reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class.  For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_TYPE_H
#define LLVM_IR_TYPE_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>
#include <iterator>

namespace llvm {

template<class GraphType> struct GraphTraits;
class IntegerType;
class LLVMContext;
class PointerType;
class raw_ostream;
class StringRef;

/// The instances of the Type class are immutable: once they are created,
/// they are never changed.  Also note that only one instance of a particular
/// type is ever created.  Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods
/// in class Type and in derived classes.  Once allocated, Types are never
/// free'd.
///
class Type {
public:
  //===--------------------------------------------------------------------===//
  /// Definitions of all of the base types for the Type system.  Based on this
  /// value, you can cast to a class defined in DerivedTypes.h.
  /// Note: If you add an element to this, you need to add an element to the
  /// Type::getPrimitiveType function, or else things will break!
  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
  ///
  enum TypeID {
    // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
    VoidTyID = 0,    ///<  0: type with no size
    HalfTyID,        ///<  1: 16-bit floating point type
    FloatTyID,       ///<  2: 32-bit floating point type
    DoubleTyID,      ///<  3: 64-bit floating point type
    X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
    FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
    PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
    LabelTyID,       ///<  7: Labels
    MetadataTyID,    ///<  8: Metadata
    X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
    TokenTyID,       ///< 10: Tokens

    // Derived types... see DerivedTypes.h file.
    // Make sure FirstDerivedTyID stays up to date!
    IntegerTyID,     ///< 11: Arbitrary bit width integers
    FunctionTyID,    ///< 12: Functions
    StructTyID,      ///< 13: Structures
    ArrayTyID,       ///< 14: Arrays
    PointerTyID,     ///< 15: Pointers
    VectorTyID       ///< 16: SIMD 'packed' format, or other vector type
  };

private:
  /// This refers to the LLVMContext in which this type was uniqued.
  LLVMContext &Context;

  TypeID   ID : 8;            // The current base type of this type.
  unsigned SubclassData : 24; // Space for subclasses to store data.
                              // Note that this should be synchronized with
                              // MAX_INT_BITS value in IntegerType class.

protected:
  friend class LLVMContextImpl;

  explicit Type(LLVMContext &C, TypeID tid)
    : Context(C), ID(tid), SubclassData(0) {}
  ~Type() = default;

  unsigned getSubclassData() const { return SubclassData; }

  void setSubclassData(unsigned val) {
    SubclassData = val;
    // Ensure we don't have any accidental truncation.
    assert(getSubclassData() == val && "Subclass data too large for field");
  }

  /// Keeps track of how many Type*'s there are in the ContainedTys list.
  unsigned NumContainedTys = 0;

  /// A pointer to the array of Types contained by this Type. For example, this
  /// includes the arguments of a function type, the elements of a structure,
  /// the pointee of a pointer, the element type of an array, etc. This pointer
  /// may be 0 for types that don't contain other types (Integer, Double,
  /// Float).
  Type * const *ContainedTys = nullptr;

  static bool isSequentialType(TypeID TyID) {
    return TyID == ArrayTyID || TyID == VectorTyID;
  }

public:
  /// Print the current type.
  /// Omit the type details if \p NoDetails == true.
  /// E.g., let %st = type { i32, i16 }
  /// When \p NoDetails is true, we only print %st.
  /// Put differently, \p NoDetails prints the type as if
  /// inlined with the operands when printing an instruction.
  void print(raw_ostream &O, bool IsForDebug = false,
             bool NoDetails = false) const;

  void dump() const;

  /// Return the LLVMContext in which this type was uniqued.
  LLVMContext &getContext() const { return Context; }

  //===--------------------------------------------------------------------===//
  // Accessors for working with types.
  //

  /// Return the type id for the type. This will return one of the TypeID enum
  /// elements defined above.
  TypeID getTypeID() const { return ID; }

  /// Return true if this is 'void'.
  bool isVoidTy() const { return getTypeID() == VoidTyID; }

  /// Return true if this is 'half', a 16-bit IEEE fp type.
  bool isHalfTy() const { return getTypeID() == HalfTyID; }

  /// Return true if this is 'float', a 32-bit IEEE fp type.
  bool isFloatTy() const { return getTypeID() == FloatTyID; }

  /// Return true if this is 'double', a 64-bit IEEE fp type.
  bool isDoubleTy() const { return getTypeID() == DoubleTyID; }

  /// Return true if this is x86 long double.
  bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }

  /// Return true if this is 'fp128'.
  bool isFP128Ty() const { return getTypeID() == FP128TyID; }

  /// Return true if this is powerpc long double.
  bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }

  /// Return true if this is one of the six floating-point types
  bool isFloatingPointTy() const {
    return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
           getTypeID() == DoubleTyID ||
           getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
           getTypeID() == PPC_FP128TyID;
  }

  const fltSemantics &getFltSemantics() const {
    switch (getTypeID()) {
    case HalfTyID: return APFloat::IEEEhalf();
    case FloatTyID: return APFloat::IEEEsingle();
    case DoubleTyID: return APFloat::IEEEdouble();
    case X86_FP80TyID: return APFloat::x87DoubleExtended();
    case FP128TyID: return APFloat::IEEEquad();
    case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
    default: llvm_unreachable("Invalid floating type");
    }
  }

