reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "module-summary-analysis"

// Option to force edges cold which will block importing when the
// -import-cold-multiplier is set to 0. Useful for debugging.
FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
    FunctionSummary::FSHT_None;
cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
    "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
    cl::desc("Force all edges in the function summary to cold"),
    cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
               clEnumValN(FunctionSummary::FSHT_AllNonCritical,
                          "all-non-critical", "All non-critical edges."),
               clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));

cl::opt<std::string> ModuleSummaryDotFile(
    "module-summary-dot-file", cl::init(""), cl::Hidden,
    cl::value_desc("filename"),
    cl::desc("File to emit dot graph of new summary into."));

// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
// Return true if any of the operands contains blockaddress. This is important
// to know when computing summary for global var, because if global variable
// references basic block address we can't import it separately from function
// containing that basic block. For simplicity we currently don't import such
// global vars at all. When importing function we aren't interested if any 
// instruction in it takes an address of any basic block, because instruction
// can only take an address of basic block located in the same function.
static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
                         SetVector<ValueInfo> &RefEdges,
                         SmallPtrSet<const User *, 8> &Visited) {
  bool HasBlockAddress = false;
  SmallVector<const User *, 32> Worklist;
  Worklist.push_back(CurUser);

  while (!Worklist.empty()) {
    const User *U = Worklist.pop_back_val();

    if (!Visited.insert(U).second)
      continue;

    ImmutableCallSite CS(U);

    for (const auto &OI : U->operands()) {
      const User *Operand = dyn_cast<User>(OI);
      if (!Operand)
        continue;
      if (isa<BlockAddress>(Operand)) {
        HasBlockAddress = true;
        continue;
      }
      if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
        // We have a reference to a global value. This should be added to
        // the reference set unless it is a callee. Callees are handled
        // specially by WriteFunction and are added to a separate list.
        if (!(CS && CS.isCallee(&OI)))
          RefEdges.insert(Index.getOrInsertValueInfo(GV));
        continue;
      }
      Worklist.push_back(Operand);
    }
  }
  return HasBlockAddress;
}

static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
                                          ProfileSummaryInfo *PSI) {
  if (!PSI)
    return CalleeInfo::HotnessType::Unknown;
  if (PSI->isHotCount(ProfileCount))
    return CalleeInfo::HotnessType::Hot;
  if (PSI->isColdCount(ProfileCount))
    return CalleeInfo::HotnessType::Cold;
  return CalleeInfo::HotnessType::None;
}

static bool isNonRenamableLocal(const GlobalValue &GV) {
  return GV.hasSection() && GV.hasLocalLinkage();
}

/// Determine whether this call has all constant integer arguments (excluding
/// "this") and summarize it to VCalls or ConstVCalls as appropriate.
static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
                          SetVector<FunctionSummary::VFuncId> &VCalls,
                          SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
  std::vector<uint64_t> Args;
  // Start from the second argument to skip the "this" pointer.
  for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) {
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64) {
      VCalls.insert({Guid, Call.Offset});
      return;
    }
    Args.push_back(CI->getZExtValue());
  }
  ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
}

/// If this intrinsic call requires that we add information to the function
/// summary, do so via the non-constant reference arguments.
static void addIntrinsicToSummary(
    const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
    SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
    SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
    SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
    DominatorTree &DT) {
  switch (CI->getCalledFunction()->getIntrinsicID()) {
  case Intrinsic::type_test: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    // Produce a summary from type.test intrinsics. We only summarize type.test
    // intrinsics that are used other than by an llvm.assume intrinsic.
    // Intrinsics that are assumed are relevant only to the devirtualization
    // pass, not the type test lowering pass.
    bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
      auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
      if (!AssumeCI)
        return true;
      Function *F = AssumeCI->getCalledFunction();
      return !F || F->getIntrinsicID() != Intrinsic::assume;
    });
    if (HasNonAssumeUses)
      TypeTests.insert(Guid);

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<CallInst *, 4> Assumes;
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
                    TypeTestAssumeConstVCalls);

    break;
  }

  case Intrinsic::type_checked_load: {
    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
    if (!TypeId)
      break;
    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());

