reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for the loop memory dependence framework that
// was originally developed for the Loop Vectorizer.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H

#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"

namespace llvm {

class Value;
class DataLayout;
class ScalarEvolution;
class Loop;
class SCEV;
class SCEVUnionPredicate;
class LoopAccessInfo;
class OptimizationRemarkEmitter;

/// Collection of parameters shared beetween the Loop Vectorizer and the
/// Loop Access Analysis.
struct VectorizerParams {
  /// Maximum SIMD width.
  static const unsigned MaxVectorWidth;

  /// VF as overridden by the user.
  static unsigned VectorizationFactor;
  /// Interleave factor as overridden by the user.
  static unsigned VectorizationInterleave;
  /// True if force-vector-interleave was specified by the user.
  static bool isInterleaveForced();

  /// \When performing memory disambiguation checks at runtime do not
  /// make more than this number of comparisons.
  static unsigned RuntimeMemoryCheckThreshold;
};

/// Checks memory dependences among accesses to the same underlying
/// object to determine whether there vectorization is legal or not (and at
/// which vectorization factor).
///
/// Note: This class will compute a conservative dependence for access to
/// different underlying pointers. Clients, such as the loop vectorizer, will
/// sometimes deal these potential dependencies by emitting runtime checks.
///
/// We use the ScalarEvolution framework to symbolically evalutate access
/// functions pairs. Since we currently don't restructure the loop we can rely
/// on the program order of memory accesses to determine their safety.
/// At the moment we will only deem accesses as safe for:
///  * A negative constant distance assuming program order.
///
///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
///            a[i] = tmp;                y = a[i];
///
///   The latter case is safe because later checks guarantuee that there can't
///   be a cycle through a phi node (that is, we check that "x" and "y" is not
///   the same variable: a header phi can only be an induction or a reduction, a
///   reduction can't have a memory sink, an induction can't have a memory
///   source). This is important and must not be violated (or we have to
///   resort to checking for cycles through memory).
///
///  * A positive constant distance assuming program order that is bigger
///    than the biggest memory access.
///
///     tmp = a[i]        OR              b[i] = x
///     a[i+2] = tmp                      y = b[i+2];
///
///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
///
///  * Zero distances and all accesses have the same size.
///
class MemoryDepChecker {
public:
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
  /// Set of potential dependent memory accesses.
  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;

  /// Type to keep track of the status of the dependence check. The order of
  /// the elements is important and has to be from most permissive to least
  /// permissive.
  enum class VectorizationSafetyStatus {
    // Can vectorize safely without RT checks. All dependences are known to be
    // safe.
    Safe,
    // Can possibly vectorize with RT checks to overcome unknown dependencies.
    PossiblySafeWithRtChecks,
    // Cannot vectorize due to known unsafe dependencies.
    Unsafe,
  };

  /// Dependece between memory access instructions.
  struct Dependence {
    /// The type of the dependence.
    enum DepType {
      // No dependence.
      NoDep,
      // We couldn't determine the direction or the distance.
      Unknown,
      // Lexically forward.
      //
      // FIXME: If we only have loop-independent forward dependences (e.g. a
      // read and write of A[i]), LAA will locally deem the dependence "safe"
      // without querying the MemoryDepChecker.  Therefore we can miss
      // enumerating loop-independent forward dependences in
      // getDependences.  Note that as soon as there are different
      // indices used to access the same array, the MemoryDepChecker *is*
      // queried and the dependence list is complete.
      Forward,
      // Forward, but if vectorized, is likely to prevent store-to-load
      // forwarding.
      ForwardButPreventsForwarding,
      // Lexically backward.
      Backward,
      // Backward, but the distance allows a vectorization factor of
      // MaxSafeDepDistBytes.
      BackwardVectorizable,
      // Same, but may prevent store-to-load forwarding.
      BackwardVectorizableButPreventsForwarding
    };

    /// String version of the types.
    static const char *DepName[];

    /// Index of the source of the dependence in the InstMap vector.
    unsigned Source;
    /// Index of the destination of the dependence in the InstMap vector.
    unsigned Destination;
    /// The type of the dependence.
    DepType Type;