  /// Return true if this is X86 MMX.
  bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }

  /// Return true if this is a FP type or a vector of FP.
  bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }

  /// Return true if this is 'label'.
  bool isLabelTy() const { return getTypeID() == LabelTyID; }

  /// Return true if this is 'metadata'.
  bool isMetadataTy() const { return getTypeID() == MetadataTyID; }

  /// Return true if this is 'token'.
  bool isTokenTy() const { return getTypeID() == TokenTyID; }

  /// True if this is an instance of IntegerType.
  bool isIntegerTy() const { return getTypeID() == IntegerTyID; }

  /// Return true if this is an IntegerType of the given width.
  bool isIntegerTy(unsigned Bitwidth) const;

  /// Return true if this is an integer type or a vector of integer types.
  bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }

  /// Return true if this is an integer type or a vector of integer types of
  /// the given width.
  bool isIntOrIntVectorTy(unsigned BitWidth) const {
    return getScalarType()->isIntegerTy(BitWidth);
  }

  /// Return true if this is an integer type or a pointer type.
  bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }

  /// True if this is an instance of FunctionType.
  bool isFunctionTy() const { return getTypeID() == FunctionTyID; }

  /// True if this is an instance of StructType.
  bool isStructTy() const { return getTypeID() == StructTyID; }

  /// True if this is an instance of ArrayType.
  bool isArrayTy() const { return getTypeID() == ArrayTyID; }

  /// True if this is an instance of PointerType.
  bool isPointerTy() const { return getTypeID() == PointerTyID; }

  /// Return true if this is a pointer type or a vector of pointer types.
  bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }

  /// True if this is an instance of VectorType.
  bool isVectorTy() const { return getTypeID() == VectorTyID; }

  /// Return true if this type could be converted with a lossless BitCast to
  /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
  /// same size only where no re-interpretation of the bits is done.
  /// Determine if this type could be losslessly bitcast to Ty
  bool canLosslesslyBitCastTo(Type *Ty) const;

  /// Return true if this type is empty, that is, it has no elements or all of
  /// its elements are empty.
  bool isEmptyTy() const;

  /// Return true if the type is "first class", meaning it is a valid type for a
  /// Value.
  bool isFirstClassType() const {
    return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
  }

  /// Return true if the type is a valid type for a register in codegen. This
  /// includes all first-class types except struct and array types.
  bool isSingleValueType() const {
    return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
           isPointerTy() || isVectorTy();
  }

  /// Return true if the type is an aggregate type. This means it is valid as
  /// the first operand of an insertvalue or extractvalue instruction. This
  /// includes struct and array types, but does not include vector types.
  bool isAggregateType() const {
    return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
  }

  /// Return true if it makes sense to take the size of this type. To get the
  /// actual size for a particular target, it is reasonable to use the
  /// DataLayout subsystem to do this.
  bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
    // If it's a primitive, it is always sized.
    if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
        getTypeID() == PointerTyID ||
        getTypeID() == X86_MMXTyID)
      return true;
    // If it is not something that can have a size (e.g. a function or label),
    // it doesn't have a size.
    if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
        getTypeID() != VectorTyID)
      return false;
    // Otherwise we have to try harder to decide.
    return isSizedDerivedType(Visited);
  }

  /// Return the basic size of this type if it is a primitive type. These are
  /// fixed by LLVM and are not target-dependent.
  /// This will return zero if the type does not have a size or is not a
  /// primitive type.
  ///
  /// If this is a scalable vector type, the scalable property will be set and
  /// the runtime size will be a positive integer multiple of the base size.
  ///
  /// Note that this may not reflect the size of memory allocated for an
  /// instance of the type or the number of bytes that are written when an
  /// instance of the type is stored to memory. The DataLayout class provides
  /// additional query functions to provide this information.
  ///
  TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;

  /// If this is a vector type, return the getPrimitiveSizeInBits value for the
  /// element type. Otherwise return the getPrimitiveSizeInBits value for this
  /// type.
  unsigned getScalarSizeInBits() const LLVM_READONLY;

  /// Return the width of the mantissa of this type. This is only valid on
  /// floating-point types. If the FP type does not have a stable mantissa (e.g.
  /// ppc long double), this method returns -1.
  int getFPMantissaWidth() const;

  /// If this is a vector type, return the element type, otherwise return
  /// 'this'.
  Type *getScalarType() const {
    if (isVectorTy())
      return getVectorElementType();
    return const_cast<Type*>(this);
  }

  //===--------------------------------------------------------------------===//
  // Type Iteration support.
  //
  using subtype_iterator = Type * const *;

  subtype_iterator subtype_begin() const { return ContainedTys; }
  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
  ArrayRef<Type*> subtypes() const {
    return makeArrayRef(subtype_begin(), subtype_end());
  }

  using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;

  subtype_reverse_iterator subtype_rbegin() const {
    return subtype_reverse_iterator(subtype_end());
  }
  subtype_reverse_iterator subtype_rend() const {
    return subtype_reverse_iterator(subtype_begin());
  }

