reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implement a loop-aware load elimination pass.
//
// It uses LoopAccessAnalysis to identify loop-carried dependences with a
// distance of one between stores and loads.  These form the candidates for the
// transformation.  The source value of each store then propagated to the user
// of the corresponding load.  This makes the load dead.
//
// The pass can also version the loop and add memchecks in order to prove that
// may-aliasing stores can't change the value in memory before it's read by the
// load.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <forward_list>
#include <set>
#include <tuple>
#include <utility>

using namespace llvm;

#define LLE_OPTION "loop-load-elim"
#define DEBUG_TYPE LLE_OPTION

static cl::opt<unsigned> CheckPerElim(
    "runtime-check-per-loop-load-elim", cl::Hidden,
    cl::desc("Max number of memchecks allowed per eliminated load on average"),
    cl::init(1));

static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
    "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed for Loop "
             "Load Elimination"));

STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");

namespace {

/// Represent a store-to-forwarding candidate.
struct StoreToLoadForwardingCandidate {
  LoadInst *Load;
  StoreInst *Store;

  StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
      : Load(Load), Store(Store) {}

  /// Return true if the dependence from the store to the load has a
  /// distance of one.  E.g. A[i+1] = A[i]
  bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
                                 Loop *L) const {
    Value *LoadPtr = Load->getPointerOperand();
    Value *StorePtr = Store->getPointerOperand();
    Type *LoadPtrType = LoadPtr->getType();
    Type *LoadType = LoadPtrType->getPointerElementType();

    assert(LoadPtrType->getPointerAddressSpace() ==
               StorePtr->getType()->getPointerAddressSpace() &&
           LoadType == StorePtr->getType()->getPointerElementType() &&
           "Should be a known dependence");

    // Currently we only support accesses with unit stride.  FIXME: we should be
    // able to handle non unit stirde as well as long as the stride is equal to
    // the dependence distance.
    if (getPtrStride(PSE, LoadPtr, L) != 1 ||
        getPtrStride(PSE, StorePtr, L) != 1)
      return false;

    auto &DL = Load->getParent()->getModule()->getDataLayout();
    unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));

    auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
    auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));

    // We don't need to check non-wrapping here because forward/backward
    // dependence wouldn't be valid if these weren't monotonic accesses.
    auto *Dist = cast<SCEVConstant>(
        PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
    const APInt &Val = Dist->getAPInt();
    return Val == TypeByteSize;
  }

  Value *getLoadPtr() const { return Load->getPointerOperand(); }

#ifndef NDEBUG
  friend raw_ostream &operator<<(raw_ostream &OS,
                                 const StoreToLoadForwardingCandidate &Cand) {
    OS << *Cand.Store << " -->\n";
    OS.indent(2) << *Cand.Load << "\n";
    return OS;
  }
#endif
};

} // end anonymous namespace

/// Check if the store dominates all latches, so as long as there is no
/// intervening store this value will be loaded in the next iteration.
static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
                                         DominatorTree *DT) {
  SmallVector<BasicBlock *, 8> Latches;
  L->getLoopLatches(Latches);
  return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
    return DT->dominates(StoreBlock, Latch);
  });
}

/// Return true if the load is not executed on all paths in the loop.
static bool isLoadConditional(LoadInst *Load, Loop *L) {
  return Load->getParent() != L->getHeader();
}

namespace {

/// The per-loop class that does most of the work.
class LoadEliminationForLoop {
public:
  LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
                         DominatorTree *DT, BlockFrequencyInfo *BFI,
                         ProfileSummaryInfo* PSI)
      : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}

  /// Look through the loop-carried and loop-independent dependences in
  /// this loop and find store->load dependences.
  ///
  /// Note that no candidate is returned if LAA has failed to analyze the loop
  /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
  std::forward_list<StoreToLoadForwardingCandidate>
  findStoreToLoadDependences(const LoopAccessInfo &LAI) {
    std::forward_list<StoreToLoadForwardingCandidate> Candidates;

    const auto *Deps = LAI.getDepChecker().getDependences();
    if (!Deps)
      return Candidates;

    // Find store->load dependences (consequently true dep).  Both lexically
    // forward and backward dependences qualify.  Disqualify loads that have
    // other unknown dependences.

    SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;

    for (const auto &Dep : *Deps) {
      Instruction *Source = Dep.getSource(LAI);
      Instruction *Destination = Dep.getDestination(LAI);

      if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
        if (isa<LoadInst>(Source))
          LoadsWithUnknownDepedence.insert(Source);
        if (isa<LoadInst>(Destination))
          LoadsWithUnknownDepedence.insert(Destination);
        continue;
      }

      if (Dep.isBackward())
        // Note that the designations source and destination follow the program
        // order, i.e. source is always first.  (The direction is given by the
        // DepType.)
        std::swap(Source, Destination);
      else
        assert(Dep.isForward() && "Needs to be a forward dependence");

      auto *Store = dyn_cast<StoreInst>(Source);
      if (!Store)
        continue;
      auto *Load = dyn_cast<LoadInst>(Destination);
      if (!Load)
        continue;

      // Only progagate the value if they are of the same type.
      if (Store->getPointerOperandType() != Load->getPointerOperandType())
        continue;

      Candidates.emplace_front(Load, Store);
    }

    if (!LoadsWithUnknownDepedence.empty())
      Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
        return LoadsWithUnknownDepedence.count(C.Load);
      });

    return Candidates;
  }

  /// Return the index of the instruction according to program order.
  unsigned getInstrIndex(Instruction *Inst) {
    auto I = InstOrder.find(Inst);
    assert(I != InstOrder.end() && "No index for instruction");
    return I->second;
  }

  /// If a load has multiple candidates associated (i.e. different
  /// stores), it means that it could be forwarding from multiple stores
  /// depending on control flow.  Remove these candidates.
  ///
  /// Here, we rely on LAA to include the relevant loop-independent dependences.
  /// LAA is known to omit these in the very simple case when the read and the
  /// write within an alias set always takes place using the *same* pointer.
  ///
  /// However, we know that this is not the case here, i.e. we can rely on LAA
  /// to provide us with loop-independent dependences for the cases we're
  /// interested.  Consider the case for example where a loop-independent
  /// dependece S1->S2 invalidates the forwarding S3->S2.
  ///
  ///         A[i]   = ...   (S1)
  ///         ...    = A[i]  (S2)
  ///         A[i+1] = ...   (S3)
  ///
  /// LAA will perform dependence analysis here because there are two
  /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
  void removeDependencesFromMultipleStores(
      std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
    // If Store is nullptr it means that we have multiple stores forwarding to
    // this store.
    using LoadToSingleCandT =
        DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
    LoadToSingleCandT LoadToSingleCand;

    for (const auto &Cand : Candidates) {
      bool NewElt;
      LoadToSingleCandT::iterator Iter;

      std::tie(Iter, NewElt) =
          LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
      if (!NewElt) {
        const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
        // Already multiple stores forward to this load.
        if (OtherCand == nullptr)
          continue;

        // Handle the very basic case when the two stores are in the same block
        // so deciding which one forwards is easy.  The later one forwards as
        // long as they both have a dependence distance of one to the load.
        if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
            Cand.isDependenceDistanceOfOne(PSE, L) &&
            OtherCand->isDependenceDistanceOfOne(PSE, L)) {
          // They are in the same block, the later one will forward to the load.
          if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
            OtherCand = &Cand;
        } else
          OtherCand = nullptr;
      }
    }

    Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
      if (LoadToSingleCand[Cand.Load] != &Cand) {
        LLVM_DEBUG(
            dbgs() << "Removing from candidates: \n"
                   << Cand
                   << "  The load may have multiple stores forwarding to "
                   << "it\n");
        return true;
      }
      return false;
    });
  }

  /// Given two pointers operations by their RuntimePointerChecking
  /// indices, return true if they require an alias check.
  ///
  /// We need a check if one is a pointer for a candidate load and the other is
  /// a pointer for a possibly intervening store.
  bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
                     const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
                     const std::set<Value *> &CandLoadPtrs) {
    Value *Ptr1 =
        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
    Value *Ptr2 =
        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
    return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
            (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
  }

  /// Return pointers that are possibly written to on the path from a
  /// forwarding store to a load.
  ///
  /// These pointers need to be alias-checked against the forwarding candidates.
  SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
    // From FirstStore to LastLoad neither of the elimination candidate loads
    // should overlap with any of the stores.
    //
    // E.g.:
    //
    // st1 C[i]
    // ld1 B[i] <-------,
    // ld0 A[i] <----,  |              * LastLoad
    // ...           |  |
    // st2 E[i]      |  |
    // st3 B[i+1] -- | -'              * FirstStore
    // st0 A[i+1] ---'
    // st4 D[i]
    //
    // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
    // ld0.