    Dependence(unsigned Source, unsigned Destination, DepType Type)
        : Source(Source), Destination(Destination), Type(Type) {}

    /// Return the source instruction of the dependence.
    Instruction *getSource(const LoopAccessInfo &LAI) const;
    /// Return the destination instruction of the dependence.
    Instruction *getDestination(const LoopAccessInfo &LAI) const;

    /// Dependence types that don't prevent vectorization.
    static VectorizationSafetyStatus isSafeForVectorization(DepType Type);

    /// Lexically forward dependence.
    bool isForward() const;
    /// Lexically backward dependence.
    bool isBackward() const;

    /// May be a lexically backward dependence type (includes Unknown).
    bool isPossiblyBackward() const;

    /// Print the dependence.  \p Instr is used to map the instruction
    /// indices to instructions.
    void print(raw_ostream &OS, unsigned Depth,
               const SmallVectorImpl<Instruction *> &Instrs) const;
  };

  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
      : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeRegisterWidth(-1U),
        FoundNonConstantDistanceDependence(false),
        Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}

  /// Register the location (instructions are given increasing numbers)
  /// of a write access.
  void addAccess(StoreInst *SI) {
    Value *Ptr = SI->getPointerOperand();
    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
    InstMap.push_back(SI);
    ++AccessIdx;
  }

  /// Register the location (instructions are given increasing numbers)
  /// of a write access.
  void addAccess(LoadInst *LI) {
    Value *Ptr = LI->getPointerOperand();
    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
    InstMap.push_back(LI);
    ++AccessIdx;
  }

  /// Check whether the dependencies between the accesses are safe.
  ///
  /// Only checks sets with elements in \p CheckDeps.
  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
                   const ValueToValueMap &Strides);

  /// No memory dependence was encountered that would inhibit
  /// vectorization.
  bool isSafeForVectorization() const {
    return Status == VectorizationSafetyStatus::Safe;
  }

  /// The maximum number of bytes of a vector register we can vectorize
  /// the accesses safely with.
  uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }

  /// Return the number of elements that are safe to operate on
  /// simultaneously, multiplied by the size of the element in bits.
  uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }

  /// In same cases when the dependency check fails we can still
  /// vectorize the loop with a dynamic array access check.
  bool shouldRetryWithRuntimeCheck() const {
    return FoundNonConstantDistanceDependence &&
           Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
  }

  /// Returns the memory dependences.  If null is returned we exceeded
  /// the MaxDependences threshold and this information is not
  /// available.
  const SmallVectorImpl<Dependence> *getDependences() const {
    return RecordDependences ? &Dependences : nullptr;
  }

  void clearDependences() { Dependences.clear(); }

  /// The vector of memory access instructions.  The indices are used as
  /// instruction identifiers in the Dependence class.
  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
    return InstMap;
  }

  /// Generate a mapping between the memory instructions and their
  /// indices according to program order.
  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
    DenseMap<Instruction *, unsigned> OrderMap;

    for (unsigned I = 0; I < InstMap.size(); ++I)
      OrderMap[InstMap[I]] = I;

    return OrderMap;
  }

  /// Find the set of instructions that read or write via \p Ptr.
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
                                                         bool isWrite) const;

private:
  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
  /// applies dynamic knowledge to simplify SCEV expressions and convert them
  /// to a more usable form. We need this in case assumptions about SCEV
  /// expressions need to be made in order to avoid unknown dependences. For
  /// example we might assume a unit stride for a pointer in order to prove
  /// that a memory access is strided and doesn't wrap.
  PredicatedScalarEvolution &PSE;
  const Loop *InnermostLoop;

  /// Maps access locations (ptr, read/write) to program order.
  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;

  /// Memory access instructions in program order.
  SmallVector<Instruction *, 16> InstMap;

  /// The program order index to be used for the next instruction.
  unsigned AccessIdx;

  // We can access this many bytes in parallel safely.
  uint64_t MaxSafeDepDistBytes;

  /// Number of elements (from consecutive iterations) that are safe to
  /// operate on simultaneously, multiplied by the size of the element in bits.
  /// The size of the element is taken from the memory access that is most
  /// restrictive.
  uint64_t MaxSafeRegisterWidth;

