reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
//===- LoopPassManager.h - Loop pass management -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header provides classes for managing a pipeline of passes over loops
/// in LLVM IR.
///
/// The primary loop pass pipeline is managed in a very particular way to
/// provide a set of core guarantees:
/// 1) Loops are, where possible, in simplified form.
/// 2) Loops are *always* in LCSSA form.
/// 3) A collection of Loop-specific analysis results are available:
///    - LoopInfo
///    - DominatorTree
///    - ScalarEvolution
///    - AAManager
/// 4) All loop passes preserve #1 (where possible), #2, and #3.
/// 5) Loop passes run over each loop in the loop nest from the innermost to
///    the outermost. Specifically, all inner loops are processed before
///    passes run over outer loops. When running the pipeline across an inner
///    loop creates new inner loops, those are added and processed in this
///    order as well.
///
/// This process is designed to facilitate transformations which simplify,
/// reduce, and remove loops. For passes which are more oriented towards
/// optimizing loops, especially optimizing loop *nests* instead of single
/// loops in isolation, this framework is less interesting.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_SCALAR_LOOPPASSMANAGER_H
#define LLVM_TRANSFORMS_SCALAR_LOOPPASSMANAGER_H

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Transforms/Utils/LCSSA.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"

namespace llvm {

// Forward declarations of an update tracking API used in the pass manager.
class LPMUpdater;

// Explicit specialization and instantiation declarations for the pass manager.
// See the comments on the definition of the specialization for details on how
// it differs from the primary template.
template <>
PreservedAnalyses
PassManager<Loop, LoopAnalysisManager, LoopStandardAnalysisResults &,
            LPMUpdater &>::run(Loop &InitialL, LoopAnalysisManager &AM,
                               LoopStandardAnalysisResults &AnalysisResults,
                               LPMUpdater &U);
extern template class PassManager<Loop, LoopAnalysisManager,
                                  LoopStandardAnalysisResults &, LPMUpdater &>;

/// The Loop pass manager.
///
/// See the documentation for the PassManager template for details. It runs
/// a sequence of Loop passes over each Loop that the manager is run over. This
/// typedef serves as a convenient way to refer to this construct.
typedef PassManager<Loop, LoopAnalysisManager, LoopStandardAnalysisResults &,
                    LPMUpdater &>
    LoopPassManager;

/// A partial specialization of the require analysis template pass to forward
/// the extra parameters from a transformation's run method to the
/// AnalysisManager's getResult.
template <typename AnalysisT>
struct RequireAnalysisPass<AnalysisT, Loop, LoopAnalysisManager,
                           LoopStandardAnalysisResults &, LPMUpdater &>
    : PassInfoMixin<
          RequireAnalysisPass<AnalysisT, Loop, LoopAnalysisManager,
                              LoopStandardAnalysisResults &, LPMUpdater &>> {
  PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM,
                        LoopStandardAnalysisResults &AR, LPMUpdater &) {
    (void)AM.template getResult<AnalysisT>(L, AR);
    return PreservedAnalyses::all();
  }
};

/// An alias template to easily name a require analysis loop pass.
template <typename AnalysisT>
using RequireAnalysisLoopPass =
    RequireAnalysisPass<AnalysisT, Loop, LoopAnalysisManager,
                        LoopStandardAnalysisResults &, LPMUpdater &>;

namespace internal {
/// Helper to implement appending of loops onto a worklist.
///
/// We want to process loops in postorder, but the worklist is a LIFO data
/// structure, so we append to it in *reverse* postorder.
///
/// For trees, a preorder traversal is a viable reverse postorder, so we
/// actually append using a preorder walk algorithm.
template <typename RangeT>
inline void appendLoopsToWorklist(RangeT &&Loops,
                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
  // We use an internal worklist to build up the preorder traversal without
  // recursion.
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;

  // We walk the initial sequence of loops in reverse because we generally want
  // to visit defs before uses and the worklist is LIFO.
  for (Loop *RootL : reverse(Loops)) {
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      Loop *L = PreOrderWorklist.pop_back_val();
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());

