1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
| //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SwapByteOrder.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstring>
#include <limits>
#include <type_traits>
#ifdef __ANDROID_NDK__
#include <android/api-level.h>
#endif
#ifdef _MSC_VER
// Declare these intrinsics manually rather including intrin.h. It's very
// expensive, and MathExtras.h is popular.
// #include <intrin.h>
extern "C" {
unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
}
#endif
namespace llvm {
/// The behavior an operation has on an input of 0.
enum ZeroBehavior {
/// The returned value is undefined.
ZB_Undefined,
/// The returned value is numeric_limits<T>::max()
ZB_Max,
/// The returned value is numeric_limits<T>::digits
ZB_Width
};
/// Mathematical constants.
namespace numbers {
// TODO: Track C++20 std::numbers.
// TODO: Favor using the hexadecimal FP constants (requires C++17).
constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
log2ef = 1.44269504F, // (0x1.715476P+0)
log10ef = .434294482F, // (0x1.bcb7b2P-2)
pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
} // namespace numbers
namespace detail {
template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
static unsigned count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
if (Val & 0x1)
return 0;
// Bisection method.
unsigned ZeroBits = 0;
T Shift = std::numeric_limits<T>::digits >> 1;
T Mask = std::numeric_limits<T>::max() >> Shift;
while (Shift) {
if ((Val & Mask) == 0) {
Val >>= Shift;
ZeroBits |= Shift;
}
Shift >>= 1;
Mask >>= Shift;
}
return ZeroBits;
}
};
#if defined(__GNUC__) || defined(_MSC_VER)
template <typename T> struct TrailingZerosCounter<T, 4> {
static unsigned count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_ctz) || defined(__GNUC__)
return __builtin_ctz(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanForward(&Index, Val);
return Index;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T> struct TrailingZerosCounter<T, 8> {
static unsigned count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
return __builtin_ctzll(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanForward64(&Index, Val);
return Index;
#endif
}
};
#endif
#endif
} // namespace detail
/// Count number of 0's from the least significant bit to the most
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
static unsigned count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
// Bisection method.
unsigned ZeroBits = 0;
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
T Tmp = Val >> Shift;
if (Tmp)
Val = Tmp;
else
ZeroBits |= Shift;
}
return ZeroBits;
}
};
#if defined(__GNUC__) || defined(_MSC_VER)
template <typename T> struct LeadingZerosCounter<T, 4> {
static unsigned count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_clz) || defined(__GNUC__)
return __builtin_clz(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanReverse(&Index, Val);
return Index ^ 31;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T> struct LeadingZerosCounter<T, 8> {
static unsigned count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_clzll) || defined(__GNUC__)
return __builtin_clzll(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanReverse64(&Index, Val);
return Index ^ 63;
#endif
}
};
#endif
#endif
} // namespace detail
/// Count number of 0's from the most significant bit to the least
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
/// Get the index of the first set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
return countTrailingZeros(Val, ZB_Undefined);
}
/// Create a bitmask with the N right-most bits set to 1, and all other
/// bits set to 0. Only unsigned types are allowed.
template <typename T> T maskTrailingOnes(unsigned N) {
static_assert(std::is_unsigned<T>::value, "Invalid type!");
const unsigned Bits = CHAR_BIT * sizeof(T);
assert(N <= Bits && "Invalid bit index");
return N == 0 ? 0 : (T(-1) >> (Bits - N));
}
/// Create a bitmask with the N left-most bits set to 1, and all other
/// bits set to 0. Only unsigned types are allowed.
template <typename T> T maskLeadingOnes(unsigned N) {
return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Create a bitmask with the N right-most bits set to 0, and all other
/// bits set to 1. Only unsigned types are allowed.
template <typename T> T maskTrailingZeros(unsigned N) {
return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Create a bitmask with the N left-most bits set to 0, and all other
/// bits set to 1. Only unsigned types are allowed.
template <typename T> T maskLeadingZeros(unsigned N) {
return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Get the index of the last set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
// Use ^ instead of - because both gcc and llvm can remove the associated ^
// in the __builtin_clz intrinsic on x86.
return countLeadingZeros(Val, ZB_Undefined) ^
(std::numeric_limits<T>::digits - 1);
}
/// Macro compressed bit reversal table for 256 bits.