  /// If we see a non-constant dependence distance we can still try to
  /// vectorize this loop with runtime checks.
  bool FoundNonConstantDistanceDependence;

  /// Result of the dependence checks, indicating whether the checked
  /// dependences are safe for vectorization, require RT checks or are known to
  /// be unsafe.
  VectorizationSafetyStatus Status;

  //// True if Dependences reflects the dependences in the
  //// loop.  If false we exceeded MaxDependences and
  //// Dependences is invalid.
  bool RecordDependences;

  /// Memory dependences collected during the analysis.  Only valid if
  /// RecordDependences is true.
  SmallVector<Dependence, 8> Dependences;

  /// Check whether there is a plausible dependence between the two
  /// accesses.
  ///
  /// Access \p A must happen before \p B in program order. The two indices
  /// identify the index into the program order map.
  ///
  /// This function checks  whether there is a plausible dependence (or the
  /// absence of such can't be proved) between the two accesses. If there is a
  /// plausible dependence but the dependence distance is bigger than one
  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
  /// distance is smaller than any other distance encountered so far).
  /// Otherwise, this function returns true signaling a possible dependence.
  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
                                  const MemAccessInfo &B, unsigned BIdx,
                                  const ValueToValueMap &Strides);

  /// Check whether the data dependence could prevent store-load
  /// forwarding.
  ///
  /// \return false if we shouldn't vectorize at all or avoid larger
  /// vectorization factors by limiting MaxSafeDepDistBytes.
  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);

  /// Updates the current safety status with \p S. We can go from Safe to
  /// either PossiblySafeWithRtChecks or Unsafe and from
  /// PossiblySafeWithRtChecks to Unsafe.
  void mergeInStatus(VectorizationSafetyStatus S);
};

/// Holds information about the memory runtime legality checks to verify
/// that a group of pointers do not overlap.
class RuntimePointerChecking {
public:
  struct PointerInfo {
    /// Holds the pointer value that we need to check.
    TrackingVH<Value> PointerValue;
    /// Holds the smallest byte address accessed by the pointer throughout all
    /// iterations of the loop.
    const SCEV *Start;
    /// Holds the largest byte address accessed by the pointer throughout all
    /// iterations of the loop, plus 1.
    const SCEV *End;
    /// Holds the information if this pointer is used for writing to memory.
    bool IsWritePtr;
    /// Holds the id of the set of pointers that could be dependent because of a
    /// shared underlying object.
    unsigned DependencySetId;
    /// Holds the id of the disjoint alias set to which this pointer belongs.
    unsigned AliasSetId;
    /// SCEV for the access.
    const SCEV *Expr;

    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
                const SCEV *Expr)
        : PointerValue(PointerValue), Start(Start), End(End),
          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
          AliasSetId(AliasSetId), Expr(Expr) {}
  };

  RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}

  /// Reset the state of the pointer runtime information.
  void reset() {
    Need = false;
    Pointers.clear();
    Checks.clear();
  }

  /// Insert a pointer and calculate the start and end SCEVs.
  /// We need \p PSE in order to compute the SCEV expression of the pointer
  /// according to the assumptions that we've made during the analysis.
  /// The method might also version the pointer stride according to \p Strides,
  /// and add new predicates to \p PSE.
  void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
              unsigned ASId, const ValueToValueMap &Strides,
              PredicatedScalarEvolution &PSE);

  /// No run-time memory checking is necessary.
  bool empty() const { return Pointers.empty(); }

  /// A grouping of pointers. A single memcheck is required between
  /// two groups.
  struct CheckingPtrGroup {
    /// Create a new pointer checking group containing a single
    /// pointer, with index \p Index in RtCheck.
    CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
        : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
          Low(RtCheck.Pointers[Index].Start) {
      Members.push_back(Index);
    }

    /// Tries to add the pointer recorded in RtCheck at index
    /// \p Index to this pointer checking group. We can only add a pointer
    /// to a checking group if we will still be able to get
    /// the upper and lower bounds of the check. Returns true in case
    /// of success, false otherwise.
    bool addPointer(unsigned Index);