    Worklist.insert(std::move(PreOrderLoops));
    PreOrderLoops.clear();
  }
}
}

template <typename LoopPassT> class FunctionToLoopPassAdaptor;

/// This class provides an interface for updating the loop pass manager based
/// on mutations to the loop nest.
///
/// A reference to an instance of this class is passed as an argument to each
/// Loop pass, and Loop passes should use it to update LPM infrastructure if
/// they modify the loop nest structure.
class LPMUpdater {
public:
  /// This can be queried by loop passes which run other loop passes (like pass
  /// managers) to know whether the loop needs to be skipped due to updates to
  /// the loop nest.
  ///
  /// If this returns true, the loop object may have been deleted, so passes
  /// should take care not to touch the object.
  bool skipCurrentLoop() const { return SkipCurrentLoop; }

  /// Loop passes should use this method to indicate they have deleted a loop
  /// from the nest.
  ///
  /// Note that this loop must either be the current loop or a subloop of the
  /// current loop. This routine must be called prior to removing the loop from
  /// the loop nest.
  ///
  /// If this is called for the current loop, in addition to clearing any
  /// state, this routine will mark that the current loop should be skipped by
  /// the rest of the pass management infrastructure.
  void markLoopAsDeleted(Loop &L, llvm::StringRef Name) {
    LAM.clear(L, Name);
    assert((&L == CurrentL || CurrentL->contains(&L)) &&
           "Cannot delete a loop outside of the "
           "subloop tree currently being processed.");
    if (&L == CurrentL)
      SkipCurrentLoop = true;
  }

  /// Loop passes should use this method to indicate they have added new child
  /// loops of the current loop.
  ///
  /// \p NewChildLoops must contain only the immediate children. Any nested
  /// loops within them will be visited in postorder as usual for the loop pass
  /// manager.
  void addChildLoops(ArrayRef<Loop *> NewChildLoops) {
    // Insert ourselves back into the worklist first, as this loop should be
    // revisited after all the children have been processed.
    Worklist.insert(CurrentL);

#ifndef NDEBUG
    for (Loop *NewL : NewChildLoops)
      assert(NewL->getParentLoop() == CurrentL && "All of the new loops must "
                                                  "be immediate children of "
                                                  "the current loop!");
#endif

    internal::appendLoopsToWorklist(NewChildLoops, Worklist);

    // Also skip further processing of the current loop--it will be revisited
    // after all of its newly added children are accounted for.
    SkipCurrentLoop = true;
  }

  /// Loop passes should use this method to indicate they have added new
  /// sibling loops to the current loop.
  ///
  /// \p NewSibLoops must only contain the immediate sibling loops. Any nested
  /// loops within them will be visited in postorder as usual for the loop pass
  /// manager.
  void addSiblingLoops(ArrayRef<Loop *> NewSibLoops) {
#ifndef NDEBUG
    for (Loop *NewL : NewSibLoops)
      assert(NewL->getParentLoop() == ParentL &&
             "All of the new loops must be siblings of the current loop!");
#endif

    internal::appendLoopsToWorklist(NewSibLoops, Worklist);

    // No need to skip the current loop or revisit it, as sibling loops
    // shouldn't impact anything.
  }

  /// Restart the current loop.
  ///
  /// Loop passes should call this method to indicate the current loop has been
  /// sufficiently changed that it should be re-visited from the begining of
  /// the loop pass pipeline rather than continuing.
  void revisitCurrentLoop() {
    // Tell the currently in-flight pipeline to stop running.
    SkipCurrentLoop = true;

    // And insert ourselves back into the worklist.
    Worklist.insert(CurrentL);
  }

private:
  template <typename LoopPassT> friend class llvm::FunctionToLoopPassAdaptor;

  /// The \c FunctionToLoopPassAdaptor's worklist of loops to process.
  SmallPriorityWorklist<Loop *, 4> &Worklist;

  /// The analysis manager for use in the current loop nest.
  LoopAnalysisManager &LAM;