///
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
static const unsigned char BitReverseTable256[256] = {
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
R6(0), R6(2), R6(1), R6(3)
#undef R2
#undef R4
#undef R6
};
/// Reverse the bits in \p Val.
template <typename T>
T reverseBits(T Val) {
unsigned char in[sizeof(Val)];
unsigned char out[sizeof(Val)];
std::memcpy(in, &Val, sizeof(Val));
for (unsigned i = 0; i < sizeof(Val); ++i)
out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
std::memcpy(&Val, out, sizeof(Val));
return Val;
}
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Return the high 32 bits of a 64 bit value.
constexpr inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32);
}
/// Return the low 32 bits of a 64 bit value.
constexpr inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value);
}
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
return ((uint64_t)High << 32) | (uint64_t)Low;
}
/// Checks if an integer fits into the given bit width.
template <unsigned N> constexpr inline bool isInt(int64_t x) {
return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
}
// Template specializations to get better code for common cases.
template <> constexpr inline bool isInt<8>(int64_t x) {
return static_cast<int8_t>(x) == x;
}
template <> constexpr inline bool isInt<16>(int64_t x) {
return static_cast<int16_t>(x) == x;
}
template <> constexpr inline bool isInt<32>(int64_t x) {
return static_cast<int32_t>(x) == x;
}
/// Checks if a signed integer is an N bit number shifted left by S.
template <unsigned N, unsigned S>
constexpr inline bool isShiftedInt(int64_t x) {
static_assert(
N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
}
/// Checks if an unsigned integer fits into the given bit width.
///
/// This is written as two functions rather than as simply
///
/// return N >= 64 || X < (UINT64_C(1) << N);
///
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
/// left too many places.
template <unsigned N>
constexpr inline typename std::enable_if<(N < 64), bool>::type
isUInt(uint64_t X) {
static_assert(N > 0, "isUInt<0> doesn't make sense");
return X < (UINT64_C(1) << (N));
}
template <unsigned N>
constexpr inline typename std::enable_if<N >= 64, bool>::type
isUInt(uint64_t X) {
return true;
}
// Template specializations to get better code for common cases.
template <> constexpr inline bool isUInt<8>(uint64_t x) {
return static_cast<uint8_t>(x) == x;
}
template <> constexpr inline bool isUInt<16>(uint64_t x) {
return static_cast<uint16_t>(x) == x;
}
template <> constexpr inline bool isUInt<32>(uint64_t x) {
return static_cast<uint32_t>(x) == x;
}
/// Checks if a unsigned integer is an N bit number shifted left by S.
template <unsigned N, unsigned S>
constexpr inline bool isShiftedUInt(uint64_t x) {
static_assert(
N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
static_assert(N + S <= 64,
"isShiftedUInt<N, S> with N + S > 64 is too wide.");
// Per the two static_asserts above, S must be strictly less than 64. So
// 1 << S is not undefined behavior.
return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
}
/// Gets the maximum value for a N-bit unsigned integer.
inline uint64_t maxUIntN(uint64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
// uint64_t(1) << 64 is undefined behavior, so we can't do
// (uint64_t(1) << N) - 1
// without checking first that N != 64. But this works and doesn't have a
// branch.
return UINT64_MAX >> (64 - N);
}
/// Gets the minimum value for a N-bit signed integer.
inline int64_t minIntN(int64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
return -(UINT64_C(1)<<(N-1));
}
/// Gets the maximum value for a N-bit signed integer.
inline int64_t maxIntN(int64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
// This relies on two's complement wraparound when N == 64, so we convert to
// int64_t only at the very end to avoid UB.
return (UINT64_C(1) << (N - 1)) - 1;
}
/// Checks if an unsigned integer fits into the given (dynamic) bit width.
inline bool isUIntN(unsigned N, uint64_t x) {
return N >= 64 || x <= maxUIntN(N);
}
/// Checks if an signed integer fits into the given (dynamic) bit width.
inline bool isIntN(unsigned N, int64_t x) {
return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
}
/// Return true if the argument is a non-empty sequence of ones starting at the
/// least significant bit with the remainder zero (32 bit version).
