1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
| //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "function returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DERIVEDTYPES_H
#define LLVM_IR_DERIVEDTYPES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>
namespace llvm {
class Value;
class APInt;
class LLVMContext;
/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// Integer representation type
class IntegerType : public Type {
friend class LLVMContextImpl;
protected:
explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
setSubclassData(NumBits);
}
public:
/// This enum is just used to hold constants we need for IntegerType.
enum {
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
///< Note that bit width is stored in the Type classes SubclassData field
///< which has 24 bits. This yields a maximum bit width of 16,777,215
///< bits.
};
/// This static method is the primary way of constructing an IntegerType.
/// If an IntegerType with the same NumBits value was previously instantiated,
/// that instance will be returned. Otherwise a new one will be created. Only
/// one instance with a given NumBits value is ever created.
/// Get or create an IntegerType instance.
static IntegerType *get(LLVMContext &C, unsigned NumBits);
/// Returns type twice as wide the input type.
IntegerType *getExtendedType() const {
return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
}
/// Get the number of bits in this IntegerType
unsigned getBitWidth() const { return getSubclassData(); }
/// Return a bitmask with ones set for all of the bits that can be set by an
/// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
uint64_t getBitMask() const {
return ~uint64_t(0UL) >> (64-getBitWidth());
}
/// Return a uint64_t with just the most significant bit set (the sign bit, if
/// the value is treated as a signed number).
uint64_t getSignBit() const {
return 1ULL << (getBitWidth()-1);
}
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
/// @returns a bit mask with ones set for all the bits of this type.
/// Get a bit mask for this type.
APInt getMask() const;
/// This method determines if the width of this IntegerType is a power-of-2
/// in terms of 8 bit bytes.
/// @returns true if this is a power-of-2 byte width.
/// Is this a power-of-2 byte-width IntegerType ?
bool isPowerOf2ByteWidth() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == IntegerTyID;
}
};
unsigned Type::getIntegerBitWidth() const {
return cast<IntegerType>(this)->getBitWidth();
}
/// Class to represent function types
///
class FunctionType : public Type {
FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
public:
FunctionType(const FunctionType &) = delete;
FunctionType &operator=(const FunctionType &) = delete;
/// This static method is the primary way of constructing a FunctionType.
static FunctionType *get(Type *Result,
ArrayRef<Type*> Params, bool isVarArg);
/// Create a FunctionType taking no parameters.
static FunctionType *get(Type *Result, bool isVarArg);
/// Return true if the specified type is valid as a return type.
static bool isValidReturnType(Type *RetTy);
/// Return true if the specified type is valid as an argument type.
static bool isValidArgumentType(Type *ArgTy);
bool isVarArg() const { return getSubclassData()!=0; }
Type *getReturnType() const { return ContainedTys[0]; }
using param_iterator = Type::subtype_iterator;
param_iterator param_begin() const { return ContainedTys + 1; }
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
ArrayRef<Type *> params() const {
return makeArrayRef(param_begin(), param_end());
}
/// Parameter type accessors.
Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
/// Return the number of fixed parameters this function type requires.
/// This does not consider varargs.
unsigned getNumParams() const { return NumContainedTys - 1; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == FunctionTyID;
}
};
static_assert(alignof(FunctionType) >= alignof(Type *),
"Alignment sufficient for objects appended to FunctionType");
bool Type::isFunctionVarArg() const {
return cast<FunctionType>(this)->isVarArg();
}
Type *Type::getFunctionParamType(unsigned i) const {
return cast<FunctionType>(this)->getParamType(i);
}
unsigned Type::getFunctionNumParams() const {
return cast<FunctionType>(this)->getNumParams();
}
/// A handy container for a FunctionType+Callee-pointer pair, which can be
/// passed around as a single entity. This assists in replacing the use of
/// PointerType::getElementType() to access the function's type, since that's
/// slated for removal as part of the [opaque pointer types] project.
class FunctionCallee {
public:
// Allow implicit conversion from types which have a getFunctionType member
// (e.g. Function and InlineAsm).
template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T *Fn)
: FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
FunctionCallee(FunctionType *FnTy, Value *Callee)
: FnTy(FnTy), Callee(Callee) {
assert((FnTy == nullptr) == (Callee == nullptr));
}
FunctionCallee(std::nullptr_t) {}
FunctionCallee() = default;
FunctionType *getFunctionType() { return FnTy; }
Value *getCallee() { return Callee; }
explicit operator bool() { return Callee; }
private:
FunctionType *FnTy = nullptr;
Value *Callee = nullptr;
};
/// Common super class of ArrayType, StructType and VectorType.
class CompositeType : public Type {
protected:
explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
public:
/// Given an index value into the type, return the type of the element.
