reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>

namespace llvm {

class APInt;
class Constant;
class ConstantRange;
class Loop;
class Type;

  enum SCEVTypes {
    // These should be ordered in terms of increasing complexity to make the
    // folders simpler.
    scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
    scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUMinExpr, scSMinExpr,
    scUnknown, scCouldNotCompute
  };

  /// This class represents a constant integer value.
  class SCEVConstant : public SCEV {
    friend class ScalarEvolution;

    ConstantInt *V;

    SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
      SCEV(ID, scConstant, 1), V(v) {}

  public:
    ConstantInt *getValue() const { return V; }
    const APInt &getAPInt() const { return getValue()->getValue(); }

    Type *getType() const { return V->getType(); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scConstant;
    }
  };

  static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
    APInt Size(16, 1);
    for (auto *Arg : Args)
      Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
    return (unsigned short)Size.getZExtValue();
  }

  /// This is the base class for unary cast operator classes.
  class SCEVCastExpr : public SCEV {
  protected:
    const SCEV *Op;
    Type *Ty;

    SCEVCastExpr(const FoldingSetNodeIDRef ID,
                 unsigned SCEVTy, const SCEV *op, Type *ty);

  public:
    const SCEV *getOperand() const { return Op; }
    Type *getType() const { return Ty; }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scTruncate ||
             S->getSCEVType() == scZeroExtend ||
             S->getSCEVType() == scSignExtend;
    }
  };

  /// This class represents a truncation of an integer value to a
  /// smaller integer value.
  class SCEVTruncateExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
                     const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scTruncate;
    }
  };

  /// This class represents a zero extension of a small integer value
  /// to a larger integer value.
  class SCEVZeroExtendExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
                       const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scZeroExtend;
    }
  };

  /// This class represents a sign extension of a small integer value
  /// to a larger integer value.
  class SCEVSignExtendExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
                       const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scSignExtend;
    }
  };

  /// This node is a base class providing common functionality for
  /// n'ary operators.
  class SCEVNAryExpr : public SCEV {
  protected:
    // Since SCEVs are immutable, ScalarEvolution allocates operand
    // arrays with its SCEVAllocator, so this class just needs a simple
    // pointer rather than a more elaborate vector-like data structure.
    // This also avoids the need for a non-trivial destructor.
    const SCEV *const *Operands;
    size_t NumOperands;

    SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
                 const SCEV *const *O, size_t N)
        : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O),
          NumOperands(N) {}

  public:
    size_t getNumOperands() const { return NumOperands; }

    const SCEV *getOperand(unsigned i) const {
      assert(i < NumOperands && "Operand index out of range!");
      return Operands[i];
    }

    using op_iterator = const SCEV *const *;
    using op_range = iterator_range<op_iterator>;

    op_iterator op_begin() const { return Operands; }
    op_iterator op_end() const { return Operands + NumOperands; }
    op_range operands() const {
      return make_range(op_begin(), op_end());
    }

    Type *getType() const { return getOperand(0)->getType(); }

    NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
      return (NoWrapFlags)(SubclassData & Mask);
    }

    bool hasNoUnsignedWrap() const {
      return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
    }

    bool hasNoSignedWrap() const {
      return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
    }

    bool hasNoSelfWrap() const {
      return getNoWrapFlags(FlagNW) != FlagAnyWrap;
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
             S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
             S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr ||
             S->getSCEVType() == scAddRecExpr;
    }
  };

  /// This node is the base class for n'ary commutative operators.
  class SCEVCommutativeExpr : public SCEVNAryExpr {
  protected:
    SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
                        enum SCEVTypes T, const SCEV *const *O, size_t N)
      : SCEVNAryExpr(ID, T, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
             S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
             S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr;
    }

    /// Set flags for a non-recurrence without clearing previously set flags.
    void setNoWrapFlags(NoWrapFlags Flags) {
      SubclassData |= Flags;
    }
  };

  /// This node represents an addition of some number of SCEVs.
  class SCEVAddExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVAddExpr(const FoldingSetNodeIDRef ID,
                const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}

  public:
    Type *getType() const {
      // Use the type of the last operand, which is likely to be a pointer
      // type, if there is one. This doesn't usually matter, but it can help
      // reduce casts when the expressions are expanded.
      return getOperand(getNumOperands() - 1)->getType();
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr;
    }
  };

  /// This node represents multiplication of some number of SCEVs.
  class SCEVMulExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVMulExpr(const FoldingSetNodeIDRef ID,
                const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scMulExpr;
    }
  };

