1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
| //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the generic implementation of LoopInfo used for both Loops and
// MachineLoops.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
#define LLVM_ANALYSIS_LOOPINFOIMPL_H
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// APIs for simple analysis of the loop. See header notes.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitingBlocks(
SmallVectorImpl<BlockT *> &ExitingBlocks) const {
assert(!isInvalid() && "Loop not in a valid state!");
for (const auto BB : blocks())
for (const auto &Succ : children<BlockT *>(BB))
if (!contains(Succ)) {
// Not in current loop? It must be an exit block.
ExitingBlocks.push_back(BB);
break;
}
}
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
assert(!isInvalid() && "Loop not in a valid state!");
SmallVector<BlockT *, 8> ExitingBlocks;
getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() == 1)
return ExitingBlocks[0];
return nullptr;
}
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitBlocks(
SmallVectorImpl<BlockT *> &ExitBlocks) const {
assert(!isInvalid() && "Loop not in a valid state!");
for (const auto BB : blocks())
for (const auto &Succ : children<BlockT *>(BB))
if (!contains(Succ))
// Not in current loop? It must be an exit block.
ExitBlocks.push_back(Succ);
}
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
assert(!isInvalid() && "Loop not in a valid state!");
SmallVector<BlockT *, 8> ExitBlocks;
getExitBlocks(ExitBlocks);
if (ExitBlocks.size() == 1)
return ExitBlocks[0];
return nullptr;
}
template <class BlockT, class LoopT>
bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
// Each predecessor of each exit block of a normal loop is contained
// within the loop.
SmallVector<BlockT *, 4> UniqueExitBlocks;
getUniqueExitBlocks(UniqueExitBlocks);
for (BlockT *EB : UniqueExitBlocks)
for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
if (!contains(Predecessor))
return false;
// All the requirements are met.
return true;
}
// Helper function to get unique loop exits. Pred is a predicate pointing to
// BasicBlocks in a loop which should be considered to find loop exits.
template <class BlockT, class LoopT, typename PredicateT>
void getUniqueExitBlocksHelper(const LoopT *L,
SmallVectorImpl<BlockT *> &ExitBlocks,
PredicateT Pred) {
assert(!L->isInvalid() && "Loop not in a valid state!");
SmallPtrSet<BlockT *, 32> Visited;
auto Filtered = make_filter_range(L->blocks(), Pred);
for (BlockT *BB : Filtered)
for (BlockT *Successor : children<BlockT *>(BB))
if (!L->contains(Successor))
if (Visited.insert(Successor).second)
ExitBlocks.push_back(Successor);
}
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
SmallVectorImpl<BlockT *> &ExitBlocks) const {
getUniqueExitBlocksHelper(this, ExitBlocks,
[](const BlockT *BB) { return true; });
}
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
SmallVectorImpl<BlockT *> &ExitBlocks) const {
const BlockT *Latch = getLoopLatch();
assert(Latch && "Latch block must exists");
getUniqueExitBlocksHelper(this, ExitBlocks,
[Latch](const BlockT *BB) { return BB != Latch; });
}
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
SmallVector<BlockT *, 8> UniqueExitBlocks;
getUniqueExitBlocks(UniqueExitBlocks);
if (UniqueExitBlocks.size() == 1)
return UniqueExitBlocks[0];
return nullptr;
}
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::getExitEdges(
SmallVectorImpl<Edge> &ExitEdges) const {
assert(!isInvalid() && "Loop not in a valid state!");
for (const auto BB : blocks())
for (const auto &Succ : children<BlockT *>(BB))
if (!contains(Succ))
// Not in current loop? It must be an exit block.
ExitEdges.emplace_back(BB, Succ);
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop and it is legal to hoist instructions into the
/// predecessor. If this is the case, the block branching to the header of the
/// loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
assert(!isInvalid() && "Loop not in a valid state!");
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = getLoopPredecessor();
if (!Out)
return nullptr;
// Make sure we are allowed to hoist instructions into the predecessor.
if (!Out->isLegalToHoistInto())
return nullptr;
// Make sure there is only one exit out of the preheader.
typedef GraphTraits<BlockT *> BlockTraits;
typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
++SI;
if (SI != BlockTraits::child_end(Out))
return nullptr; // Multiple exits from the block, must not be a preheader.
