reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AArch64ExpandImm.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "aarch64tti"

static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
                                               cl::init(true), cl::Hidden);

bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                         const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();

  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // Inline a callee if its target-features are a subset of the callers
  // target-features.
  return (CallerBits & CalleeBits) == CalleeBits;
}

/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
int AArch64TTIImpl::getIntImmCost(int64_t Val) {
  // Check if the immediate can be encoded within an instruction.
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
    return 0;

  if (Val < 0)
    Val = ~Val;

  // Calculate how many moves we will need to materialize this constant.
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(Val, 64, Insn);
  return Insn.size();
}

/// Calculate the cost of materializing the given constant.
int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  // Sign-extend all constants to a multiple of 64-bit.
  APInt ImmVal = Imm;
  if (BitSize & 0x3f)
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);

  // Split the constant into 64-bit chunks and calculate the cost for each
  // chunk.
  int Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    int64_t Val = Tmp.getSExtValue();
    Cost += getIntImmCost(Val);
  }
  // We need at least one instruction to materialze the constant.
  return std::max(1, Cost);
}

int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}

int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    if (Idx == 1) {
      int NumConstants = (BitSize + 63) / 64;
      int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
      return (Cost <= NumConstants * TTI::TCC_Basic)
                 ? static_cast<int>(TTI::TCC_Free)
                 : Cost;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}

TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (TyWidth == 32 || TyWidth == 64)
    return TTI::PSK_FastHardware;
  // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
  return TTI::PSK_Software;
}

bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
                                           ArrayRef<const Value *> Args) {

  // A helper that returns a vector type from the given type. The number of
  // elements in type Ty determine the vector width.
  auto toVectorTy = [&](Type *ArgTy) {
    return VectorType::get(ArgTy->getScalarType(),
                           DstTy->getVectorNumElements());
  };

  // Exit early if DstTy is not a vector type whose elements are at least
  // 16-bits wide.
  if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
    return false;

  // Determine if the operation has a widening variant. We consider both the
  // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
  // instructions.
  //
  // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
  //       verify that their extending operands are eliminated during code
  //       generation.
  switch (Opcode) {
  case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
  case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
    break;
  default:
    return false;
  }

  // To be a widening instruction (either the "wide" or "long" versions), the
  // second operand must be a sign- or zero extend having a single user. We
  // only consider extends having a single user because they may otherwise not
  // be eliminated.
  if (Args.size() != 2 ||
      (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
      !Args[1]->hasOneUse())
    return false;
  auto *Extend = cast<CastInst>(Args[1]);

  // Legalize the destination type and ensure it can be used in a widening
  // operation.
  auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
  unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
  if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
    return false;

  // Legalize the source type and ensure it can be used in a widening
  // operation.
  Type *SrcTy = toVectorTy(Extend->getSrcTy());
  auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
  unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
  if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
    return false;

  // Get the total number of vector elements in the legalized types.
  unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
  unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();

  // Return true if the legalized types have the same number of vector elements
  // and the destination element type size is twice that of the source type.
  return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}

int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                     const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // If the cast is observable, and it is used by a widening instruction (e.g.,
  // uaddl, saddw, etc.), it may be free.
  if (I && I->hasOneUse()) {
    auto *SingleUser = cast<Instruction>(*I->user_begin());
    SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
    if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
      // If the cast is the second operand, it is free. We will generate either
      // a "wide" or "long" version of the widening instruction.
      if (I == SingleUser->getOperand(1))
        return 0;
      // If the cast is not the second operand, it will be free if it looks the
      // same as the second operand. In this case, we will generate a "long"
      // version of the widening instruction.
      if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
        if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
            cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
          return 0;
    }
  }

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return BaseT::getCastInstrCost(Opcode, Dst, Src);

  static const TypeConversionCostTblEntry
  ConversionTbl[] = {
    { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
    { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
    { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
    { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },

    // The number of shll instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // LowerVectorINT_TO_FP:
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },

    // Complex: to v2f32
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },

    // Complex: to v4f32
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },

    // Complex: to v8f32
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },

    // Complex: to v16f32
    { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },

    // Complex: to v2f64
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },


    // LowerVectorFP_TO_INT
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },

    // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },

    // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },

    // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
  };

  if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
                                                 DstTy.getSimpleVT(),
                                                 SrcTy.getSimpleVT()))
    return Entry->Cost;

  return BaseT::getCastInstrCost(Opcode, Dst, Src);
}

int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                             VectorType *VecTy,
                                             unsigned Index) {

  // Make sure we were given a valid extend opcode.
  assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
         "Invalid opcode");