  /// This method is used to implement the type iterator (defined at the end of
  /// the file). For derived types, this returns the types 'contained' in the
  /// derived type.
  Type *getContainedType(unsigned i) const {
    assert(i < NumContainedTys && "Index out of range!");
    return ContainedTys[i];
  }

  /// Return the number of types in the derived type.
  unsigned getNumContainedTypes() const { return NumContainedTys; }

  //===--------------------------------------------------------------------===//
  // Helper methods corresponding to subclass methods.  This forces a cast to
  // the specified subclass and calls its accessor.  "getVectorNumElements" (for
  // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
  // only intended to cover the core methods that are frequently used, helper
  // methods should not be added here.

  inline unsigned getIntegerBitWidth() const;

  inline Type *getFunctionParamType(unsigned i) const;
  inline unsigned getFunctionNumParams() const;
  inline bool isFunctionVarArg() const;

  inline StringRef getStructName() const;
  inline unsigned getStructNumElements() const;
  inline Type *getStructElementType(unsigned N) const;

  inline Type *getSequentialElementType() const {
    assert(isSequentialType(getTypeID()) && "Not a sequential type!");
    return ContainedTys[0];
  }

  inline uint64_t getArrayNumElements() const;

  Type *getArrayElementType() const {
    assert(getTypeID() == ArrayTyID);
    return ContainedTys[0];
  }

  inline bool getVectorIsScalable() const;
  inline unsigned getVectorNumElements() const;
  inline ElementCount getVectorElementCount() const;
  Type *getVectorElementType() const {
    assert(getTypeID() == VectorTyID);
    return ContainedTys[0];
  }

  Type *getPointerElementType() const {
    assert(getTypeID() == PointerTyID);
    return ContainedTys[0];
  }

  /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
  /// whilst keeping the old number of lanes.
  inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;

  /// Given scalar/vector integer type, returns a type with elements twice as
  /// wide as in the original type. For vectors, preserves element count.
  inline Type *getExtendedType() const;

  /// Get the address space of this pointer or pointer vector type.
  inline unsigned getPointerAddressSpace() const;

  //===--------------------------------------------------------------------===//
  // Static members exported by the Type class itself.  Useful for getting
  // instances of Type.
  //

  /// Return a type based on an identifier.
  static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);

  //===--------------------------------------------------------------------===//
  // These are the builtin types that are always available.
  //
  static Type *getVoidTy(LLVMContext &C);
  static Type *getLabelTy(LLVMContext &C);
  static Type *getHalfTy(LLVMContext &C);
  static Type *getFloatTy(LLVMContext &C);
  static Type *getDoubleTy(LLVMContext &C);
  static Type *getMetadataTy(LLVMContext &C);
  static Type *getX86_FP80Ty(LLVMContext &C);
  static Type *getFP128Ty(LLVMContext &C);
  static Type *getPPC_FP128Ty(LLVMContext &C);
  static Type *getX86_MMXTy(LLVMContext &C);
  static Type *getTokenTy(LLVMContext &C);
  static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
  static IntegerType *getInt1Ty(LLVMContext &C);
  static IntegerType *getInt8Ty(LLVMContext &C);
  static IntegerType *getInt16Ty(LLVMContext &C);
  static IntegerType *getInt32Ty(LLVMContext &C);
  static IntegerType *getInt64Ty(LLVMContext &C);
  static IntegerType *getInt128Ty(LLVMContext &C);
  template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
    int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
    if (std::is_integral<ScalarTy>::value) {
      return (Type*) Type::getIntNTy(C, noOfBits);
    } else if (std::is_floating_point<ScalarTy>::value) {
      switch (noOfBits) {
      case 32:
        return Type::getFloatTy(C);
      case 64:
        return Type::getDoubleTy(C);
      }
    }
    llvm_unreachable("Unsupported type in Type::getScalarTy");
  }

  //===--------------------------------------------------------------------===//
  // Convenience methods for getting pointer types with one of the above builtin
  // types as pointee.
  //
  static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
  static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);

  /// Return a pointer to the current type. This is equivalent to
  /// PointerType::get(Foo, AddrSpace).
  PointerType *getPointerTo(unsigned AddrSpace = 0) const;

private:
  /// Derived types like structures and arrays are sized iff all of the members
  /// of the type are sized as well. Since asking for their size is relatively
  /// uncommon, move this operation out-of-line.
  bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
};

// Printing of types.
inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
  T.print(OS);
  return OS;
}

// allow isa<PointerType>(x) to work without DerivedTypes.h included.
template <> struct isa_impl<PointerType, Type> {
  static inline bool doit(const Type &Ty) {
    return Ty.getTypeID() == Type::PointerTyID;
  }
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)

/* Specialized opaque type conversions.
 */
inline Type **unwrap(LLVMTypeRef* Tys) {
  return reinterpret_cast<Type**>(Tys);
}

inline LLVMTypeRef *wrap(Type **Tys) {
  return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
}

} // end namespace llvm

#endif // LLVM_IR_TYPE_H