/// Ex. isMask_32(0x0000FFFFU) == true.
constexpr inline bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// Return true if the argument is a non-empty sequence of ones starting at the
/// least significant bit with the remainder zero (64 bit version).
constexpr inline bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// Return true if the argument contains a non-empty sequence of ones with the
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
constexpr inline bool isShiftedMask_32(uint32_t Value) {
return Value && isMask_32((Value - 1) | Value);
}
/// Return true if the argument contains a non-empty sequence of ones with the
/// remainder zero (64 bit version.)
constexpr inline bool isShiftedMask_64(uint64_t Value) {
return Value && isMask_64((Value - 1) | Value);
}
/// Return true if the argument is a power of two > 0.
/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
constexpr inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1));
}
/// Return true if the argument is a power of two > 0 (64 bit edition.)
constexpr inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - 1));
}
/// Return a byte-swapped representation of the 16-bit argument.
inline uint16_t ByteSwap_16(uint16_t Value) {
return sys::SwapByteOrder_16(Value);
}
/// Return a byte-swapped representation of the 32-bit argument.
inline uint32_t ByteSwap_32(uint32_t Value) {
return sys::SwapByteOrder_32(Value);
}
/// Return a byte-swapped representation of the 64-bit argument.
inline uint64_t ByteSwap_64(uint64_t Value) {
return sys::SwapByteOrder_64(Value);
}
/// Count the number of ones from the most significant bit to the first
/// zero bit.
///
/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countLeadingZeros<T>(~Value, ZB);
}
/// Count the number of ones from the least significant bit to the first
/// zero bit.
///
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countTrailingZeros<T>(~Value, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT> struct PopulationCounter {
static unsigned count(T Value) {
// Generic version, forward to 32 bits.
static_assert(SizeOfT <= 4, "Not implemented!");
#if defined(__GNUC__)
return __builtin_popcount(Value);
#else
uint32_t v = Value;
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
#endif
}
};
template <typename T> struct PopulationCounter<T, 8> {
static unsigned count(T Value) {
#if defined(__GNUC__)
return __builtin_popcountll(Value);
#else
uint64_t v = Value;
v = v - ((v >> 1) & 0x5555555555555555ULL);
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
#endif
}
};
} // namespace detail
/// Count the number of set bits in a value.
/// Ex. countPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
template <typename T>
inline unsigned countPopulation(T Value) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return detail::PopulationCounter<T, sizeof(T)>::count(Value);
}
/// Compile time Log2.
/// Valid only for positive powers of two.
template <size_t kValue> constexpr inline size_t CTLog2() {
static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
"Value is not a valid power of 2");
return 1 + CTLog2<kValue / 2>();
}
template <> constexpr inline size_t CTLog2<1>() { return 0; }
/// Return the log base 2 of the specified value.
inline double Log2(double Value) {
#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
return __builtin_log(Value) / __builtin_log(2.0);
#else
return log2(Value);
#endif
}
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
/// (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(uint32_t Value) {
return 31 - countLeadingZeros(Value);
}
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
/// (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return 63 - countLeadingZeros(Value);
}
/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
/// (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(uint32_t Value) {
return 32 - countLeadingZeros(Value - 1);
}
/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
/// (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) {
return 64 - countLeadingZeros(Value - 1);
}
/// Return the greatest common divisor of the values using Euclid's algorithm.
template <typename T>
inline T greatestCommonDivisor(T A, T B) {
while (B) {
T Tmp = B;
B = A % B;
A = Tmp;
}
return A;
}
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
return greatestCommonDivisor<uint64_t>(A, B);
}
/// This function takes a 64-bit integer and returns the bit equivalent double.
inline double BitsToDouble(uint64_t Bits) {
double D;
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
memcpy(&D, &Bits, sizeof(Bits));
return D;
}
/// This function takes a 32-bit integer and returns the bit equivalent float.
inline float BitsToFloat(uint32_t Bits) {
float F;
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
memcpy(&F, &Bits, sizeof(Bits));
return F;
}
/// This function takes a double and returns the bit equivalent 64-bit integer.