  Loop *CurrentL;
  bool SkipCurrentLoop;

#ifndef NDEBUG
  // In debug builds we also track the parent loop to implement asserts even in
  // the face of loop deletion.
  Loop *ParentL;
#endif

  LPMUpdater(SmallPriorityWorklist<Loop *, 4> &Worklist,
             LoopAnalysisManager &LAM)
      : Worklist(Worklist), LAM(LAM) {}
};

/// Adaptor that maps from a function to its loops.
///
/// Designed to allow composition of a LoopPass(Manager) and a
/// FunctionPassManager. Note that if this pass is constructed with a \c
/// FunctionAnalysisManager it will run the \c LoopAnalysisManagerFunctionProxy
/// analysis prior to running the loop passes over the function to enable a \c
/// LoopAnalysisManager to be used within this run safely.
template <typename LoopPassT>
class FunctionToLoopPassAdaptor
    : public PassInfoMixin<FunctionToLoopPassAdaptor<LoopPassT>> {
public:
  explicit FunctionToLoopPassAdaptor(LoopPassT Pass, bool UseMemorySSA = false,
                                     bool DebugLogging = false)
      : Pass(std::move(Pass)), LoopCanonicalizationFPM(DebugLogging),
        UseMemorySSA(UseMemorySSA) {
    LoopCanonicalizationFPM.addPass(LoopSimplifyPass());
    LoopCanonicalizationFPM.addPass(LCSSAPass());
  }

  /// Runs the loop passes across every loop in the function.
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    // Before we even compute any loop analyses, first run a miniature function
    // pass pipeline to put loops into their canonical form. Note that we can
    // directly build up function analyses after this as the function pass
    // manager handles all the invalidation at that layer.
    PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(F);

    PreservedAnalyses PA = PreservedAnalyses::all();
    // Check the PassInstrumentation's BeforePass callbacks before running the
    // canonicalization pipeline.
    if (PI.runBeforePass<Function>(LoopCanonicalizationFPM, F)) {
      PA = LoopCanonicalizationFPM.run(F, AM);
      PI.runAfterPass<Function>(LoopCanonicalizationFPM, F);
    }

    // Get the loop structure for this function
    LoopInfo &LI = AM.getResult<LoopAnalysis>(F);

    // If there are no loops, there is nothing to do here.
    if (LI.empty())
      return PA;

    // Get the analysis results needed by loop passes.
    MemorySSA *MSSA = UseMemorySSA
                          ? (&AM.getResult<MemorySSAAnalysis>(F).getMSSA())
                          : nullptr;
    LoopStandardAnalysisResults LAR = {AM.getResult<AAManager>(F),
                                       AM.getResult<AssumptionAnalysis>(F),
                                       AM.getResult<DominatorTreeAnalysis>(F),
                                       AM.getResult<LoopAnalysis>(F),
                                       AM.getResult<ScalarEvolutionAnalysis>(F),
                                       AM.getResult<TargetLibraryAnalysis>(F),
                                       AM.getResult<TargetIRAnalysis>(F),
                                       MSSA};

    // Setup the loop analysis manager from its proxy. It is important that
    // this is only done when there are loops to process and we have built the
    // LoopStandardAnalysisResults object. The loop analyses cached in this
    // manager have access to those analysis results and so it must invalidate
    // itself when they go away.
    auto &LAMFP = AM.getResult<LoopAnalysisManagerFunctionProxy>(F);
    if (UseMemorySSA)
      LAMFP.markMSSAUsed();
    LoopAnalysisManager &LAM = LAMFP.getManager();

    // A postorder worklist of loops to process.
    SmallPriorityWorklist<Loop *, 4> Worklist;

    // Register the worklist and loop analysis manager so that loop passes can
    // update them when they mutate the loop nest structure.
    LPMUpdater Updater(Worklist, LAM);