Type *getTypeAtIndex(const Value *V) const;
Type *getTypeAtIndex(unsigned Idx) const;
bool indexValid(const Value *V) const;
bool indexValid(unsigned Idx) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == VectorTyID;
}
};
/// Class to represent struct types. There are two different kinds of struct
/// types: Literal structs and Identified structs.
///
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
/// always have a body when created. You can get one of these by using one of
/// the StructType::get() forms.
///
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
/// uniqued. The names for identified structs are managed at the LLVMContext
/// level, so there can only be a single identified struct with a given name in
/// a particular LLVMContext. Identified structs may also optionally be opaque
/// (have no body specified). You get one of these by using one of the
/// StructType::create() forms.
///
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consecutively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
enum {
/// This is the contents of the SubClassData field.
SCDB_HasBody = 1,
SCDB_Packed = 2,
SCDB_IsLiteral = 4,
SCDB_IsSized = 8
};
/// For a named struct that actually has a name, this is a pointer to the
/// symbol table entry (maintained by LLVMContext) for the struct.
/// This is null if the type is an literal struct or if it is a identified
/// type that has an empty name.
void *SymbolTableEntry = nullptr;
public:
StructType(const StructType &) = delete;
StructType &operator=(const StructType &) = delete;
/// This creates an identified struct.
static StructType *create(LLVMContext &Context, StringRef Name);
static StructType *create(LLVMContext &Context);
static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
bool isPacked = false);
static StructType *create(ArrayRef<Type *> Elements);
static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
StringRef Name, bool isPacked = false);
static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
template <class... Tys>
static typename std::enable_if<are_base_of<Type, Tys...>::value,
StructType *>::type
create(StringRef Name, Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
return create(StructFields, Name);
}
/// This static method is the primary way to create a literal StructType.
static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
bool isPacked = false);
/// Create an empty structure type.
static StructType *get(LLVMContext &Context, bool isPacked = false);
/// This static method is a convenience method for creating structure types by
/// specifying the elements as arguments. Note that this method always returns
/// a non-packed struct, and requires at least one element type.
template <class... Tys>
static typename std::enable_if<are_base_of<Type, Tys...>::value,
StructType *>::type
get(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
LLVMContext &Ctx = elt1->getContext();
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
return llvm::StructType::get(Ctx, StructFields);
}
bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
/// Return true if this type is uniqued by structural equivalence, false if it
/// is a struct definition.
bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
/// Return true if this is a type with an identity that has no body specified
/// yet. These prints as 'opaque' in .ll files.
bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
/// isSized - Return true if this is a sized type.
bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
/// Return true if this is a named struct that has a non-empty name.
bool hasName() const { return SymbolTableEntry != nullptr; }
/// Return the name for this struct type if it has an identity.
/// This may return an empty string for an unnamed struct type. Do not call
/// this on an literal type.
StringRef getName() const;
/// Change the name of this type to the specified name, or to a name with a
/// suffix if there is a collision. Do not call this on an literal type.
void setName(StringRef Name);
/// Specify a body for an opaque identified type.
void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
template <typename... Tys>
typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
setBody(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
setBody(StructFields);
}
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
// Iterator access to the elements.
using element_iterator = Type::subtype_iterator;
element_iterator element_begin() const { return ContainedTys; }
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
ArrayRef<Type *> const elements() const {
return makeArrayRef(element_begin(), element_end());
}
/// Return true if this is layout identical to the specified struct.