    LoadInst *LastLoad =
        std::max_element(Candidates.begin(), Candidates.end(),
                         [&](const StoreToLoadForwardingCandidate &A,
                             const StoreToLoadForwardingCandidate &B) {
                           return getInstrIndex(A.Load) < getInstrIndex(B.Load);
                         })
            ->Load;
    StoreInst *FirstStore =
        std::min_element(Candidates.begin(), Candidates.end(),
                         [&](const StoreToLoadForwardingCandidate &A,
                             const StoreToLoadForwardingCandidate &B) {
                           return getInstrIndex(A.Store) <
                                  getInstrIndex(B.Store);
                         })
            ->Store;

    // We're looking for stores after the first forwarding store until the end
    // of the loop, then from the beginning of the loop until the last
    // forwarded-to load.  Collect the pointer for the stores.
    SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;

    auto InsertStorePtr = [&](Instruction *I) {
      if (auto *S = dyn_cast<StoreInst>(I))
        PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
    };
    const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
    std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
                  MemInstrs.end(), InsertStorePtr);
    std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
                  InsertStorePtr);

    return PtrsWrittenOnFwdingPath;
  }

  /// Determine the pointer alias checks to prove that there are no
  /// intervening stores.
  SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {

    SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
        findPointersWrittenOnForwardingPath(Candidates);

    // Collect the pointers of the candidate loads.
    // FIXME: SmallPtrSet does not work with std::inserter.
    std::set<Value *> CandLoadPtrs;
    transform(Candidates,
                   std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
                   std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));

    const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;

    copy_if(AllChecks, std::back_inserter(Checks),
            [&](const RuntimePointerChecking::PointerCheck &Check) {
              for (auto PtrIdx1 : Check.first->Members)
                for (auto PtrIdx2 : Check.second->Members)
                  if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
                                    CandLoadPtrs))
                    return true;
              return false;
            });

    LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
                      << "):\n");
    LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));

    return Checks;
  }

  /// Perform the transformation for a candidate.
  void
  propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
                                  SCEVExpander &SEE) {
    // loop:
    //      %x = load %gep_i
    //         = ... %x
    //      store %y, %gep_i_plus_1
    //
    // =>
    //
    // ph:
    //      %x.initial = load %gep_0
    // loop:
    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
    //      %x = load %gep_i            <---- now dead
    //         = ... %x.storeforward
    //      store %y, %gep_i_plus_1

    Value *Ptr = Cand.Load->getPointerOperand();
    auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
    auto *PH = L->getLoopPreheader();
    Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
                                          PH->getTerminator());
    Value *Initial = new LoadInst(
        Cand.Load->getType(), InitialPtr, "load_initial",
        /* isVolatile */ false, MaybeAlign(Cand.Load->getAlignment()),
        PH->getTerminator());

    PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
                                   &L->getHeader()->front());
    PHI->addIncoming(Initial, PH);
    PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());

    Cand.Load->replaceAllUsesWith(PHI);
  }

  /// Top-level driver for each loop: find store->load forwarding
  /// candidates, add run-time checks and perform transformation.
  bool processLoop() {
    LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
                      << "\" checking " << *L << "\n");

    // Look for store-to-load forwarding cases across the
    // backedge. E.g.:
    //
    // loop:
    //      %x = load %gep_i
    //         = ... %x
    //      store %y, %gep_i_plus_1
    //
    // =>
    //
    // ph:
    //      %x.initial = load %gep_0
    // loop:
    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
    //      %x = load %gep_i            <---- now dead
    //         = ... %x.storeforward
    //      store %y, %gep_i_plus_1

    // First start with store->load dependences.
    auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
    if (StoreToLoadDependences.empty())
      return false;

    // Generate an index for each load and store according to the original
    // program order.  This will be used later.
    InstOrder = LAI.getDepChecker().generateInstructionOrderMap();

    // To keep things simple for now, remove those where the load is potentially
    // fed by multiple stores.
    removeDependencesFromMultipleStores(StoreToLoadDependences);
    if (StoreToLoadDependences.empty())
      return false;

    // Filter the candidates further.
    SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
    unsigned NumForwarding = 0;
    for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
      LLVM_DEBUG(dbgs() << "Candidate " << Cand);

      // Make sure that the stored values is available everywhere in the loop in
      // the next iteration.
      if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
        continue;