    SmallVector<DevirtCallSite, 4> DevirtCalls;
    SmallVector<Instruction *, 4> LoadedPtrs;
    SmallVector<Instruction *, 4> Preds;
    bool HasNonCallUses = false;
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI, DT);
    // Any non-call uses of the result of llvm.type.checked.load will
    // prevent us from optimizing away the llvm.type.test.
    if (HasNonCallUses)
      TypeTests.insert(Guid);
    for (auto &Call : DevirtCalls)
      addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
                    TypeCheckedLoadConstVCalls);

    break;
  }
  default:
    break;
  }
}

static bool isNonVolatileLoad(const Instruction *I) {
  if (const auto *LI = dyn_cast<LoadInst>(I))
    return !LI->isVolatile();

  return false;
}

static bool isNonVolatileStore(const Instruction *I) {
  if (const auto *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();

  return false;
}

static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
                                   const Function &F, BlockFrequencyInfo *BFI,
                                   ProfileSummaryInfo *PSI, DominatorTree &DT,
                                   bool HasLocalsInUsedOrAsm,
                                   DenseSet<GlobalValue::GUID> &CantBePromoted,
                                   bool IsThinLTO) {
  // Summary not currently supported for anonymous functions, they should
  // have been named.
  assert(F.hasName());

  unsigned NumInsts = 0;
  // Map from callee ValueId to profile count. Used to accumulate profile
  // counts for all static calls to a given callee.
  MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
  SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
  SetVector<GlobalValue::GUID> TypeTests;
  SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
      TypeCheckedLoadVCalls;
  SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
      TypeCheckedLoadConstVCalls;
  ICallPromotionAnalysis ICallAnalysis;
  SmallPtrSet<const User *, 8> Visited;

  // Add personality function, prefix data and prologue data to function's ref
  // list.
  findRefEdges(Index, &F, RefEdges, Visited);
  std::vector<const Instruction *> NonVolatileLoads;
  std::vector<const Instruction *> NonVolatileStores;

  bool HasInlineAsmMaybeReferencingInternal = false;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB) {
      if (isa<DbgInfoIntrinsic>(I))
        continue;
      ++NumInsts;
      // Regular LTO module doesn't participate in ThinLTO import,
      // so no reference from it can be read/writeonly, since this
      // would require importing variable as local copy
      if (IsThinLTO) {
        if (isNonVolatileLoad(&I)) {
          // Postpone processing of non-volatile load instructions
          // See comments below
          Visited.insert(&I);
          NonVolatileLoads.push_back(&I);
          continue;
        } else if (isNonVolatileStore(&I)) {
          Visited.insert(&I);
          NonVolatileStores.push_back(&I);
          // All references from second operand of store (destination address)
          // can be considered write-only if they're not referenced by any
          // non-store instruction. References from first operand of store
          // (stored value) can't be treated either as read- or as write-only
          // so we add them to RefEdges as we do with all other instructions
          // except non-volatile load.
          Value *Stored = I.getOperand(0);
          if (auto *GV = dyn_cast<GlobalValue>(Stored))
            // findRefEdges will try to examine GV operands, so instead
            // of calling it we should add GV to RefEdges directly.
            RefEdges.insert(Index.getOrInsertValueInfo(GV));
          else if (auto *U = dyn_cast<User>(Stored))
            findRefEdges(Index, U, RefEdges, Visited);
          continue;
        }
      }
      findRefEdges(Index, &I, RefEdges, Visited);
      auto CS = ImmutableCallSite(&I);
      if (!CS)
        continue;

      const auto *CI = dyn_cast<CallInst>(&I);
      // Since we don't know exactly which local values are referenced in inline
      // assembly, conservatively mark the function as possibly referencing
      // a local value from inline assembly to ensure we don't export a
      // reference (which would require renaming and promotion of the
      // referenced value).
      if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
        HasInlineAsmMaybeReferencingInternal = true;

      auto *CalledValue = CS.getCalledValue();
      auto *CalledFunction = CS.getCalledFunction();
      if (CalledValue && !CalledFunction) {
        CalledValue = CalledValue->stripPointerCasts();
        // Stripping pointer casts can reveal a called function.
        CalledFunction = dyn_cast<Function>(CalledValue);
      }
      // Check if this is an alias to a function. If so, get the
      // called aliasee for the checks below.
      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
        assert(!CalledFunction && "Expected null called function in callsite for alias");
        CalledFunction = dyn_cast<Function>(GA->getBaseObject());
      }
      // Check if this is a direct call to a known function or a known
      // intrinsic, or an indirect call with profile data.
      if (CalledFunction) {
        if (CI && CalledFunction->isIntrinsic()) {
          addIntrinsicToSummary(
              CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
              TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
          continue;
        }
        // We should have named any anonymous globals
        assert(CalledFunction->hasName());
        auto ScaledCount = PSI->getProfileCount(&I, BFI);
        auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
                                   : CalleeInfo::HotnessType::Unknown;
        if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
          Hotness = CalleeInfo::HotnessType::Cold;

