keep the overrides below from hiding the Instruction overload of
  // getClobberingMemoryAccess.
  using MemorySSAWalker::getClobberingMemoryAccess;

  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
                                          const MemoryLocation &) override;
};

using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;

/// Iterator base class used to implement const and non-const iterators
/// over the defining accesses of a MemoryAccess.
template <class T>
class memoryaccess_def_iterator_base
    : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
                                  std::forward_iterator_tag, T, ptrdiff_t, T *,
                                  T *> {
  using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;

public:
  memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
  memoryaccess_def_iterator_base() = default;

  bool operator==(const memoryaccess_def_iterator_base &Other) const {
    return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
  }

  // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
  // block from the operand in constant time (In a PHINode, the uselist has
  // both, so it's just subtraction). We provide it as part of the
  // iterator to avoid callers having to linear walk to get the block.
  // If the operation becomes constant time on MemoryPHI's, this bit of
  // abstraction breaking should be removed.
  BasicBlock *getPhiArgBlock() const {
    MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
    assert(MP && "Tried to get phi arg block when not iterating over a PHI");
    return MP->getIncomingBlock(ArgNo);
  }

  typename BaseT::iterator::pointer operator*() const {
    assert(Access && "Tried to access past the end of our iterator");
    // Go to the first argument for phis, and the defining access for everything
    // else.
    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
      return MP->getIncomingValue(ArgNo);
    return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
  }

  using BaseT::operator++;
  memoryaccess_def_iterator_base &operator++() {
    assert(Access && "Hit end of iterator");
    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
      if (++ArgNo >= MP->getNumIncomingValues()) {
        ArgNo = 0;
        Access = nullptr;
      }
    } else {
      Access = nullptr;
    }
    return *this;
  }

private:
  T *Access = nullptr;
  unsigned ArgNo = 0;
};

inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
  return memoryaccess_def_iterator(this);
}

inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
  return const_memoryaccess_def_iterator(this);
}

inline memoryaccess_def_iterator MemoryAccess::defs_end() {
  return memoryaccess_def_iterator();
}

inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
  return const_memoryaccess_def_iterator();
}

/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
/// and uses in the inverse case.
template <> struct GraphTraits<MemoryAccess *> {
  using NodeRef = MemoryAccess *;
  using ChildIteratorType = memoryaccess_def_iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }
  static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
};

template <> struct GraphTraits<Inverse<MemoryAccess *>> {
  using NodeRef = MemoryAccess *;
  using ChildIteratorType = MemoryAccess::iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }
  static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
};

/// Provide an iterator that walks defs, giving both the memory access,
/// and the current pointer location, updating the pointer location as it
/// changes due to phi node translation.
///
/// This iterator, while somewhat specialized, is what most clients actually
/// want when walking upwards through MemorySSA def chains. It takes a pair of
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
/// memory location through phi nodes for the user.
class upward_defs_iterator
    : public iterator_facade_base<upward_defs_iterator,
                                  std::forward_iterator_tag,
                                  const MemoryAccessPair> {
  using BaseT = upward_defs_iterator::iterator_facade_base;

public:
  upward_defs_iterator(const MemoryAccessPair &Info)
      : DefIterator(Info.first), Location(Info.second),
        OriginalAccess(Info.first) {
    CurrentPair.first = nullptr;

    WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
    fillInCurrentPair();
  }

  upward_defs_iterator() { CurrentPair.first = nullptr; }

  bool operator==(const upward_defs_iterator &Other) const {
    return DefIterator == Other.DefIterator;
  }

  BaseT::iterator::reference operator*() const {
    assert(DefIterator != OriginalAccess->defs_end() &&
           "Tried to access past the end of our iterator");
    return CurrentPair;
  }

  using BaseT::operator++;
  upward_defs_iterator &operator++() {
    assert(DefIterator != OriginalAccess->defs_end() &&
           "Tried to access past the end of the iterator");
    ++DefIterator;
    if (DefIterator != OriginalAccess->defs_end())
      fillInCurrentPair();
    return *this;
  }

  BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }

private:
  void fillInCurrentPair() {
    CurrentPair.first = *DefIterator;
    if (WalkingPhi && Location.Ptr) {
      PHITransAddr Translator(
          const_cast<Value *>(Location.Ptr),
          OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
      if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
                                        DefIterator.getPhiArgBlock(), nullptr,
                                        false))
        if (Translator.getAddr() != Location.Ptr) {
          CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
          return;
        }
    }
    CurrentPair.second = Location;
  }

  MemoryAccessPair CurrentPair;
  memoryaccess_def_iterator DefIterator;
  MemoryLocation Location;
  MemoryAccess *OriginalAccess = nullptr;
  bool WalkingPhi = false;
};

inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
  return upward_defs_iterator(Pair);
}

inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }

inline iterator_range<upward_defs_iterator>
upward_defs(const MemoryAccessPair &Pair) {
  return make_range(upward_defs_begin(Pair), upward_defs_end());
}

/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
/// comparing against a null def_chain_iterator, this will compare equal only
/// after walking said Phi/liveOnEntry.
///
/// The UseOptimizedChain flag specifies whether to walk the clobbering
/// access chain, or all the accesses.
///
/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
/// a phi node.  The optimized chain walks the clobbering access of a store.
/// So if you are just trying to find, given a store, what the next
/// thing that would clobber the same memory is, you want the optimized chain.
template <class T, bool UseOptimizedChain = false>
struct def_chain_iterator
    : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
                                  std::forward_iterator_tag, MemoryAccess *> {
  def_chain_iterator() : MA(nullptr) {}
  def_chain_iterator(T MA) : MA(MA) {}

  T operator*() const { return MA; }

  def_chain_iterator &operator++() {
    // N.B. liveOnEntry has a null defining access.
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
      if (UseOptimizedChain && MUD->isOptimized())
        MA = MUD->getOptimized();
      else
        MA = MUD->getDefiningAccess();
    } else {
      MA = nullptr;
    }

    return *this;
  }

  bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }

private:
  T MA;
};

template <class T>
inline iterator_range<def_chain_iterator<T>>
def_chain(T MA, MemoryAccess *UpTo = nullptr) {
#ifdef EXPENSIVE_CHECKS
  assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
         "UpTo isn't in the def chain!");
#endif
  return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
}

template <class T>
inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
  return make_range(def_chain_iterator<T, true>(MA),
                    def_chain_iterator<T, true>(nullptr));
}

} // end namespace llvm

#endif // LLVM_ANALYSIS_MEMORYSSA_H