/// Note that copying doubles around changes the bits of NaNs on some hosts,
/// notably x86, so this routine cannot be used if these bits are needed.
inline uint64_t DoubleToBits(double Double) {
uint64_t Bits;
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
memcpy(&Bits, &Double, sizeof(Double));
return Bits;
}
/// This function takes a float and returns the bit equivalent 32-bit integer.
/// Note that copying floats around changes the bits of NaNs on some hosts,
/// notably x86, so this routine cannot be used if these bits are needed.
inline uint32_t FloatToBits(float Float) {
uint32_t Bits;
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
memcpy(&Bits, &Float, sizeof(Float));
return Bits;
}
/// A and B are either alignments or offsets. Return the minimum alignment that
/// may be assumed after adding the two together.
constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
// The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return (A | B) & -(A | B);
return (A | B) & (1 + ~(A | B));
}
/// Returns the next power of two (in 64-bits) that is strictly greater than A.
/// Returns zero on overflow.
inline uint64_t NextPowerOf2(uint64_t A) {
A |= (A >> 1);
A |= (A >> 2);
A |= (A >> 4);
A |= (A >> 8);
A |= (A >> 16);
A |= (A >> 32);
return A + 1;
}
/// Returns the power of two which is less than or equal to the given value.
/// Essentially, it is a floor operation across the domain of powers of two.
inline uint64_t PowerOf2Floor(uint64_t A) {
if (!A) return 0;
return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
}
/// Returns the power of two which is greater than or equal to the given value.
/// Essentially, it is a ceil operation across the domain of powers of two.
inline uint64_t PowerOf2Ceil(uint64_t A) {
if (!A)
return 0;
return NextPowerOf2(A - 1);
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// If non-zero \p Skew is specified, the return value will be a minimal
/// integer that is greater than or equal to \p Value and equal to
/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
///
/// Examples:
/// \code
/// alignTo(5, 8) = 8
/// alignTo(17, 8) = 24
/// alignTo(~0LL, 8) = 0
/// alignTo(321, 255) = 510
///
/// alignTo(5, 8, 7) = 7
/// alignTo(17, 8, 1) = 17
/// alignTo(~0LL, 8, 3) = 3
/// alignTo(321, 255, 42) = 552
/// \endcode
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return (Value + Align - 1 - Skew) / Align * Align + Skew;
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
static_assert(Align != 0u, "Align must be non-zero");
return (Value + Align - 1) / Align * Align;
}
/// Returns the integer ceil(Numerator / Denominator).
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
return alignTo(Numerator, Denominator) / Denominator;
}
/// Returns the largest uint64_t less than or equal to \p Value and is
/// \p Skew mod \p Align. \p Align must be non-zero
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return (Value - Skew) / Align * Align + Skew;
}
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
/// Requires 0 < B <= 32.
template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 32, "Bit width out of range.");
return int32_t(X << (32 - B)) >> (32 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
/// Requires 0 < B < 32.
inline int32_t SignExtend32(uint32_t X, unsigned B) {
assert(B > 0 && "Bit width can't be 0.");
assert(B <= 32 && "Bit width out of range.");
return int32_t(X << (32 - B)) >> (32 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
/// Requires 0 < B < 64.
template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 64, "Bit width out of range.");
return int64_t(x << (64 - B)) >> (64 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
/// Requires 0 < B < 64.
inline int64_t SignExtend64(uint64_t X, unsigned B) {
assert(B > 0 && "Bit width can't be 0.");
assert(B <= 64 && "Bit width out of range.");
return int64_t(X << (64 - B)) >> (64 - B);
}
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
/// value of the result.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
AbsoluteDifference(T X, T Y) {
return std::max(X, Y) - std::min(X, Y);
}
/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 29
T Z = X + Y;
Overflowed = (Z < X || Z < Y);
if (Overflowed)
return std::numeric_limits<T>::max();
else
return Z;
}
/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that
// because it fails for uint16_t (where multiplication can have undefined
// behavior due to promotion to int), and requires a division in addition
// to the multiplication.