// The predecessor has exactly one successor, so it is a preheader.
return Out;
}
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
assert(!isInvalid() && "Loop not in a valid state!");
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = nullptr;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
if (!contains(Pred)) { // If the block is not in the loop...
if (Out && Out != Pred)
return nullptr; // Multiple predecessors outside the loop
Out = Pred;
}
}
return Out;
}
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
template <class BlockT, class LoopT>
BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
assert(!isInvalid() && "Loop not in a valid state!");
BlockT *Header = getHeader();
BlockT *Latch = nullptr;
for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
if (contains(Pred)) {
if (Latch)
return nullptr;
Latch = Pred;
}
}
return Latch;
}
//===----------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
assert(!isInvalid() && "Loop not in a valid state!");
#ifndef NDEBUG
if (!Blocks.empty()) {
auto SameHeader = LIB[getHeader()];
assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
"Incorrect LI specified for this loop!");
}
#endif
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(!LIB[NewBB] && "BasicBlock already in the loop!");
LoopT *L = static_cast<LoopT *>(this);
// Add the loop mapping to the LoopInfo object...
LIB.BBMap[NewBB] = L;
// Add the basic block to this loop and all parent loops...
while (L) {
L->addBlockEntry(NewBB);
L = L->getParentLoop();
}
}
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
LoopT *NewChild) {
assert(!isInvalid() && "Loop not in a valid state!");
assert(OldChild->ParentLoop == this && "This loop is already broken!");
assert(!NewChild->ParentLoop && "NewChild already has a parent!");
typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
assert(I != SubLoops.end() && "OldChild not in loop!");
*I = NewChild;
OldChild->ParentLoop = nullptr;
NewChild->ParentLoop = static_cast<LoopT *>(this);
}
/// verifyLoop - Verify loop structure
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoop() const {
assert(!isInvalid() && "Loop not in a valid state!");
#ifndef NDEBUG
assert(!Blocks.empty() && "Loop header is missing");
// Setup for using a depth-first iterator to visit every block in the loop.
SmallVector<BlockT *, 8> ExitBBs;
getExitBlocks(ExitBBs);
df_iterator_default_set<BlockT *> VisitSet;
VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
BI = df_ext_begin(getHeader(), VisitSet),
BE = df_ext_end(getHeader(), VisitSet);
// Keep track of the BBs visited.
SmallPtrSet<BlockT *, 8> VisitedBBs;
// Check the individual blocks.
for (; BI != BE; ++BI) {
BlockT *BB = *BI;
assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
GraphTraits<BlockT *>::child_end(BB),
[&](BlockT *B) { return contains(B); }) &&
"Loop block has no in-loop successors!");
assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
GraphTraits<Inverse<BlockT *>>::child_end(BB),
[&](BlockT *B) { return contains(B); }) &&
"Loop block has no in-loop predecessors!");
SmallVector<BlockT *, 2> OutsideLoopPreds;
std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
GraphTraits<Inverse<BlockT *>>::child_end(BB),
[&](BlockT *B) {
if (!contains(B))
OutsideLoopPreds.push_back(B);
});
if (BB == getHeader()) {
assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
} else if (!OutsideLoopPreds.empty()) {
// A non-header loop shouldn't be reachable from outside the loop,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = &BB->getParent()->front();
for (BlockT *CB : depth_first(EntryBB))
for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
assert(CB != OutsideLoopPreds[i] &&
"Loop has multiple entry points!");
}
assert(BB != &getHeader()->getParent()->front() &&
"Loop contains function entry block!");
VisitedBBs.insert(BB);
}
if (VisitedBBs.size() != getNumBlocks()) {
dbgs() << "The following blocks are unreachable in the loop: ";
for (auto BB : Blocks) {
if (!VisitedBBs.count(BB)) {
dbgs() << *BB << "\n";
}
}
assert(false && "Unreachable block in loop");
}
// Check the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
// Each block in each subloop should be contained within this loop.