  // We are extending an element we extract from a vector, so the source type
  // of the extend is the element type of the vector.
  auto *Src = VecTy->getElementType();

  // Sign- and zero-extends are for integer types only.
  assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");

  // Get the cost for the extract. We compute the cost (if any) for the extend
  // below.
  auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);

  // Legalize the types.
  auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
  auto DstVT = TLI->getValueType(DL, Dst);
  auto SrcVT = TLI->getValueType(DL, Src);

  // If the resulting type is still a vector and the destination type is legal,
  // we may get the extension for free. If not, get the default cost for the
  // extend.
  if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    return Cost + getCastInstrCost(Opcode, Dst, Src);

  // The destination type should be larger than the element type. If not, get
  // the default cost for the extend.
  if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
    return Cost + getCastInstrCost(Opcode, Dst, Src);

  switch (Opcode) {
  default:
    llvm_unreachable("Opcode should be either SExt or ZExt");

  // For sign-extends, we only need a smov, which performs the extension
  // automatically.
  case Instruction::SExt:
    return Cost;

  // For zero-extends, the extend is performed automatically by a umov unless
  // the destination type is i64 and the element type is i8 or i16.
  case Instruction::ZExt:
    if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
      return Cost;
  }

  // If we are unable to perform the extend for free, get the default cost.
  return Cost + getCastInstrCost(Opcode, Dst, Src);
}

int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                       unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. Normalize the index to the new type.
    unsigned Width = LT.second.getVectorNumElements();
    Index = Index % Width;

    // The element at index zero is already inside the vector.
    if (Index == 0)
      return 0;
  }

  // All other insert/extracts cost this much.
  return ST->getVectorInsertExtractBaseCost();
}

int AArch64TTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
    TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
  // add in the widening overhead specified by the sub-target. Since the
  // extends feeding widening instructions are performed automatically, they
  // aren't present in the generated code and have a zero cost. By adding a
  // widening overhead here, we attach the total cost of the combined operation
  // to the widening instruction.
  int Cost = 0;
  if (isWideningInstruction(Ty, Opcode, Args))
    Cost += ST->getWideningBaseCost();

  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  switch (ISD) {
  default:
    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  case ISD::SDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
        Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
      // On AArch64, scalar signed division by constants power-of-two are
      // normally expanded to the sequence ADD + CMP + SELECT + SRA.
      // The OperandValue properties many not be same as that of previous
      // operation; conservatively assume OP_None.
      Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      return Cost;
    }
    LLVM_FALLTHROUGH;
  case ISD::UDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
      auto VT = TLI->getValueType(DL, Ty);
      if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
        // Vector signed division by constant are expanded to the
        // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
        // to MULHS + SUB + SRL + ADD + SRL.
        int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
      }
    }

    Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                          Opd1PropInfo, Opd2PropInfo);
    if (Ty->isVectorTy()) {
      // On AArch64, vector divisions are not supported natively and are
      // expanded into scalar divisions of each pair of elements.
      Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
                                     Opd2Info, Opd1PropInfo, Opd2PropInfo);
      Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
                                     Opd2Info, Opd1PropInfo, Opd2PropInfo);
      // TODO: if one of the arguments is scalar, then it's not necessary to
      // double the cost of handling the vector elements.
      Cost += Cost;
    }
    return Cost;

  case ISD::ADD:
  case ISD::MUL:
  case ISD::XOR:
  case ISD::OR:
  case ISD::AND:
    // These nodes are marked as 'custom' for combining purposes only.
    // We know that they are legal. See LowerAdd in ISelLowering.
    return (Cost + 1) * LT.first;
  }
}

int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                              const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (Ty->isVectorTy() && SE &&
      !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    return NumVectorInstToHideOverhead;

  // In many cases the address computation is not merged into the instruction
  // addressing mode.
  return 1;
}

int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                       Type *CondTy, const Instruction *I) {

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // We don't lower some vector selects well that are wider than the register
  // width.
  if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
    // We would need this many instructions to hide the scalarization happening.
    const int AmortizationCost = 20;
    static const TypeConversionCostTblEntry
    VectorSelectTbl[] = {
      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }
  }
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}

AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  Options.AllowOverlappingLoads = !ST->requiresStrictAlign();
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  Options.NumLoadsPerBlock = Options.MaxNumLoads;
  // TODO: Though vector loads usually perform well on AArch64, in some targets
  // they may wake up the FP unit, which raises the power consumption.  Perhaps
  // they could be used with no holds barred (-O3).
  Options.LoadSizes = {8, 4, 2, 1};
  return Options;
}

int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
                                    MaybeAlign Alignment, unsigned AddressSpace,
                                    const Instruction *I) {
  auto LT = TLI->getTypeLegalizationCost(DL, Ty);

  if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
      LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
    // Unaligned stores are extremely inefficient. We don't split all
    // unaligned 128-bit stores because the negative impact that has shown in
    // practice on inlined block copy code.
    // We make such stores expensive so that we will only vectorize if there
    // are 6 other instructions getting vectorized.
    const int AmortizationCost = 6;

    return LT.first * 2 * AmortizationCost;
  }

  if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
    unsigned ProfitableNumElements;
    if (Opcode == Instruction::Store)
      // We use a custom trunc store lowering so v.4b should be profitable.
      ProfitableNumElements = 4;
    else
      // We scalarize the loads because there is not v.4b register and we
      // have to promote the elements to v.2.
      ProfitableNumElements = 8;

    if (Ty->getVectorNumElements() < ProfitableNumElements) {
      unsigned NumVecElts = Ty->getVectorNumElements();
      unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
      // We generate 2 instructions per vector element.
      return NumVectorizableInstsToAmortize * NumVecElts * 2;
    }
  }

  return LT.first;
}

int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                               unsigned Factor,
                                               ArrayRef<unsigned> Indices,
                                               unsigned Alignment,
                                               unsigned AddressSpace,
                                               bool UseMaskForCond,
                                               bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  assert(isa<VectorType>(VecTy) && "Expect a vector type");

  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    unsigned NumElts = VecTy->getVectorNumElements();
    auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // ldN/stN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one ldN/stN instruction.
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(SubVecTy, DL))
      return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace,
                                           UseMaskForCond, UseMaskForGaps);
}

int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
  int Cost = 0;
  for (auto *I : Tys) {
    if (!I->isVectorTy())
      continue;
    if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
      Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0) +
              getMemoryOpCost(Instruction::Load, I, Align(128), 0);
  }
  return Cost;
}

unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
  return ST->getMaxInterleaveFactor();
}

// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources.  We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                              TargetTransformInfo::UnrollingPreferences &UP) {
  enum { MaxStridedLoads = 7 };
  auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
    int StridedLoads = 0;
    // FIXME? We could make this more precise by looking at the CFG and
    // e.g. not counting loads in each side of an if-then-else diamond.
    for (const auto BB : L->blocks()) {
      for (auto &I : *BB) {
        LoadInst *LMemI = dyn_cast<LoadInst>(&I);
        if (!LMemI)
          continue;

        Value *PtrValue = LMemI->getPointerOperand();
        if (L->isLoopInvariant(PtrValue))
          continue;

        const SCEV *LSCEV = SE.getSCEV(PtrValue);
        const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
        if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
          continue;

        // FIXME? We could take pairing of unrolled load copies into account
        // by looking at the AddRec, but we would probably have to limit this
        // to loops with no stores or other memory optimization barriers.
        ++StridedLoads;
        // We've seen enough strided loads that seeing more won't make a
        // difference.
        if (StridedLoads > MaxStridedLoads / 2)
          return StridedLoads;
      }
    }
    return StridedLoads;
  };

  int StridedLoads = countStridedLoads(L, SE);
  LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
                    << " strided loads\n");
  // Pick the largest power of 2 unroll count that won't result in too many
  // strided loads.
  if (StridedLoads) {
    UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
    LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
                      << UP.MaxCount << '\n');
  }
}

void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Enable partial unrolling and runtime unrolling.
  BaseT::getUnrollingPreferences(L, SE, UP);

  // For inner loop, it is more likely to be a hot one, and the runtime check
  // can be promoted out from LICM pass, so the overhead is less, let's try
  // a larger threshold to unroll more loops.
  if (L->getLoopDepth() > 1)
    UP.PartialThreshold *= 2;

  // Disable partial & runtime unrolling on -Os.
  UP.PartialOptSizeThreshold = 0;

  if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
      EnableFalkorHWPFUnrollFix)
    getFalkorUnrollingPreferences(L, SE, UP);
}

Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                         Type *ExpectedType) {
  switch (Inst->getIntrinsicID()) {
  default:
    return nullptr;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4: {
    // Create a struct type
    StructType *ST = dyn_cast<StructType>(ExpectedType);
    if (!ST)
      return nullptr;
    unsigned NumElts = Inst->getNumArgOperands() - 1;
    if (ST->getNumElements() != NumElts)
      return nullptr;
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
        return nullptr;
    }
    Value *Res = UndefValue::get(ExpectedType);
    IRBuilder<> Builder(Inst);
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      Value *L = Inst->getArgOperand(i);
      Res = Builder.CreateInsertValue(Res, L, i);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    if (Inst->getType() == ExpectedType)
      return Inst;
    return nullptr;
  }
}

bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                        MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    Info.ReadMem = true;
    Info.WriteMem = false;
    Info.PtrVal = Inst->getArgOperand(0);
    break;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
    Info.ReadMem = false;
    Info.WriteMem = true;
    Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
    break;
  }

  switch (Inst->getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_st2:
    Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_st3:
    Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_st4:
    Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    break;
  }
  return true;
}