bool isLayoutIdentical(StructType *Other) const;
/// Random access to the elements
unsigned getNumElements() const { return NumContainedTys; }
Type *getElementType(unsigned N) const {
assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N];
}
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == StructTyID;
}
};
StringRef Type::getStructName() const {
return cast<StructType>(this)->getName();
}
unsigned Type::getStructNumElements() const {
return cast<StructType>(this)->getNumElements();
}
Type *Type::getStructElementType(unsigned N) const {
return cast<StructType>(this)->getElementType(N);
}
/// This is the superclass of the array and vector type classes. Both of these
/// represent "arrays" in memory. The array type represents a specifically sized
/// array, and the vector type represents a specifically sized array that allows
/// for use of SIMD instructions. SequentialType holds the common features of
/// both, which stem from the fact that both lay their components out in memory
/// identically.
class SequentialType : public CompositeType {
Type *ContainedType; ///< Storage for the single contained type.
uint64_t NumElements;
protected:
SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
: CompositeType(ElType->getContext(), TID), ContainedType(ElType),
NumElements(NumElements) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
public:
SequentialType(const SequentialType &) = delete;
SequentialType &operator=(const SequentialType &) = delete;
/// For scalable vectors, this will return the minimum number of elements
/// in the vector.
uint64_t getNumElements() const { return NumElements; }
Type *getElementType() const { return ContainedType; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
}
};
/// Class to represent array types.
class ArrayType : public SequentialType {
ArrayType(Type *ElType, uint64_t NumEl);
public:
ArrayType(const ArrayType &) = delete;
ArrayType &operator=(const ArrayType &) = delete;
/// This static method is the primary way to construct an ArrayType
static ArrayType *get(Type *ElementType, uint64_t NumElements);
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID;
}
};
uint64_t Type::getArrayNumElements() const {
return cast<ArrayType>(this)->getNumElements();
}
/// Class to represent vector types.
class VectorType : public SequentialType {
/// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
/// minimum number of elements of type Ty contained within the vector, and
/// 'vscale x' indicates that the total element count is an integer multiple
/// of 'n', where the multiple is either guaranteed to be one, or is
/// statically unknown at compile time.
///
/// If the multiple is known to be 1, then the extra term is discarded in
/// textual IR:
///
/// <4 x i32> - a vector containing 4 i32s
/// <vscale x 4 x i32> - a vector containing an unknown integer multiple
/// of 4 i32s
VectorType(Type *ElType, unsigned NumEl, bool Scalable = false);
VectorType(Type *ElType, ElementCount EC);
// If true, the total number of elements is an unknown multiple of the
// minimum 'NumElements' from SequentialType. Otherwise the total number
// of elements is exactly equal to 'NumElements'.
bool Scalable;
public:
VectorType(const VectorType &) = delete;
VectorType &operator=(const VectorType &) = delete;
/// This static method is the primary way to construct an VectorType.
static VectorType *get(Type *ElementType, ElementCount EC);
static VectorType *get(Type *ElementType, unsigned NumElements,
bool Scalable = false) {
return VectorType::get(ElementType, {NumElements, Scalable});
}
/// This static method gets a VectorType with the same number of elements as
/// the input type, and the element type is an integer type of the same width
/// as the input element type.
static VectorType *getInteger(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert(EltBits && "Element size must be of a non-zero size");
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
return VectorType::get(EltTy, VTy->getElementCount());
}
/// This static method is like getInteger except that the element types are
/// twice as wide as the elements in the input type.
static VectorType *getExtendedElementVectorType(VectorType *VTy) {
assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
auto *EltTy = cast<IntegerType>(VTy->getElementType());
return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
}
// This static method gets a VectorType with the same number of elements as
// the input type, and the element type is an integer or float type which
// is half as wide as the elements in the input type.