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
BI != BE; ++BI) {
assert(contains(*BI) &&
"Loop does not contain all the blocks of a subloop!");
}
// Check the parent loop pointer.
if (ParentLoop) {
assert(is_contained(*ParentLoop, this) &&
"Loop is not a subloop of its parent!");
}
#endif
}
/// verifyLoop - Verify loop structure of this loop and all nested loops.
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::verifyLoopNest(
DenseSet<const LoopT *> *Loops) const {
assert(!isInvalid() && "Loop not in a valid state!");
Loops->insert(static_cast<const LoopT *>(this));
// Verify this loop.
verifyLoop();
// Verify the subloops.
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->verifyLoopNest(Loops);
}
template <class BlockT, class LoopT>
void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
bool Verbose) const {
OS.indent(Depth * 2);
if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
OS << "Parallel ";
OS << "Loop at depth " << getLoopDepth() << " containing: ";
BlockT *H = getHeader();
for (unsigned i = 0; i < getBlocks().size(); ++i) {
BlockT *BB = getBlocks()[i];
if (!Verbose) {
if (i)
OS << ",";
BB->printAsOperand(OS, false);
} else
OS << "\n";
if (BB == H)
OS << "<header>";
if (isLoopLatch(BB))
OS << "<latch>";
if (isLoopExiting(BB))
OS << "<exiting>";
if (Verbose)
BB->print(OS);
}
OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->print(OS, Depth + 2);
}
//===----------------------------------------------------------------------===//
/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
/// result does / not depend on use list (block predecessor) order.
///
/// Discover a subloop with the specified backedges such that: All blocks within
/// this loop are mapped to this loop or a subloop. And all subloops within this
/// loop have their parent loop set to this loop or a subloop.
template <class BlockT, class LoopT>
static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
LoopInfoBase<BlockT, LoopT> *LI,
const DomTreeBase<BlockT> &DomTree) {
typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
unsigned NumBlocks = 0;
unsigned NumSubloops = 0;
// Perform a backward CFG traversal using a worklist.
std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
while (!ReverseCFGWorklist.empty()) {
BlockT *PredBB = ReverseCFGWorklist.back();
ReverseCFGWorklist.pop_back();
LoopT *Subloop = LI->getLoopFor(PredBB);
if (!Subloop) {
if (!DomTree.isReachableFromEntry(PredBB))
continue;
// This is an undiscovered block. Map it to the current loop.
LI->changeLoopFor(PredBB, L);
++NumBlocks;
if (PredBB == L->getHeader())
continue;
// Push all block predecessors on the worklist.
ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
InvBlockTraits::child_begin(PredBB),
InvBlockTraits::child_end(PredBB));
} else {
// This is a discovered block. Find its outermost discovered loop.
while (LoopT *Parent = Subloop->getParentLoop())
Subloop = Parent;
// If it is already discovered to be a subloop of this loop, continue.
if (Subloop == L)
continue;
// Discover a subloop of this loop.
Subloop->setParentLoop(L);
++NumSubloops;
NumBlocks += Subloop->getBlocksVector().capacity();
PredBB = Subloop->getHeader();
// Continue traversal along predecessors that are not loop-back edges from
// within this subloop tree itself. Note that a predecessor may directly
// reach another subloop that is not yet discovered to be a subloop of
// this loop, which we must traverse.
for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
if (LI->getLoopFor(Pred) != Subloop)
ReverseCFGWorklist.push_back(Pred);
}
}
}
L->getSubLoopsVector().reserve(NumSubloops);
L->reserveBlocks(NumBlocks);
}
/// Populate all loop data in a stable order during a single forward DFS.