        // Use the original CalledValue, in case it was an alias. We want
        // to record the call edge to the alias in that case. Eventually
        // an alias summary will be created to associate the alias and
        // aliasee.
        auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
            cast<GlobalValue>(CalledValue))];
        ValueInfo.updateHotness(Hotness);
        // Add the relative block frequency to CalleeInfo if there is no profile
        // information.
        if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
          uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
          uint64_t EntryFreq = BFI->getEntryFreq();
          ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
        }
      } else {
        // Skip inline assembly calls.
        if (CI && CI->isInlineAsm())
          continue;
        // Skip direct calls.
        if (!CalledValue || isa<Constant>(CalledValue))
          continue;

        // Check if the instruction has a callees metadata. If so, add callees
        // to CallGraphEdges to reflect the references from the metadata, and
        // to enable importing for subsequent indirect call promotion and
        // inlining.
        if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
          for (auto &Op : MD->operands()) {
            Function *Callee = mdconst::extract_or_null<Function>(Op);
            if (Callee)
              CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
          }
        }

        uint32_t NumVals, NumCandidates;
        uint64_t TotalCount;
        auto CandidateProfileData =
            ICallAnalysis.getPromotionCandidatesForInstruction(
                &I, NumVals, TotalCount, NumCandidates);
        for (auto &Candidate : CandidateProfileData)
          CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
              .updateHotness(getHotness(Candidate.Count, PSI));
      }
    }

  std::vector<ValueInfo> Refs;
  if (IsThinLTO) {
    auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
                           SetVector<ValueInfo> &Edges,
                           SmallPtrSet<const User *, 8> &Cache) {
      for (const auto *I : Instrs) {
        Cache.erase(I);
        findRefEdges(Index, I, Edges, Cache);
      }
    };

    // By now we processed all instructions in a function, except
    // non-volatile loads and non-volatile value stores. Let's find
    // ref edges for both of instruction sets
    AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
    // We can add some values to the Visited set when processing load
    // instructions which are also used by stores in NonVolatileStores.
    // For example this can happen if we have following code:
    //
    // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
    // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
    //
    // After processing loads we'll add bitcast to the Visited set, and if
    // we use the same set while processing stores, we'll never see store
    // to @bar and @bar will be mistakenly treated as readonly.
    SmallPtrSet<const llvm::User *, 8> StoreCache;
    AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);

    // If both load and store instruction reference the same variable
    // we won't be able to optimize it. Add all such reference edges
    // to RefEdges set.
    for (auto &VI : StoreRefEdges)
      if (LoadRefEdges.remove(VI))
        RefEdges.insert(VI);

    unsigned RefCnt = RefEdges.size();
    // All new reference edges inserted in two loops below are either
    // read or write only. They will be grouped in the end of RefEdges
    // vector, so we can use a single integer value to identify them.
    for (auto &VI : LoadRefEdges)
      RefEdges.insert(VI);

    unsigned FirstWORef = RefEdges.size();
    for (auto &VI : StoreRefEdges)
      RefEdges.insert(VI);

    Refs = RefEdges.takeVector();
    for (; RefCnt < FirstWORef; ++RefCnt)
      Refs[RefCnt].setReadOnly();

    for (; RefCnt < Refs.size(); ++RefCnt)
      Refs[RefCnt].setWriteOnly();
  } else {
    Refs = RefEdges.takeVector();
  }
  // Explicit add hot edges to enforce importing for designated GUIDs for
  // sample PGO, to enable the same inlines as the profiled optimized binary.
  for (auto &I : F.getImportGUIDs())
    CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
        ForceSummaryEdgesCold == FunctionSummary::FSHT_All
            ? CalleeInfo::HotnessType::Cold
            : CalleeInfo::HotnessType::Critical);

  bool NonRenamableLocal = isNonRenamableLocal(F);
  bool NotEligibleForImport =
      NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
  GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
                                    /* Live = */ false, F.isDSOLocal(),
                                    F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
  FunctionSummary::FFlags FunFlags{
      F.hasFnAttribute(Attribute::ReadNone),
      F.hasFnAttribute(Attribute::ReadOnly),
      F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
      // FIXME: refactor this to use the same code that inliner is using.
      // Don't try to import functions with noinline attribute.
      F.getAttributes().hasFnAttribute(Attribute::NoInline)};
  auto FuncSummary = std::make_unique<FunctionSummary>(
      Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
      CallGraphEdges.takeVector(), TypeTests.takeVector(),
      TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
      TypeTestAssumeConstVCalls.takeVector(),
      TypeCheckedLoadConstVCalls.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(F.getGUID());
  Index.addGlobalValueSummary(F, std::move(FuncSummary));
}