    // Add the loop nests in the reverse order of LoopInfo. For some reason,
    // they are stored in RPO w.r.t. the control flow graph in LoopInfo. For
    // the purpose of unrolling, loop deletion, and LICM, we largely want to
    // work forward across the CFG so that we visit defs before uses and can
    // propagate simplifications from one loop nest into the next.
    // FIXME: Consider changing the order in LoopInfo.
    internal::appendLoopsToWorklist(reverse(LI), Worklist);

    do {
      Loop *L = Worklist.pop_back_val();

      // Reset the update structure for this loop.
      Updater.CurrentL = L;
      Updater.SkipCurrentLoop = false;

#ifndef NDEBUG
      // Save a parent loop pointer for asserts.
      Updater.ParentL = L->getParentLoop();

      // Verify the loop structure and LCSSA form before visiting the loop.
      L->verifyLoop();
      assert(L->isRecursivelyLCSSAForm(LAR.DT, LI) &&
             "Loops must remain in LCSSA form!");
#endif
      // Check the PassInstrumentation's BeforePass callbacks before running the
      // pass, skip its execution completely if asked to (callback returns
      // false).
      if (!PI.runBeforePass<Loop>(Pass, *L))
        continue;
      PreservedAnalyses PassPA = Pass.run(*L, LAM, LAR, Updater);

      // Do not pass deleted Loop into the instrumentation.
      if (Updater.skipCurrentLoop())
        PI.runAfterPassInvalidated<Loop>(Pass);
      else
        PI.runAfterPass<Loop>(Pass, *L);

      // FIXME: We should verify the set of analyses relevant to Loop passes
      // are preserved.

      // If the loop hasn't been deleted, we need to handle invalidation here.
      if (!Updater.skipCurrentLoop())
        // We know that the loop pass couldn't have invalidated any other
        // loop's analyses (that's the contract of a loop pass), so directly
        // handle the loop analysis manager's invalidation here.
        LAM.invalidate(*L, PassPA);

      // Then intersect the preserved set so that invalidation of module
      // analyses will eventually occur when the module pass completes.
      PA.intersect(std::move(PassPA));
    } while (!Worklist.empty());

    // By definition we preserve the proxy. We also preserve all analyses on
    // Loops. This precludes *any* invalidation of loop analyses by the proxy,
    // but that's OK because we've taken care to invalidate analyses in the
    // loop analysis manager incrementally above.
    PA.preserveSet<AllAnalysesOn<Loop>>();
    PA.preserve<LoopAnalysisManagerFunctionProxy>();
    // We also preserve the set of standard analyses.
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    PA.preserve<ScalarEvolutionAnalysis>();
    if (UseMemorySSA)
      PA.preserve<MemorySSAAnalysis>();
    // FIXME: What we really want to do here is preserve an AA category, but
    // that concept doesn't exist yet.
    PA.preserve<AAManager>();
    PA.preserve<BasicAA>();
    PA.preserve<GlobalsAA>();
    PA.preserve<SCEVAA>();
    return PA;
  }

private:
  LoopPassT Pass;

  FunctionPassManager LoopCanonicalizationFPM;

  bool UseMemorySSA = false;
};

/// A function to deduce a loop pass type and wrap it in the templated
/// adaptor.
template <typename LoopPassT>
FunctionToLoopPassAdaptor<LoopPassT>
createFunctionToLoopPassAdaptor(LoopPassT Pass, bool UseMemorySSA = false,
                                bool DebugLogging = false) {
  return FunctionToLoopPassAdaptor<LoopPassT>(std::move(Pass), UseMemorySSA,
                                              DebugLogging);
}

/// Pass for printing a loop's contents as textual IR.
class PrintLoopPass : public PassInfoMixin<PrintLoopPass> {
  raw_ostream &OS;
  std::string Banner;

public:
  PrintLoopPass();
  PrintLoopPass(raw_ostream &OS, const std::string &Banner = "");

  PreservedAnalyses run(Loop &L, LoopAnalysisManager &,
                        LoopStandardAnalysisResults &, LPMUpdater &);
};
}

#endif // LLVM_TRANSFORMS_SCALAR_LOOPPASSMANAGER_H