    /// Constitutes the context of this pointer checking group. For each
    /// pointer that is a member of this group we will retain the index
    /// at which it appears in RtCheck.
    RuntimePointerChecking &RtCheck;
    /// The SCEV expression which represents the upper bound of all the
    /// pointers in this group.
    const SCEV *High;
    /// The SCEV expression which represents the lower bound of all the
    /// pointers in this group.
    const SCEV *Low;
    /// Indices of all the pointers that constitute this grouping.
    SmallVector<unsigned, 2> Members;
  };

  /// A memcheck which made up of a pair of grouped pointers.
  ///
  /// These *have* to be const for now, since checks are generated from
  /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
  /// function.  FIXME: once check-generation is moved inside this class (after
  /// the PtrPartition hack is removed), we could drop const.
  typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
      PointerCheck;

  /// Generate the checks and store it.  This also performs the grouping
  /// of pointers to reduce the number of memchecks necessary.
  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
                      bool UseDependencies);

  /// Returns the checks that generateChecks created.
  const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }

  /// Decide if we need to add a check between two groups of pointers,
  /// according to needsChecking.
  bool needsChecking(const CheckingPtrGroup &M,
                     const CheckingPtrGroup &N) const;

  /// Returns the number of run-time checks required according to
  /// needsChecking.
  unsigned getNumberOfChecks() const { return Checks.size(); }

  /// Print the list run-time memory checks necessary.
  void print(raw_ostream &OS, unsigned Depth = 0) const;

  /// Print \p Checks.
  void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
                   unsigned Depth = 0) const;

  /// This flag indicates if we need to add the runtime check.
  bool Need;

  /// Information about the pointers that may require checking.
  SmallVector<PointerInfo, 2> Pointers;

  /// Holds a partitioning of pointers into "check groups".
  SmallVector<CheckingPtrGroup, 2> CheckingGroups;

  /// Check if pointers are in the same partition
  ///
  /// \p PtrToPartition contains the partition number for pointers (-1 if the
  /// pointer belongs to multiple partitions).
  static bool
  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
                             unsigned PtrIdx1, unsigned PtrIdx2);

  /// Decide whether we need to issue a run-time check for pointer at
  /// index \p I and \p J to prove their independence.
  bool needsChecking(unsigned I, unsigned J) const;

  /// Return PointerInfo for pointer at index \p PtrIdx.
  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
    return Pointers[PtrIdx];
  }

private:
  /// Groups pointers such that a single memcheck is required
  /// between two different groups. This will clear the CheckingGroups vector
  /// and re-compute it. We will only group dependecies if \p UseDependencies
  /// is true, otherwise we will create a separate group for each pointer.
  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
                   bool UseDependencies);

  /// Generate the checks and return them.
  SmallVector<PointerCheck, 4>
  generateChecks() const;

  /// Holds a pointer to the ScalarEvolution analysis.
  ScalarEvolution *SE;

  /// Set of run-time checks required to establish independence of
  /// otherwise may-aliasing pointers in the loop.
  SmallVector<PointerCheck, 4> Checks;
};

/// Drive the analysis of memory accesses in the loop
///
/// This class is responsible for analyzing the memory accesses of a loop.  It
/// collects the accesses and then its main helper the AccessAnalysis class
/// finds and categorizes the dependences in buildDependenceSets.
///
/// For memory dependences that can be analyzed at compile time, it determines
/// whether the dependence is part of cycle inhibiting vectorization.  This work
/// is delegated to the MemoryDepChecker class.
///
/// For memory dependences that cannot be determined at compile time, it
/// generates run-time checks to prove independence.  This is done by
/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
/// RuntimePointerCheck class.
///
/// If pointers can wrap or can't be expressed as affine AddRec expressions by
/// ScalarEvolution, we will generate run-time checks by emitting a
/// SCEVUnionPredicate.
///
/// Checks for both memory dependences and the SCEV predicates contained in the
/// PSE must be emitted in order for the results of this analysis to be valid.
class LoopAccessInfo {
public:
  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
                 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);

  /// Return true we can analyze the memory accesses in the loop and there are
  /// no memory dependence cycles.
  bool canVectorizeMemory() const { return CanVecMem; }

  /// Return true if there is a convergent operation in the loop. There may
  /// still be reported runtime pointer checks that would be required, but it is
  /// not legal to insert them.
  bool hasConvergentOp() const { return HasConvergentOp; }

  const RuntimePointerChecking *getRuntimePointerChecking() const {
    return PtrRtChecking.get();
  }