template <class BlockT, class LoopT> class PopulateLoopsDFS {
typedef GraphTraits<BlockT *> BlockTraits;
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
LoopInfoBase<BlockT, LoopT> *LI;
public:
PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
void traverse(BlockT *EntryBlock);
protected:
void insertIntoLoop(BlockT *Block);
};
/// Top-level driver for the forward DFS within the loop.
template <class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
for (BlockT *BB : post_order(EntryBlock))
insertIntoLoop(BB);
}
/// Add a single Block to its ancestor loops in PostOrder. If the block is a
/// subloop header, add the subloop to its parent in PostOrder, then reverse the
/// Block and Subloop vectors of the now complete subloop to achieve RPO.
template <class BlockT, class LoopT>
void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
LoopT *Subloop = LI->getLoopFor(Block);
if (Subloop && Block == Subloop->getHeader()) {
// We reach this point once per subloop after processing all the blocks in
// the subloop.
if (Subloop->getParentLoop())
Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
else
LI->addTopLevelLoop(Subloop);
// For convenience, Blocks and Subloops are inserted in postorder. Reverse
// the lists, except for the loop header, which is always at the beginning.
Subloop->reverseBlock(1);
std::reverse(Subloop->getSubLoopsVector().begin(),
Subloop->getSubLoopsVector().end());
Subloop = Subloop->getParentLoop();
}
for (; Subloop; Subloop = Subloop->getParentLoop())
Subloop->addBlockEntry(Block);
}
/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
/// interleaved with backward CFG traversals within each subloop
/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
/// this part of the algorithm is linear in the number of CFG edges. Subloop and
/// Block vectors are then populated during a single forward CFG traversal
/// (PopulateLoopDFS).
///
/// During the two CFG traversals each block is seen three times:
/// 1) Discovered and mapped by a reverse CFG traversal.
/// 2) Visited during a forward DFS CFG traversal.
/// 3) Reverse-inserted in the loop in postorder following forward DFS.
///
/// The Block vectors are inclusive, so step 3 requires loop-depth number of
/// insertions per block.
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
// Postorder traversal of the dominator tree.
const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
for (auto DomNode : post_order(DomRoot)) {
BlockT *Header = DomNode->getBlock();
SmallVector<BlockT *, 4> Backedges;
// Check each predecessor of the potential loop header.
for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
// If Header dominates predBB, this is a new loop. Collect the backedges.
if (DomTree.dominates(Header, Backedge) &&
DomTree.isReachableFromEntry(Backedge)) {
Backedges.push_back(Backedge);
}
}
// Perform a backward CFG traversal to discover and map blocks in this loop.
if (!Backedges.empty()) {
LoopT *L = AllocateLoop(Header);
discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
}
}
// Perform a single forward CFG traversal to populate block and subloop
// vectors for all loops.
PopulateLoopsDFS<BlockT, LoopT> DFS(this);
DFS.traverse(DomRoot->getBlock());
}
template <class BlockT, class LoopT>
SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
// The outer-most loop actually goes into the result in the same relative
// order as we walk it. But LoopInfo stores the top level loops in reverse
// program order so for here we reverse it to get forward program order.
// FIXME: If we change the order of LoopInfo we will want to remove the
// reverse here.
for (LoopT *RootL : reverse(*this)) {
auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
PreOrderLoopsInRootL.end());
}
return PreOrderLoops;
}
template <class BlockT, class LoopT>
SmallVector<LoopT *, 4>
LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
// The outer-most loop actually goes into the result in the same relative
// order as we walk it. LoopInfo stores the top level loops in reverse
// program order so we walk in order here.
// FIXME: If we change the order of LoopInfo we will want to add a reverse
// here.
for (LoopT *RootL : *this) {
assert(PreOrderWorklist.empty() &&
"Must start with an empty preorder walk worklist.");
PreOrderWorklist.push_back(RootL);
do {
LoopT *L = PreOrderWorklist.pop_back_val();
// Sub-loops are stored in forward program order, but will process the
// worklist backwards so we can just append them in order.
