1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
| //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ARRAYREF_H
#define LLVM_ADT_ARRAYREF_H
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <vector>
namespace llvm {
/// ArrayRef - Represent a constant reference to an array (0 or more elements
/// consecutively in memory), i.e. a start pointer and a length. It allows
/// various APIs to take consecutive elements easily and conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the ArrayRef. For this reason, it is not in general
/// safe to store an ArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template<typename T>
class LLVM_NODISCARD ArrayRef {
public:
using iterator = const T *;
using const_iterator = const T *;
using size_type = size_t;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
/// The start of the array, in an external buffer.
const T *Data = nullptr;
/// The number of elements.
size_type Length = 0;
public:
/// @name Constructors
/// @{
/// Construct an empty ArrayRef.
/*implicit*/ ArrayRef() = default;
/// Construct an empty ArrayRef from None.
/*implicit*/ ArrayRef(NoneType) {}
/// Construct an ArrayRef from a single element.
/*implicit*/ ArrayRef(const T &OneElt)
: Data(&OneElt), Length(1) {}
/// Construct an ArrayRef from a pointer and length.
/*implicit*/ ArrayRef(const T *data, size_t length)
: Data(data), Length(length) {}
/// Construct an ArrayRef from a range.
ArrayRef(const T *begin, const T *end)
: Data(begin), Length(end - begin) {}
/// Construct an ArrayRef from a SmallVector. This is templated in order to
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
/// copy-construct an ArrayRef.
template<typename U>
/*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
: Data(Vec.data()), Length(Vec.size()) {
}
/// Construct an ArrayRef from a std::vector.
template<typename A>
/*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an ArrayRef from a std::array
template <size_t N>
/*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
: Data(Arr.data()), Length(N) {}
/// Construct an ArrayRef from a C array.
template <size_t N>
/*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
/// Construct an ArrayRef from a std::initializer_list.
/*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
: Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
Length(Vec.size()) {}
/// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
/// ensure that only ArrayRefs of pointers can be converted.
template <typename U>
ArrayRef(
const ArrayRef<U *> &A,
typename std::enable_if<
std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
: Data(A.data()), Length(A.size()) {}
/// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
/// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
/// whenever we copy-construct an ArrayRef.
template<typename U, typename DummyT>
/*implicit*/ ArrayRef(
const SmallVectorTemplateCommon<U *, DummyT> &Vec,
typename std::enable_if<
std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
: Data(Vec.data()), Length(Vec.size()) {
}
/// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
/// to ensure that only vectors of pointers can be converted.
template<typename U, typename A>
ArrayRef(const std::vector<U *, A> &Vec,
typename std::enable_if<
std::is_convertible<U *const *, T const *>::value>::type* = 0)
: Data(Vec.data()), Length(Vec.size()) {}
/// @}
/// @name Simple Operations
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
reverse_iterator rbegin() const { return reverse_iterator(end()); }
reverse_iterator rend() const { return reverse_iterator(begin()); }
/// empty - Check if the array is empty.
bool empty() const { return Length == 0; }
const T *data() const { return Data; }
/// size - Get the array size.
size_t size() const { return Length; }
/// front - Get the first element.
const T &front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last element.
const T &back() const {
assert(!empty());
return Data[Length-1];
}
// copy - Allocate copy in Allocator and return ArrayRef<T> to it.
template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
T *Buff = A.template Allocate<T>(Length);
std::uninitialized_copy(begin(), end(), Buff);
return ArrayRef<T>(Buff, Length);
}
/// equals - Check for element-wise equality.
bool equals(ArrayRef RHS) const {
if (Length != RHS.Length)
return false;
return std::equal(begin(), end(), RHS.begin());
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
ArrayRef<T> slice(size_t N, size_t M) const {
assert(N+M <= size() && "Invalid specifier");
return ArrayRef<T>(data()+N, M);
}
/// slice(n) - Chop off the first N elements of the array.
ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
/// Drop the first \p N elements of the array.
ArrayRef<T> drop_front(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(N, size() - N);
}
/// Drop the last \p N elements of the array.
ArrayRef<T> drop_back(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(0, size() - N);
}
/// Return a copy of *this with the first N elements satisfying the
/// given predicate removed.
template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
return ArrayRef<T>(find_if_not(*this, Pred), end());
}
/// Return a copy of *this with the first N elements not satisfying
/// the given predicate removed.
template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
return ArrayRef<T>(find_if(*this, Pred), end());
}
/// Return a copy of *this with only the first \p N elements.
ArrayRef<T> take_front(size_t N = 1) const {
if (N >= size())
return *this;
return drop_back(size() - N);
}
/// Return a copy of *this with only the last \p N elements.
ArrayRef<T> take_back(size_t N = 1) const {
if (N >= size())
return *this;
return drop_front(size() - N);
}
/// Return the first N elements of this Array that satisfy the given
/// predicate.
template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
return ArrayRef<T>(begin(), find_if_not(*this, Pred));
}
/// Return the first N elements of this Array that don't satisfy the
/// given predicate.
template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
return ArrayRef<T>(begin(), find_if(*this, Pred));
}
/// @}
/// @name Operator Overloads
/// @{
const T &operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
operator=(U &&Temporary) = delete;
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
operator=(std::initializer_list<U>) = delete;
/// @}
/// @name Expensive Operations
/// @{
std::vector<T> vec() const {
return std::vector<T>(Data, Data+Length);
}
/// @}
/// @name Conversion operators
/// @{
operator std::vector<T>() const {
return std::vector<T>(Data, Data+Length);
}
/// @}
};
/// MutableArrayRef - Represent a mutable reference to an array (0 or more
/// elements consecutively in memory), i.e. a start pointer and a length. It
/// allows various APIs to take and modify consecutive elements easily and
/// conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the MutableArrayRef. For this reason, it is not in
/// general safe to store a MutableArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template<typename T>
class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
public:
using iterator = T *;
using reverse_iterator = std::reverse_iterator<iterator>;
/// Construct an empty MutableArrayRef.
/*implicit*/ MutableArrayRef() = default;
/// Construct an empty MutableArrayRef from None.
/*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
/// Construct an MutableArrayRef from a single element.
/*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
/// Construct an MutableArrayRef from a pointer and length.
/*implicit*/ MutableArrayRef(T *data, size_t length)
: ArrayRef<T>(data, length) {}
/// Construct an MutableArrayRef from a range.
MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
/// Construct an MutableArrayRef from a SmallVector.
/*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
: ArrayRef<T>(Vec) {}
/// Construct a MutableArrayRef from a std::vector.
/*implicit*/ MutableArrayRef(std::vector<T> &Vec)
: ArrayRef<T>(Vec) {}
/// Construct an ArrayRef from a std::array
template <size_t N>
/*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
: ArrayRef<T>(Arr) {}
/// Construct an MutableArrayRef from a C array.
template <size_t N>
/*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
iterator begin() const { return data(); }
iterator end() const { return data() + this->size(); }
reverse_iterator rbegin() const { return reverse_iterator(end()); }
reverse_iterator rend() const { return reverse_iterator(begin()); }
/// front - Get the first element.
T &front() const {
assert(!this->empty());
return data()[0];
}
/// back - Get the last element.
T &back() const {
assert(!this->empty());
return data()[this->size()-1];
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
MutableArrayRef<T> slice(size_t N, size_t M) const {
assert(N + M <= this->size() && "Invalid specifier");
return MutableArrayRef<T>(this->data() + N, M);
}
/// slice(n) - Chop off the first N elements of the array.
MutableArrayRef<T> slice(size_t N) const {
return slice(N, this->size() - N);
}
/// Drop the first \p N elements of the array.