  /// This class represents a binary unsigned division operation.
  class SCEVUDivExpr : public SCEV {
    friend class ScalarEvolution;

    const SCEV *LHS;
    const SCEV *RHS;

    SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
        : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs),
          RHS(rhs) {}

  public:
    const SCEV *getLHS() const { return LHS; }
    const SCEV *getRHS() const { return RHS; }

    Type *getType() const {
      // In most cases the types of LHS and RHS will be the same, but in some
      // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
      // depend on the type for correctness, but handling types carefully can
      // avoid extra casts in the SCEVExpander. The LHS is more likely to be
      // a pointer type than the RHS, so use the RHS' type here.
      return getRHS()->getType();
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scUDivExpr;
    }
  };

  /// This node represents a polynomial recurrence on the trip count
  /// of the specified loop.  This is the primary focus of the
  /// ScalarEvolution framework; all the other SCEV subclasses are
  /// mostly just supporting infrastructure to allow SCEVAddRecExpr
  /// expressions to be created and analyzed.
  ///
  /// All operands of an AddRec are required to be loop invariant.
  ///
  class SCEVAddRecExpr : public SCEVNAryExpr {
    friend class ScalarEvolution;

    const Loop *L;

    SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
                   const SCEV *const *O, size_t N, const Loop *l)
      : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}

  public:
    const SCEV *getStart() const { return Operands[0]; }
    const Loop *getLoop() const { return L; }

    /// Constructs and returns the recurrence indicating how much this
    /// expression steps by.  If this is a polynomial of degree N, it
    /// returns a chrec of degree N-1.  We cannot determine whether
    /// the step recurrence has self-wraparound.
    const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
      if (isAffine()) return getOperand(1);
      return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
                                                           op_end()),
                              getLoop(), FlagAnyWrap);
    }

    /// Return true if this represents an expression A + B*x where A
    /// and B are loop invariant values.
    bool isAffine() const {
      // We know that the start value is invariant.  This expression is thus
      // affine iff the step is also invariant.
      return getNumOperands() == 2;
    }

    /// Return true if this represents an expression A + B*x + C*x^2
    /// where A, B and C are loop invariant values.  This corresponds
    /// to an addrec of the form {L,+,M,+,N}
    bool isQuadratic() const {
      return getNumOperands() == 3;
    }

    /// Set flags for a recurrence without clearing any previously set flags.
    /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
    /// to make it easier to propagate flags.
    void setNoWrapFlags(NoWrapFlags Flags) {
      if (Flags & (FlagNUW | FlagNSW))
        Flags = ScalarEvolution::setFlags(Flags, FlagNW);
      SubclassData |= Flags;
    }

    /// Return the value of this chain of recurrences at the specified
    /// iteration number.
    const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;

    /// Return the number of iterations of this loop that produce
    /// values in the specified constant range.  Another way of
    /// looking at this is that it returns the first iteration number
    /// where the value is not in the condition, thus computing the
    /// exit count.  If the iteration count can't be computed, an
    /// instance of SCEVCouldNotCompute is returned.
    const SCEV *getNumIterationsInRange(const ConstantRange &Range,
                                        ScalarEvolution &SE) const;

    /// Return an expression representing the value of this expression
    /// one iteration of the loop ahead.
    const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddRecExpr;
    }
  };

  /// This node is the base class min/max selections.
  class SCEVMinMaxExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    static bool isMinMaxType(enum SCEVTypes T) {
      return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr ||
             T == scUMinExpr;
    }

  protected:
    /// Note: Constructing subclasses via this constructor is allowed
    SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
                   const SCEV *const *O, size_t N)
        : SCEVCommutativeExpr(ID, T, O, N) {
      assert(isMinMaxType(T));
      // Min and max never overflow
      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
    }

  public:
    static bool classof(const SCEV *S) {
      return isMinMaxType(static_cast<SCEVTypes>(S->getSCEVType()));
    }

    static enum SCEVTypes negate(enum SCEVTypes T) {
      switch (T) {
      case scSMaxExpr:
        return scSMinExpr;
      case scSMinExpr:
        return scSMaxExpr;
      case scUMaxExpr:
        return scUMinExpr;
      case scUMinExpr:
        return scUMaxExpr;
      default:
        llvm_unreachable("Not a min or max SCEV type!");
      }
    }
  };

  /// This class represents a signed maximum selection.
  class SCEVSMaxExpr : public SCEVMinMaxExpr {
    friend class ScalarEvolution;

    SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
        : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scSMaxExpr;
    }
  };

  /// This class represents an unsigned maximum selection.
  class SCEVUMaxExpr : public SCEVMinMaxExpr {
    friend class ScalarEvolution;

    SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
        : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scUMaxExpr;
    }
  };

  /// This class represents a signed minimum selection.
  class SCEVSMinExpr : public SCEVMinMaxExpr {
    friend class ScalarEvolution;

    SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
        : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scSMinExpr;
    }
  };

  /// This class represents an unsigned minimum selection.
  class SCEVUMinExpr : public SCEVMinMaxExpr {
    friend class ScalarEvolution;

    SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
        : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scUMinExpr;
    }
  };

  /// This means that we are dealing with an entirely unknown SCEV
  /// value, and only represent it as its LLVM Value.  This is the
  /// "bottom" value for the analysis.
  class SCEVUnknown final : public SCEV, private CallbackVH {
    friend class ScalarEvolution;

    /// The parent ScalarEvolution value. This is used to update the
    /// parent's maps when the value associated with a SCEVUnknown is
    /// deleted or RAUW'd.
    ScalarEvolution *SE;

    /// The next pointer in the linked list of all SCEVUnknown
    /// instances owned by a ScalarEvolution.
    SCEVUnknown *Next;

    SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
                ScalarEvolution *se, SCEVUnknown *next) :
      SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}

    // Implement CallbackVH.
    void deleted() override;
    void allUsesReplacedWith(Value *New) override;

  public:
    Value *getValue() const { return getValPtr(); }

    /// @{
    /// Test whether this is a special constant representing a type
    /// size, alignment, or field offset in a target-independent
    /// manner, and hasn't happened to have been folded with other
    /// operations into something unrecognizable. This is mainly only
    /// useful for pretty-printing and other situations where it isn't
    /// absolutely required for these to succeed.
    bool isSizeOf(Type *&AllocTy) const;
    bool isAlignOf(Type *&AllocTy) const;
    bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
    /// @}

    Type *getType() const { return getValPtr()->getType(); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S) {
      return S->getSCEVType() == scUnknown;
    }
  };

  /// This class defines a simple visitor class that may be used for
  /// various SCEV analysis purposes.
  template<typename SC, typename RetVal=void>
  struct SCEVVisitor {
    RetVal visit(const SCEV *S) {
      switch (S->getSCEVType()) {
      case scConstant:
        return ((SC*)this)->visitConstant((const SCEVConstant*)S);
      case scTruncate:
        return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
      case scZeroExtend:
        return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
      case scSignExtend:
        return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
      case scAddExpr:
        return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
      case scMulExpr:
        return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
      case scUDivExpr:
        return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
      case scAddRecExpr:
        return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
      case scSMaxExpr:
        return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
      case scUMaxExpr:
        return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
      case scSMinExpr:
        return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S);
      case scUMinExpr:
        return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S);
      case scUnknown:
        return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
      case scCouldNotCompute:
        return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
      default:
        llvm_unreachable("Unknown SCEV type!");
      }
    }

    RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
      llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
    }
  };

  /// Visit all nodes in the expression tree using worklist traversal.
  ///
  /// Visitor implements:
  ///   // return true to follow this node.
  ///   bool follow(const SCEV *S);
  ///   // return true to terminate the search.
  ///   bool isDone();
  template<typename SV>
  class SCEVTraversal {
    SV &Visitor;
    SmallVector<const SCEV *, 8> Worklist;
    SmallPtrSet<const SCEV *, 8> Visited;

    void push(const SCEV *S) {
      if (Visited.insert(S).second && Visitor.follow(S))
        Worklist.push_back(S);
    }

  public:
    SCEVTraversal(SV& V): Visitor(V) {}

    void visitAll(const SCEV *Root) {
      push(Root);
      while (!Worklist.empty() && !Visitor.isDone()) {
        const SCEV *S = Worklist.pop_back_val();

        switch (S->getSCEVType()) {
        case scConstant:
        case scUnknown:
          break;
        case scTruncate:
        case scZeroExtend:
        case scSignExtend:
          push(cast<SCEVCastExpr>(S)->getOperand());
          break;
        case scAddExpr:
        case scMulExpr:
        case scSMaxExpr:
        case scUMaxExpr:
        case scSMinExpr:
        case scUMinExpr:
        case scAddRecExpr:
          for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
            push(Op);
          break;
        case scUDivExpr: {
          const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
          push(UDiv->getLHS());
          push(UDiv->getRHS());
          break;
        }
        case scCouldNotCompute:
          llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
        default:
          llvm_unreachable("Unknown SCEV kind!");
        }
      }
    }
  };