  /// Number of memchecks required to prove independence of otherwise
  /// may-alias pointers.
  unsigned getNumRuntimePointerChecks() const {
    return PtrRtChecking->getNumberOfChecks();
  }

  /// Return true if the block BB needs to be predicated in order for the loop
  /// to be vectorized.
  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
                                    DominatorTree *DT);

  /// Returns true if the value V is uniform within the loop.
  bool isUniform(Value *V) const;

  uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
  unsigned getNumStores() const { return NumStores; }
  unsigned getNumLoads() const { return NumLoads;}

  /// Add code that checks at runtime if the accessed arrays overlap.
  ///
  /// Returns a pair of instructions where the first element is the first
  /// instruction generated in possibly a sequence of instructions and the
  /// second value is the final comparator value or NULL if no check is needed.
  std::pair<Instruction *, Instruction *>
  addRuntimeChecks(Instruction *Loc) const;

  /// Generete the instructions for the checks in \p PointerChecks.
  ///
  /// Returns a pair of instructions where the first element is the first
  /// instruction generated in possibly a sequence of instructions and the
  /// second value is the final comparator value or NULL if no check is needed.
  std::pair<Instruction *, Instruction *>
  addRuntimeChecks(Instruction *Loc,
                   const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
                       &PointerChecks) const;

  /// The diagnostics report generated for the analysis.  E.g. why we
  /// couldn't analyze the loop.
  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }

  /// the Memory Dependence Checker which can determine the
  /// loop-independent and loop-carried dependences between memory accesses.
  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }

  /// Return the list of instructions that use \p Ptr to read or write
  /// memory.
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
                                                         bool isWrite) const {
    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
  }

  /// If an access has a symbolic strides, this maps the pointer value to
  /// the stride symbol.
  const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }

  /// Pointer has a symbolic stride.
  bool hasStride(Value *V) const { return StrideSet.count(V); }

  /// Print the information about the memory accesses in the loop.
  void print(raw_ostream &OS, unsigned Depth = 0) const;

  /// If the loop has memory dependence involving an invariant address, i.e. two
  /// stores or a store and a load, then return true, else return false.
  bool hasDependenceInvolvingLoopInvariantAddress() const {
    return HasDependenceInvolvingLoopInvariantAddress;
  }

  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
  /// them to a more usable form.  All SCEV expressions during the analysis
  /// should be re-written (and therefore simplified) according to PSE.
  /// A user of LoopAccessAnalysis will need to emit the runtime checks
  /// associated with this predicate.
  const PredicatedScalarEvolution &getPSE() const { return *PSE; }

private:
  /// Analyze the loop.
  void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
                   const TargetLibraryInfo *TLI, DominatorTree *DT);

  /// Check if the structure of the loop allows it to be analyzed by this
  /// pass.
  bool canAnalyzeLoop();

  /// Save the analysis remark.
  ///
  /// LAA does not directly emits the remarks.  Instead it stores it which the
  /// client can retrieve and presents as its own analysis
  /// (e.g. -Rpass-analysis=loop-vectorize).
  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
                                             Instruction *Instr = nullptr);

  /// Collect memory access with loop invariant strides.
  ///
  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
  /// invariant.
  void collectStridedAccess(Value *LoadOrStoreInst);

  std::unique_ptr<PredicatedScalarEvolution> PSE;

  /// We need to check that all of the pointers in this list are disjoint
  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;

  /// the Memory Dependence Checker which can determine the
  /// loop-independent and loop-carried dependences between memory accesses.
  std::unique_ptr<MemoryDepChecker> DepChecker;

  Loop *TheLoop;

  unsigned NumLoads;
  unsigned NumStores;

  uint64_t MaxSafeDepDistBytes;

  /// Cache the result of analyzeLoop.
  bool CanVecMem;
  bool HasConvergentOp;

  /// Indicator that there are non vectorizable stores to a uniform address.
  bool HasDependenceInvolvingLoopInvariantAddress;