/// Find function pointers referenced within the given vtable initializer
/// (or subset of an initializer) \p I. The starting offset of \p I within
/// the vtable initializer is \p StartingOffset. Any discovered function
/// pointers are added to \p VTableFuncs along with their cumulative offset
/// within the initializer.
static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
                             const Module &M, ModuleSummaryIndex &Index,
                             VTableFuncList &VTableFuncs) {
  // First check if this is a function pointer.
  if (I->getType()->isPointerTy()) {
    auto Fn = dyn_cast<Function>(I->stripPointerCasts());
    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn && Fn->getName() != "__cxa_pure_virtual")
      VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
    return;
  }

  // Walk through the elements in the constant struct or array and recursively
  // look for virtual function pointers.
  const DataLayout &DL = M.getDataLayout();
  if (auto *C = dyn_cast<ConstantStruct>(I)) {
    StructType *STy = dyn_cast<StructType>(C->getType());
    assert(STy);
    const StructLayout *SL = DL.getStructLayout(C->getType());

    for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
                                      EE = STy->element_end();
         EI != EE; ++EI) {
      auto Offset = SL->getElementOffset(EI - EB);
      unsigned Op = SL->getElementContainingOffset(Offset);
      findFuncPointers(cast<Constant>(I->getOperand(Op)),
                       StartingOffset + Offset, M, Index, VTableFuncs);
    }
  } else if (auto *C = dyn_cast<ConstantArray>(I)) {
    ArrayType *ATy = C->getType();
    Type *EltTy = ATy->getElementType();
    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
      findFuncPointers(cast<Constant>(I->getOperand(i)),
                       StartingOffset + i * EltSize, M, Index, VTableFuncs);
    }
  }
}

// Identify the function pointers referenced by vtable definition \p V.
static void computeVTableFuncs(ModuleSummaryIndex &Index,
                               const GlobalVariable &V, const Module &M,
                               VTableFuncList &VTableFuncs) {
  if (!V.isConstant())
    return;

  findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
                   VTableFuncs);

#ifndef NDEBUG
  // Validate that the VTableFuncs list is ordered by offset.
  uint64_t PrevOffset = 0;
  for (auto &P : VTableFuncs) {
    // The findVFuncPointers traversal should have encountered the
    // functions in offset order. We need to use ">=" since PrevOffset
    // starts at 0.
    assert(P.VTableOffset >= PrevOffset);
    PrevOffset = P.VTableOffset;
  }
#endif
}

/// Record vtable definition \p V for each type metadata it references.
static void
recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
                                       const GlobalVariable &V,
                                       SmallVectorImpl<MDNode *> &Types) {
  for (MDNode *Type : Types) {
    auto TypeID = Type->getOperand(1).get();

    uint64_t Offset =
        cast<ConstantInt>(
            cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
            ->getZExtValue();

    if (auto *TypeId = dyn_cast<MDString>(TypeID))
      Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
          .push_back({Offset, Index.getOrInsertValueInfo(&V)});
  }
}

static void computeVariableSummary(ModuleSummaryIndex &Index,
                                   const GlobalVariable &V,
                                   DenseSet<GlobalValue::GUID> &CantBePromoted,
                                   const Module &M,
                                   SmallVectorImpl<MDNode *> &Types) {
  SetVector<ValueInfo> RefEdges;
  SmallPtrSet<const User *, 8> Visited;
  bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
  bool NonRenamableLocal = isNonRenamableLocal(V);
  GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, V.isDSOLocal(),
                                    V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());

  VTableFuncList VTableFuncs;
  // If splitting is not enabled, then we compute the summary information
  // necessary for index-based whole program devirtualization.
  if (!Index.enableSplitLTOUnit()) {
    Types.clear();
    V.getMetadata(LLVMContext::MD_type, Types);
    if (!Types.empty()) {
      // Identify the function pointers referenced by this vtable definition.
      computeVTableFuncs(Index, V, M, VTableFuncs);

      // Record this vtable definition for each type metadata it references.
      recordTypeIdCompatibleVtableReferences(Index, V, Types);
    }
  }