  /// Use SCEVTraversal to visit all nodes in the given expression tree.
  template<typename SV>
  void visitAll(const SCEV *Root, SV& Visitor) {
    SCEVTraversal<SV> T(Visitor);
    T.visitAll(Root);
  }

  /// Return true if any node in \p Root satisfies the predicate \p Pred.
  template <typename PredTy>
  bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
    struct FindClosure {
      bool Found = false;
      PredTy Pred;

      FindClosure(PredTy Pred) : Pred(Pred) {}

      bool follow(const SCEV *S) {
        if (!Pred(S))
          return true;

        Found = true;
        return false;
      }

      bool isDone() const { return Found; }
    };

    FindClosure FC(Pred);
    visitAll(Root, FC);
    return FC.Found;
  }

  /// This visitor recursively visits a SCEV expression and re-writes it.
  /// The result from each visit is cached, so it will return the same
  /// SCEV for the same input.
  template<typename SC>
  class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
  protected:
    ScalarEvolution &SE;
    // Memoize the result of each visit so that we only compute once for
    // the same input SCEV. This is to avoid redundant computations when
    // a SCEV is referenced by multiple SCEVs. Without memoization, this
    // visit algorithm would have exponential time complexity in the worst
    // case, causing the compiler to hang on certain tests.
    DenseMap<const SCEV *, const SCEV *> RewriteResults;

  public:
    SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}

    const SCEV *visit(const SCEV *S) {
      auto It = RewriteResults.find(S);
      if (It != RewriteResults.end())
        return It->second;
      auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
      auto Result = RewriteResults.try_emplace(S, Visited);
      assert(Result.second && "Should insert a new entry");
      return Result.first->second;
    }

    const SCEV *visitConstant(const SCEVConstant *Constant) {
      return Constant;
    }

    const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
      return Operand == Expr->getOperand()
                 ? Expr
                 : SE.getTruncateExpr(Operand, Expr->getType());
    }

    const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
      return Operand == Expr->getOperand()
                 ? Expr
                 : SE.getZeroExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
      return Operand == Expr->getOperand()
                 ? Expr
                 : SE.getSignExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC*)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getAddExpr(Operands);
    }

    const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC*)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getMulExpr(Operands);
    }

    const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
      auto *LHS = ((SC *)this)->visit(Expr->getLHS());
      auto *RHS = ((SC *)this)->visit(Expr->getRHS());
      bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
      return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
    }

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC*)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr
                      : SE.getAddRecExpr(Operands, Expr->getLoop(),
                                         Expr->getNoWrapFlags());
    }

    const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC *)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getSMaxExpr(Operands);
    }

    const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC*)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getUMaxExpr(Operands);
    }

    const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC *)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getSMinExpr(Operands);
    }

    const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      bool Changed = false;
      for (auto *Op : Expr->operands()) {
        Operands.push_back(((SC *)this)->visit(Op));
        Changed |= Op != Operands.back();
      }
      return !Changed ? Expr : SE.getUMinExpr(Operands);
    }

    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
      return Expr;
    }

    const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
      return Expr;
    }
  };

  using ValueToValueMap = DenseMap<const Value *, Value *>;

  /// The SCEVParameterRewriter takes a scalar evolution expression and updates
  /// the SCEVUnknown components following the Map (Value -> Value).
  class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
  public:
    static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
                               ValueToValueMap &Map,
                               bool InterpretConsts = false) {
      SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
      return Rewriter.visit(Scev);
    }

    SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
      : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}

    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
      Value *V = Expr->getValue();
      if (Map.count(V)) {
        Value *NV = Map[V];
        if (InterpretConsts && isa<ConstantInt>(NV))
          return SE.getConstant(cast<ConstantInt>(NV));
        return SE.getUnknown(NV);
      }
      return Expr;
    }

  private:
    ValueToValueMap &Map;
    bool InterpretConsts;
  };

  using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;

  /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
  /// the Map (Loop -> SCEV) to all AddRecExprs.
  class SCEVLoopAddRecRewriter
      : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
  public:
    SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
        : SCEVRewriteVisitor(SE), Map(M) {}

    static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
                               ScalarEvolution &SE) {
      SCEVLoopAddRecRewriter Rewriter(SE, Map);
      return Rewriter.visit(Scev);
    }

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (const SCEV *Op : Expr->operands())
        Operands.push_back(visit(Op));

      const Loop *L = Expr->getLoop();
      const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());

      if (0 == Map.count(L))
        return Res;

      const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
      return Rec->evaluateAtIteration(Map[L], SE);
    }

  private:
    LoopToScevMapT &Map;
  };

} // end namespace llvm

#endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H