/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
  bool Considerable = false;
  AllowPromotionWithoutCommonHeader = false;
  if (!isa<SExtInst>(&I))
    return false;
  Type *ConsideredSExtType =
      Type::getInt64Ty(I.getParent()->getParent()->getContext());
  if (I.getType() != ConsideredSExtType)
    return false;
  // See if the sext is the one with the right type and used in at least one
  // GetElementPtrInst.
  for (const User *U : I.users()) {
    if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
      Considerable = true;
      // A getelementptr is considered as "complex" if it has more than 2
      // operands. We will promote a SExt used in such complex GEP as we
      // expect some computation to be merged if they are done on 64 bits.
      if (GEPInst->getNumOperands() > 2) {
        AllowPromotionWithoutCommonHeader = true;
        break;
      }
    }
  }
  return Considerable;
}

bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                           TTI::ReductionFlags Flags) const {
  assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
  unsigned ScalarBits = Ty->getScalarSizeInBits();
  switch (Opcode) {
  case Instruction::FAdd:
  case Instruction::FMul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Mul:
    return false;
  case Instruction::Add:
    return ScalarBits * Ty->getVectorNumElements() >= 128;
  case Instruction::ICmp:
    return (ScalarBits < 64) &&
           (ScalarBits * Ty->getVectorNumElements() >= 128);
  case Instruction::FCmp:
    return Flags.NoNaN;
  default:
    llvm_unreachable("Unhandled reduction opcode");
  }
  return false;
}

int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
                                               bool IsPairwiseForm) {

  if (IsPairwiseForm)
    return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
  MVT MTy = LT.second;
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // Horizontal adds can use the 'addv' instruction. We model the cost of these
  // instructions as normal vector adds. This is the only arithmetic vector
  // reduction operation for which we have an instruction.
  static const CostTblEntry CostTblNoPairwise[]{
      {ISD::ADD, MVT::v8i8,  1},
      {ISD::ADD, MVT::v16i8, 1},
      {ISD::ADD, MVT::v4i16, 1},
      {ISD::ADD, MVT::v8i16, 1},
      {ISD::ADD, MVT::v4i32, 1},
  };

  if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
    return LT.first * Entry->Cost;

  return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
}

int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                                   Type *SubTp) {
  if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
      Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
    static const CostTblEntry ShuffleTbl[] = {
      // Broadcast shuffle kinds can be performed with 'dup'.
      { TTI::SK_Broadcast, MVT::v8i8,  1 },
      { TTI::SK_Broadcast, MVT::v16i8, 1 },
      { TTI::SK_Broadcast, MVT::v4i16, 1 },
      { TTI::SK_Broadcast, MVT::v8i16, 1 },
      { TTI::SK_Broadcast, MVT::v2i32, 1 },
      { TTI::SK_Broadcast, MVT::v4i32, 1 },
      { TTI::SK_Broadcast, MVT::v2i64, 1 },
      { TTI::SK_Broadcast, MVT::v2f32, 1 },
      { TTI::SK_Broadcast, MVT::v4f32, 1 },
      { TTI::SK_Broadcast, MVT::v2f64, 1 },
      // Transpose shuffle kinds can be performed with 'trn1/trn2' and
      // 'zip1/zip2' instructions.
      { TTI::SK_Transpose, MVT::v8i8,  1 },
      { TTI::SK_Transpose, MVT::v16i8, 1 },
      { TTI::SK_Transpose, MVT::v4i16, 1 },
      { TTI::SK_Transpose, MVT::v8i16, 1 },
      { TTI::SK_Transpose, MVT::v2i32, 1 },
      { TTI::SK_Transpose, MVT::v4i32, 1 },
      { TTI::SK_Transpose, MVT::v2i64, 1 },
      { TTI::SK_Transpose, MVT::v2f32, 1 },
      { TTI::SK_Transpose, MVT::v4f32, 1 },
      { TTI::SK_Transpose, MVT::v2f64, 1 },
      // Select shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
      { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
      // PermuteSingleSrc shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
    };
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
      return LT.first * Entry->Cost;
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}