  // Don't mark variables we won't be able to internalize as read/write-only.
  bool CanBeInternalized =
      !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
      !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
  GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, CanBeInternalized);
  auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
                                                         RefEdges.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(V.getGUID());
  if (HasBlockAddress)
    GVarSummary->setNotEligibleToImport();
  if (!VTableFuncs.empty())
    GVarSummary->setVTableFuncs(VTableFuncs);
  Index.addGlobalValueSummary(V, std::move(GVarSummary));
}

static void
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
                    DenseSet<GlobalValue::GUID> &CantBePromoted) {
  bool NonRenamableLocal = isNonRenamableLocal(A);
  GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
                                    /* Live = */ false, A.isDSOLocal(),
                                    A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
  auto AS = std::make_unique<AliasSummary>(Flags);
  auto *Aliasee = A.getBaseObject();
  auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
  assert(AliaseeVI && "Alias expects aliasee summary to be available");
  assert(AliaseeVI.getSummaryList().size() == 1 &&
         "Expected a single entry per aliasee in per-module index");
  AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
  if (NonRenamableLocal)
    CantBePromoted.insert(A.getGUID());
  Index.addGlobalValueSummary(A, std::move(AS));
}

// Set LiveRoot flag on entries matching the given value name.
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
  if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
    for (auto &Summary : VI.getSummaryList())
      Summary->setLive(true);
}

ModuleSummaryIndex llvm::buildModuleSummaryIndex(
    const Module &M,
    std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
    ProfileSummaryInfo *PSI) {
  assert(PSI);
  bool EnableSplitLTOUnit = false;
  if (auto *MD = mdconst::extract_or_null<ConstantInt>(
          M.getModuleFlag("EnableSplitLTOUnit")))
    EnableSplitLTOUnit = MD->getZExtValue();
  ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);

  // Identify the local values in the llvm.used and llvm.compiler.used sets,
  // which should not be exported as they would then require renaming and
  // promotion, but we may have opaque uses e.g. in inline asm. We collect them
  // here because we use this information to mark functions containing inline
  // assembly calls as not importable.
  SmallPtrSet<GlobalValue *, 8> LocalsUsed;
  SmallPtrSet<GlobalValue *, 8> Used;
  // First collect those in the llvm.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
  // Next collect those in the llvm.compiler.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
  DenseSet<GlobalValue::GUID> CantBePromoted;
  for (auto *V : Used) {
    if (V->hasLocalLinkage()) {
      LocalsUsed.insert(V);
      CantBePromoted.insert(V->getGUID());
    }
  }

  bool HasLocalInlineAsmSymbol = false;
  if (!M.getModuleInlineAsm().empty()) {
    // Collect the local values defined by module level asm, and set up
    // summaries for these symbols so that they can be marked as NoRename,
    // to prevent export of any use of them in regular IR that would require
    // renaming within the module level asm. Note we don't need to create a
    // summary for weak or global defs, as they don't need to be flagged as
    // NoRename, and defs in module level asm can't be imported anyway.
    // Also, any values used but not defined within module level asm should
    // be listed on the llvm.used or llvm.compiler.used global and marked as
    // referenced from there.
    ModuleSymbolTable::CollectAsmSymbols(
        M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
          // Symbols not marked as Weak or Global are local definitions.
          if (Flags & (object::BasicSymbolRef::SF_Weak |
                       object::BasicSymbolRef::SF_Global))
            return;
          HasLocalInlineAsmSymbol = true;
          GlobalValue *GV = M.getNamedValue(Name);
          if (!GV)
            return;
          assert(GV->isDeclaration() && "Def in module asm already has definition");
          GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
                                              /* NotEligibleToImport = */ true,
                                              /* Live = */ true,
                                              /* Local */ GV->isDSOLocal(),
                                              GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
          CantBePromoted.insert(GV->getGUID());
          // Create the appropriate summary type.
          if (Function *F = dyn_cast<Function>(GV)) {
            std::unique_ptr<FunctionSummary> Summary =
                std::make_unique<FunctionSummary>(
                    GVFlags, /*InstCount=*/0,
                    FunctionSummary::FFlags{
                        F->hasFnAttribute(Attribute::ReadNone),
                        F->hasFnAttribute(Attribute::ReadOnly),
                        F->hasFnAttribute(Attribute::NoRecurse),
                        F->returnDoesNotAlias(),
                        /* NoInline = */ false},
                    /*EntryCount=*/0, ArrayRef<ValueInfo>{},
                    ArrayRef<FunctionSummary::EdgeTy>{},
                    ArrayRef<GlobalValue::GUID>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::VFuncId>{},
                    ArrayRef<FunctionSummary::ConstVCall>{},
                    ArrayRef<FunctionSummary::ConstVCall>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          } else {
            std::unique_ptr<GlobalVarSummary> Summary =
                std::make_unique<GlobalVarSummary>(
                    GVFlags, GlobalVarSummary::GVarFlags(false, false),
                    ArrayRef<ValueInfo>{});
            Index.addGlobalValueSummary(*GV, std::move(Summary));
          }
        });
  }

  bool IsThinLTO = true;
  if (auto *MD =
          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
    IsThinLTO = MD->getZExtValue();