static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
Type *EltTy;
if (VTy->getElementType()->isFloatingPointTy()) {
switch(VTy->getElementType()->getTypeID()) {
case DoubleTyID:
EltTy = Type::getFloatTy(VTy->getContext());
break;
case FloatTyID:
EltTy = Type::getHalfTy(VTy->getContext());
break;
default:
llvm_unreachable("Cannot create narrower fp vector element type");
}
} else {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert((EltBits & 1) == 0 &&
"Cannot truncate vector element with odd bit-width");
EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
}
return VectorType::get(EltTy, VTy->getElementCount());
}
// This static method returns a VectorType with a smaller number of elements
// of a larger type than the input element type. For example, a <16 x i8>
// subdivided twice would return <4 x i32>
static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
for (int i = 0; i < NumSubdivs; ++i) {
VTy = VectorType::getDoubleElementsVectorType(VTy);
VTy = VectorType::getTruncatedElementVectorType(VTy);
}
return VTy;
}
/// This static method returns a VectorType with half as many elements as the
/// input type and the same element type.
static VectorType *getHalfElementsVectorType(VectorType *VTy) {
auto EltCnt = VTy->getElementCount();
assert ((EltCnt.Min & 1) == 0 &&
"Cannot halve vector with odd number of elements.");
return VectorType::get(VTy->getElementType(), EltCnt/2);
}
/// This static method returns a VectorType with twice as many elements as the
/// input type and the same element type.
static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
auto EltCnt = VTy->getElementCount();
assert((VTy->getNumElements() * 2ull) <= UINT_MAX &&
"Too many elements in vector");
return VectorType::get(VTy->getElementType(), EltCnt*2);
}
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Return an ElementCount instance to represent the (possibly scalable)
/// number of elements in the vector.
ElementCount getElementCount() const {
uint64_t MinimumEltCnt = getNumElements();
assert(MinimumEltCnt <= UINT_MAX && "Too many elements in vector");
return { (unsigned)MinimumEltCnt, Scalable };
}
/// Returns whether or not this is a scalable vector (meaning the total
/// element count is a multiple of the minimum).
bool isScalable() const {
return Scalable;
}
/// Return the minimum number of bits in the Vector type.
/// Returns zero when the vector is a vector of pointers.
unsigned getBitWidth() const {
return getNumElements() * getElementType()->getPrimitiveSizeInBits();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == VectorTyID;
}
};
unsigned Type::getVectorNumElements() const {
return cast<VectorType>(this)->getNumElements();
}
bool Type::getVectorIsScalable() const {
return cast<VectorType>(this)->isScalable();
}
ElementCount Type::getVectorElementCount() const {
return cast<VectorType>(this)->getElementCount();
}
/// Class to represent pointers.
class PointerType : public Type {
explicit PointerType(Type *ElType, unsigned AddrSpace);
Type *PointeeTy;
public:
PointerType(const PointerType &) = delete;
PointerType &operator=(const PointerType &) = delete;
/// This constructs a pointer to an object of the specified type in a numbered
/// address space.
static PointerType *get(Type *ElementType, unsigned AddressSpace);
/// This constructs a pointer to an object of the specified type in the
/// generic address space (address space zero).
static PointerType *getUnqual(Type *ElementType) {
return PointerType::get(ElementType, 0);
}
Type *getElementType() const { return PointeeTy; }
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Return true if we can load or store from a pointer to this type.
static bool isLoadableOrStorableType(Type *ElemTy);
/// Return the address space of the Pointer type.
inline unsigned getAddressSpace() const { return getSubclassData(); }
/// Implement support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == PointerTyID;
}
};
Type *Type::getExtendedType() const {
assert(
isIntOrIntVectorTy() &&
"Original type expected to be a vector of integers or a scalar integer.");
if (auto *VTy = dyn_cast<VectorType>(this))
return VectorType::getExtendedElementVectorType(
const_cast<VectorType *>(VTy));
return cast<IntegerType>(this)->getExtendedType();
}
Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
assert(
isIntOrIntVectorTy() &&
"Original type expected to be a vector of integers or a scalar integer.");
Type *NewType = getIntNTy(getContext(), NewBitWidth);
if (isVectorTy())
NewType = VectorType::get(NewType, getVectorElementCount());
return NewType;
}
unsigned Type::getPointerAddressSpace() const {
return cast<PointerType>(getScalarType())->getAddressSpace();
}
} // end namespace llvm
#endif // LLVM_IR_DERIVEDTYPES_H
|