PreOrderWorklist.append(L->begin(), L->end());
PreOrderLoops.push_back(L);
} while (!PreOrderWorklist.empty());
}
return PreOrderLoops;
}
// Debugging
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
template <typename T>
bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
llvm::sort(BB1);
llvm::sort(BB2);
return BB1 == BB2;
}
template <class BlockT, class LoopT>
void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
const LoopInfoBase<BlockT, LoopT> &LI,
const LoopT &L) {
LoopHeaders[L.getHeader()] = &L;
for (LoopT *SL : L)
addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
}
#ifndef NDEBUG
template <class BlockT, class LoopT>
static void compareLoops(const LoopT *L, const LoopT *OtherL,
DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
BlockT *H = L->getHeader();
BlockT *OtherH = OtherL->getHeader();
assert(H == OtherH &&
"Mismatched headers even though found in the same map entry!");
assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
"Mismatched loop depth!");
const LoopT *ParentL = L, *OtherParentL = OtherL;
do {
assert(ParentL->getHeader() == OtherParentL->getHeader() &&
"Mismatched parent loop headers!");
ParentL = ParentL->getParentLoop();
OtherParentL = OtherParentL->getParentLoop();
} while (ParentL);
for (const LoopT *SubL : *L) {
BlockT *SubH = SubL->getHeader();
const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
assert(OtherSubL && "Inner loop is missing in computed loop info!");
OtherLoopHeaders.erase(SubH);
compareLoops(SubL, OtherSubL, OtherLoopHeaders);
}
std::vector<BlockT *> BBs = L->getBlocks();
std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
assert(compareVectors(BBs, OtherBBs) &&
"Mismatched basic blocks in the loops!");
const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
assert(BlocksSet.size() == OtherBlocksSet.size() &&
std::all_of(BlocksSet.begin(), BlocksSet.end(),
[&OtherBlocksSet](const BlockT *BB) {
return OtherBlocksSet.count(BB);
}) &&
"Mismatched basic blocks in BlocksSets!");
}
#endif
template <class BlockT, class LoopT>
void LoopInfoBase<BlockT, LoopT>::verify(
const DomTreeBase<BlockT> &DomTree) const {
DenseSet<const LoopT *> Loops;
for (iterator I = begin(), E = end(); I != E; ++I) {
assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
(*I)->verifyLoopNest(&Loops);
}
// Verify that blocks are mapped to valid loops.
#ifndef NDEBUG
for (auto &Entry : BBMap) {
const BlockT *BB = Entry.first;
LoopT *L = Entry.second;
assert(Loops.count(L) && "orphaned loop");
assert(L->contains(BB) && "orphaned block");
for (LoopT *ChildLoop : *L)
assert(!ChildLoop->contains(BB) &&
"BBMap should point to the innermost loop containing BB");
}
// Recompute LoopInfo to verify loops structure.
LoopInfoBase<BlockT, LoopT> OtherLI;
OtherLI.analyze(DomTree);
// Build a map we can use to move from our LI to the computed one. This
// allows us to ignore the particular order in any layer of the loop forest
// while still comparing the structure.
DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
for (LoopT *L : OtherLI)
addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
// Walk the top level loops and ensure there is a corresponding top-level
// loop in the computed version and then recursively compare those loop
// nests.
for (LoopT *L : *this) {
BlockT *Header = L->getHeader();
const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
assert(OtherL && "Top level loop is missing in computed loop info!");
// Now that we've matched this loop, erase its header from the map.
OtherLoopHeaders.erase(Header);
// And recursively compare these loops.
compareLoops(L, OtherL, OtherLoopHeaders);
}
// Any remaining entries in the map are loops which were found when computing
// a fresh LoopInfo but not present in the current one.
if (!OtherLoopHeaders.empty()) {
for (const auto &HeaderAndLoop : OtherLoopHeaders)
dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
llvm_unreachable("Found new loops when recomputing LoopInfo!");
}
#endif
}
} // End llvm namespace
#endif
|