MutableArrayRef<T> drop_front(size_t N = 1) const {
assert(this->size() >= N && "Dropping more elements than exist");
return slice(N, this->size() - N);
}
MutableArrayRef<T> drop_back(size_t N = 1) const {
assert(this->size() >= N && "Dropping more elements than exist");
return slice(0, this->size() - N);
}
/// Return a copy of *this with the first N elements satisfying the
/// given predicate removed.
template <class PredicateT>
MutableArrayRef<T> drop_while(PredicateT Pred) const {
return MutableArrayRef<T>(find_if_not(*this, Pred), end());
}
/// Return a copy of *this with the first N elements not satisfying
/// the given predicate removed.
template <class PredicateT>
MutableArrayRef<T> drop_until(PredicateT Pred) const {
return MutableArrayRef<T>(find_if(*this, Pred), end());
}
/// Return a copy of *this with only the first \p N elements.
MutableArrayRef<T> take_front(size_t N = 1) const {
if (N >= this->size())
return *this;
return drop_back(this->size() - N);
}
/// Return a copy of *this with only the last \p N elements.
MutableArrayRef<T> take_back(size_t N = 1) const {
if (N >= this->size())
return *this;
return drop_front(this->size() - N);
}
/// Return the first N elements of this Array that satisfy the given
/// predicate.
template <class PredicateT>
MutableArrayRef<T> take_while(PredicateT Pred) const {
return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
}
/// Return the first N elements of this Array that don't satisfy the
/// given predicate.
template <class PredicateT>
MutableArrayRef<T> take_until(PredicateT Pred) const {
return MutableArrayRef<T>(begin(), find_if(*this, Pred));
}
/// @}
/// @name Operator Overloads
/// @{
T &operator[](size_t Index) const {
assert(Index < this->size() && "Invalid index!");
return data()[Index];
}
};
/// This is a MutableArrayRef that owns its array.
template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
public:
OwningArrayRef() = default;
OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
OwningArrayRef(ArrayRef<T> Data)
: MutableArrayRef<T>(new T[Data.size()], Data.size()) {
std::copy(Data.begin(), Data.end(), this->begin());
}
OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
OwningArrayRef &operator=(OwningArrayRef &&Other) {
delete[] this->data();
this->MutableArrayRef<T>::operator=(Other);
Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
return *this;
}
~OwningArrayRef() { delete[] this->data(); }
};
/// @name ArrayRef Convenience constructors
/// @{
/// Construct an ArrayRef from a single element.
template<typename T>
ArrayRef<T> makeArrayRef(const T &OneElt) {
return OneElt;
}
/// Construct an ArrayRef from a pointer and length.
template<typename T>
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
return ArrayRef<T>(data, length);
}
/// Construct an ArrayRef from a range.
template<typename T>
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
return ArrayRef<T>(begin, end);
}
/// Construct an ArrayRef from a SmallVector.
template <typename T>
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a SmallVector.
template <typename T, unsigned N>
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a std::vector.
template<typename T>
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a std::array.
template <typename T, std::size_t N>
ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
return Arr;
}
/// Construct an ArrayRef from an ArrayRef (no-op) (const)
template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from an ArrayRef (no-op)
template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a C array.
template<typename T, size_t N>
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
return ArrayRef<T>(Arr);
}
/// Construct a MutableArrayRef from a single element.
template<typename T>
MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
return OneElt;
}
/// Construct a MutableArrayRef from a pointer and length.
template<typename T>
MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
return MutableArrayRef<T>(data, length);
}
/// @}
/// @name ArrayRef Comparison Operators
/// @{
template<typename T>
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return LHS.equals(RHS);
}
template<typename T>
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return !(LHS == RHS);
}
/// @}
template <typename T> hash_code hash_value(ArrayRef<T> S) {
return hash_combine_range(S.begin(), S.end());
}
} // end namespace llvm
#endif // LLVM_ADT_ARRAYREF_H
|