Overflowed = false;
// Log2(Z) would be either Log2Z or Log2Z + 1.
// Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
// will necessarily be less than Log2Max as desired.
int Log2Z = Log2_64(X) + Log2_64(Y);
const T Max = std::numeric_limits<T>::max();
int Log2Max = Log2_64(Max);
if (Log2Z < Log2Max) {
return X * Y;
}
if (Log2Z > Log2Max) {
Overflowed = true;
return Max;
}
// We're going to use the top bit, and maybe overflow one
// bit past it. Multiply all but the bottom bit then add
// that on at the end.
T Z = (X >> 1) * Y;
if (Z & ~(Max >> 1)) {
Overflowed = true;
return Max;
}
Z <<= 1;
if (X & 1)
return SaturatingAdd(Z, Y, ResultOverflowed);
return Z;
}
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
/// the product. Clamp the result to the maximum representable value of T on
/// overflow. ResultOverflowed indicates if the result is larger than the
/// maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
bool Dummy;
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
T Product = SaturatingMultiply(X, Y, &Overflowed);
if (Overflowed)
return Product;
return SaturatingAdd(A, Product, &Overflowed);
}
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
extern const float huge_valf;
/// Add two signed integers, computing the two's complement truncated result,
/// returning true if overflow occured.
template <typename T>
typename std::enable_if<std::is_signed<T>::value, T>::type
AddOverflow(T X, T Y, T &Result) {
#if __has_builtin(__builtin_add_overflow)
return __builtin_add_overflow(X, Y, &Result);
#else
// Perform the unsigned addition.
using U = typename std::make_unsigned<T>::type;
const U UX = static_cast<U>(X);
const U UY = static_cast<U>(Y);
const U UResult = UX + UY;
// Convert to signed.
Result = static_cast<T>(UResult);
// Adding two positive numbers should result in a positive number.
if (X > 0 && Y > 0)
return Result <= 0;
// Adding two negatives should result in a negative number.
if (X < 0 && Y < 0)
return Result >= 0;
return false;
#endif
}
/// Subtract two signed integers, computing the two's complement truncated
/// result, returning true if an overflow ocurred.
template <typename T>
typename std::enable_if<std::is_signed<T>::value, T>::type
SubOverflow(T X, T Y, T &Result) {
#if __has_builtin(__builtin_sub_overflow)
return __builtin_sub_overflow(X, Y, &Result);
#else
// Perform the unsigned addition.
using U = typename std::make_unsigned<T>::type;
const U UX = static_cast<U>(X);
const U UY = static_cast<U>(Y);
const U UResult = UX - UY;
// Convert to signed.
Result = static_cast<T>(UResult);
// Subtracting a positive number from a negative results in a negative number.
if (X <= 0 && Y > 0)
return Result >= 0;
// Subtracting a negative number from a positive results in a positive number.
if (X >= 0 && Y < 0)
return Result <= 0;
return false;
#endif
}
/// Multiply two signed integers, computing the two's complement truncated
/// result, returning true if an overflow ocurred.
template <typename T>
typename std::enable_if<std::is_signed<T>::value, T>::type
MulOverflow(T X, T Y, T &Result) {
// Perform the unsigned multiplication on absolute values.
using U = typename std::make_unsigned<T>::type;
const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
const U UResult = UX * UY;
// Convert to signed.
const bool IsNegative = (X < 0) ^ (Y < 0);
Result = IsNegative ? (0 - UResult) : UResult;
// If any of the args was 0, result is 0 and no overflow occurs.
if (UX == 0 || UY == 0)
return false;
// UX and UY are in [1, 2^n], where n is the number of digits.
// Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
// positive) divided by an argument compares to the other.
if (IsNegative)
return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
else
return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
}
} // End llvm namespace
#endif
|