  // Compute summaries for all functions defined in module, and save in the
  // index.
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;

    DominatorTree DT(const_cast<Function &>(F));
    BlockFrequencyInfo *BFI = nullptr;
    std::unique_ptr<BlockFrequencyInfo> BFIPtr;
    if (GetBFICallback)
      BFI = GetBFICallback(F);
    else if (F.hasProfileData()) {
      LoopInfo LI{DT};
      BranchProbabilityInfo BPI{F, LI};
      BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
      BFI = BFIPtr.get();
    }

    computeFunctionSummary(Index, M, F, BFI, PSI, DT,
                           !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
                           CantBePromoted, IsThinLTO);
  }

  // Compute summaries for all variables defined in module, and save in the
  // index.
  SmallVector<MDNode *, 2> Types;
  for (const GlobalVariable &G : M.globals()) {
    if (G.isDeclaration())
      continue;
    computeVariableSummary(Index, G, CantBePromoted, M, Types);
  }

  // Compute summaries for all aliases defined in module, and save in the
  // index.
  for (const GlobalAlias &A : M.aliases())
    computeAliasSummary(Index, A, CantBePromoted);

  for (auto *V : LocalsUsed) {
    auto *Summary = Index.getGlobalValueSummary(*V);
    assert(Summary && "Missing summary for global value");
    Summary->setNotEligibleToImport();
  }

  // The linker doesn't know about these LLVM produced values, so we need
  // to flag them as live in the index to ensure index-based dead value
  // analysis treats them as live roots of the analysis.
  setLiveRoot(Index, "llvm.used");
  setLiveRoot(Index, "llvm.compiler.used");
  setLiveRoot(Index, "llvm.global_ctors");
  setLiveRoot(Index, "llvm.global_dtors");
  setLiveRoot(Index, "llvm.global.annotations");

  for (auto &GlobalList : Index) {
    // Ignore entries for references that are undefined in the current module.
    if (GlobalList.second.SummaryList.empty())
      continue;

    assert(GlobalList.second.SummaryList.size() == 1 &&
           "Expected module's index to have one summary per GUID");
    auto &Summary = GlobalList.second.SummaryList[0];
    if (!IsThinLTO) {
      Summary->setNotEligibleToImport();
      continue;
    }

    bool AllRefsCanBeExternallyReferenced =
        llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
          return !CantBePromoted.count(VI.getGUID());
        });
    if (!AllRefsCanBeExternallyReferenced) {
      Summary->setNotEligibleToImport();
      continue;
    }

    if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
      bool AllCallsCanBeExternallyReferenced = llvm::all_of(
          FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
            return !CantBePromoted.count(Edge.first.getGUID());
          });
      if (!AllCallsCanBeExternallyReferenced)
        Summary->setNotEligibleToImport();
    }
  }

  if (!ModuleSummaryDotFile.empty()) {
    std::error_code EC;
    raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
    if (EC)
      report_fatal_error(Twine("Failed to open dot file ") +
                         ModuleSummaryDotFile + ": " + EC.message() + "\n");
    Index.exportToDot(OSDot);
  }

  return Index;
}

AnalysisKey ModuleSummaryIndexAnalysis::Key;

ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  return buildModuleSummaryIndex(
      M,
      [&FAM](const Function &F) {
        return &FAM.getResult<BlockFrequencyAnalysis>(
            *const_cast<Function *>(&F));
      },
      &PSI);
}

char ModuleSummaryIndexWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                      "Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                    "Module Summary Analysis", false, true)

ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
  return new ModuleSummaryIndexWrapperPass();
}

ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
    : ModulePass(ID) {
  initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  Index.emplace(buildModuleSummaryIndex(
      M,
      [this](const Function &F) {
        return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
                         *const_cast<Function *>(&F))
                     .getBFI());
      },
      PSI));
  return false;
}

bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
  Index.reset();
  return false;
}

void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BlockFrequencyInfoWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
}