      // If the load is conditional we can't hoist its 0-iteration instance to
      // the preheader because that would make it unconditional.  Thus we would
      // access a memory location that the original loop did not access.
      if (isLoadConditional(Cand.Load, L))
        continue;

      // Check whether the SCEV difference is the same as the induction step,
      // thus we load the value in the next iteration.
      if (!Cand.isDependenceDistanceOfOne(PSE, L))
        continue;

      ++NumForwarding;
      LLVM_DEBUG(
          dbgs()
          << NumForwarding
          << ". Valid store-to-load forwarding across the loop backedge\n");
      Candidates.push_back(Cand);
    }
    if (Candidates.empty())
      return false;

    // Check intervening may-alias stores.  These need runtime checks for alias
    // disambiguation.
    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
        collectMemchecks(Candidates);

    // Too many checks are likely to outweigh the benefits of forwarding.
    if (Checks.size() > Candidates.size() * CheckPerElim) {
      LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
      return false;
    }

    if (LAI.getPSE().getUnionPredicate().getComplexity() >
        LoadElimSCEVCheckThreshold) {
      LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
      return false;
    }

    if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
      if (LAI.hasConvergentOp()) {
        LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
                             "convergent calls\n");
        return false;
      }

      auto *HeaderBB = L->getHeader();
      auto *F = HeaderBB->getParent();
      bool OptForSize = F->hasOptSize() ||
                        llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI);
      if (OptForSize) {
        LLVM_DEBUG(
            dbgs() << "Versioning is needed but not allowed when optimizing "
                      "for size.\n");
        return false;
      }

      if (!L->isLoopSimplifyForm()) {
        LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
        return false;
      }

      // Point of no-return, start the transformation.  First, version the loop
      // if necessary.

      LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
      LV.setAliasChecks(std::move(Checks));
      LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
      LV.versionLoop();
    }

    // Next, propagate the value stored by the store to the users of the load.
    // Also for the first iteration, generate the initial value of the load.
    SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
                     "storeforward");
    for (const auto &Cand : Candidates)
      propagateStoredValueToLoadUsers(Cand, SEE);
    NumLoopLoadEliminted += NumForwarding;

    return true;
  }

private:
  Loop *L;

  /// Maps the load/store instructions to their index according to
  /// program order.
  DenseMap<Instruction *, unsigned> InstOrder;

  // Analyses used.
  LoopInfo *LI;
  const LoopAccessInfo &LAI;
  DominatorTree *DT;
  BlockFrequencyInfo *BFI;
  ProfileSummaryInfo *PSI;
  PredicatedScalarEvolution PSE;
};

} // end anonymous namespace

static bool
eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
                          BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
                          function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
  // Build up a worklist of inner-loops to transform to avoid iterator
  // invalidation.
  // FIXME: This logic comes from other passes that actually change the loop
  // nest structure. It isn't clear this is necessary (or useful) for a pass
  // which merely optimizes the use of loads in a loop.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *TopLevelLoop : LI)
    for (Loop *L : depth_first(TopLevelLoop))
      // We only handle inner-most loops.
      if (L->empty())
        Worklist.push_back(L);

  // Now walk the identified inner loops.
  bool Changed = false;
  for (Loop *L : Worklist) {
    // The actual work is performed by LoadEliminationForLoop.
    LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
    Changed |= LEL.processLoop();
  }
  return Changed;
}

namespace {

/// The pass.  Most of the work is delegated to the per-loop
/// LoadEliminationForLoop class.
class LoopLoadElimination : public FunctionPass {
public:
  static char ID;

  LoopLoadElimination() : FunctionPass(ID) {
    initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
    auto *BFI = (PSI && PSI->hasProfileSummary()) ?
                &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
                nullptr;

    // Process each loop nest in the function.
    return eliminateLoadsAcrossLoops(
        F, LI, DT, BFI, PSI,
        [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char LoopLoadElimination::ID;

static const char LLE_name[] = "Loop Load Elimination";

INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)

FunctionPass *llvm::createLoopLoadEliminationPass() {
  return new LoopLoadElimination();
}

PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
  auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
  MemorySSA *MSSA = EnableMSSALoopDependency
                        ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
                        : nullptr;

  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
  bool Changed = eliminateLoadsAcrossLoops(
      F, LI, DT, BFI, PSI, [&](Loop &L) -> const LoopAccessInfo & {
        LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
        return LAM.getResult<LoopAccessAnalysis>(L, AR);
      });

  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  return PA;
}