  /// The diagnostics report generated for the analysis.  E.g. why we
  /// couldn't analyze the loop.
  std::unique_ptr<OptimizationRemarkAnalysis> Report;

  /// If an access has a symbolic strides, this maps the pointer value to
  /// the stride symbol.
  ValueToValueMap SymbolicStrides;

  /// Set of symbolic strides values.
  SmallPtrSet<Value *, 8> StrideSet;
};

Value *stripIntegerCast(Value *V);

/// Return the SCEV corresponding to a pointer with the symbolic stride
/// replaced with constant one, assuming the SCEV predicate associated with
/// \p PSE is true.
///
/// If necessary this method will version the stride of the pointer according
/// to \p PtrToStride and therefore add further predicates to \p PSE.
///
/// If \p OrigPtr is not null, use it to look up the stride value instead of \p
/// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
                                      const ValueToValueMap &PtrToStride,
                                      Value *Ptr, Value *OrigPtr = nullptr);

/// If the pointer has a constant stride return it in units of its
/// element size.  Otherwise return zero.
///
/// Ensure that it does not wrap in the address space, assuming the predicate
/// associated with \p PSE is true.
///
/// If necessary this method will version the stride of the pointer according
/// to \p PtrToStride and therefore add further predicates to \p PSE.
/// The \p Assume parameter indicates if we are allowed to make additional
/// run-time assumptions.
int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
                     const ValueToValueMap &StridesMap = ValueToValueMap(),
                     bool Assume = false, bool ShouldCheckWrap = true);

/// Attempt to sort the pointers in \p VL and return the sorted indices
/// in \p SortedIndices, if reordering is required.
///
/// Returns 'true' if sorting is legal, otherwise returns 'false'.
///
/// For example, for a given \p VL of memory accesses in program order, a[i+4],
/// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
/// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
/// saves the mask for actual memory accesses in program order in
/// \p SortedIndices as <1,2,0,3>
bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
                     ScalarEvolution &SE,
                     SmallVectorImpl<unsigned> &SortedIndices);

/// Returns true if the memory operations \p A and \p B are consecutive.
/// This is a simple API that does not depend on the analysis pass.
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                         ScalarEvolution &SE, bool CheckType = true);

/// This analysis provides dependence information for the memory accesses
/// of a loop.
///
/// It runs the analysis for a loop on demand.  This can be initiated by
/// querying the loop access info via LAA::getInfo.  getInfo return a
/// LoopAccessInfo object.  See this class for the specifics of what information
/// is provided.
class LoopAccessLegacyAnalysis : public FunctionPass {
public:
  static char ID;

  LoopAccessLegacyAnalysis() : FunctionPass(ID) {
    initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Query the result of the loop access information for the loop \p L.
  ///
  /// If there is no cached result available run the analysis.
  const LoopAccessInfo &getInfo(Loop *L);

  void releaseMemory() override {
    // Invalidate the cache when the pass is freed.
    LoopAccessInfoMap.clear();
  }

  /// Print the result of the analysis when invoked with -analyze.
  void print(raw_ostream &OS, const Module *M = nullptr) const override;

private:
  /// The cache.
  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;

  // The used analysis passes.
  ScalarEvolution *SE;
  const TargetLibraryInfo *TLI;
  AliasAnalysis *AA;
  DominatorTree *DT;
  LoopInfo *LI;
};

/// This analysis provides dependence information for the memory
/// accesses of a loop.
///
/// It runs the analysis for a loop on demand.  This can be initiated by
/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
/// getResult return a LoopAccessInfo object.  See this class for the
/// specifics of what information is provided.
class LoopAccessAnalysis
    : public AnalysisInfoMixin<LoopAccessAnalysis> {
  friend AnalysisInfoMixin<LoopAccessAnalysis>;
  static AnalysisKey Key;

public:
  typedef LoopAccessInfo Result;

  Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
};

inline Instruction *MemoryDepChecker::Dependence::getSource(
    const LoopAccessInfo &LAI) const {
  return LAI.getDepChecker().getMemoryInstructions()[Source];
}

inline Instruction *MemoryDepChecker::Dependence::getDestination(
    const LoopAccessInfo &LAI) const {
  return LAI.getDepChecker().getMemoryInstructions()[Destination];
}

} // End llvm namespace

#endif