reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
//===- TypeMetadataUtils.cpp - Utilities related to type metadata ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions that make it easier to manipulate type metadata
// for devirtualization.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"

using namespace llvm;

// Search for virtual calls that call FPtr and add them to DevirtCalls.
static void
findCallsAtConstantOffset(SmallVectorImpl<DevirtCallSite> &DevirtCalls,
                          bool *HasNonCallUses, Value *FPtr, uint64_t Offset,
                          const CallInst *CI, DominatorTree &DT) {
  for (const Use &U : FPtr->uses()) {
    Instruction *User = cast<Instruction>(U.getUser());
    // Ignore this instruction if it is not dominated by the type intrinsic
    // being analyzed. Otherwise we may transform a call sharing the same
    // vtable pointer incorrectly. Specifically, this situation can arise
    // after indirect call promotion and inlining, where we may have uses
    // of the vtable pointer guarded by a function pointer check, and a fallback
    // indirect call.
    if (!DT.dominates(CI, User))
      continue;
    if (isa<BitCastInst>(User)) {
      findCallsAtConstantOffset(DevirtCalls, HasNonCallUses, User, Offset, CI,
                                DT);
    } else if (auto CI = dyn_cast<CallInst>(User)) {
      DevirtCalls.push_back({Offset, CI});
    } else if (auto II = dyn_cast<InvokeInst>(User)) {
      DevirtCalls.push_back({Offset, II});
    } else if (HasNonCallUses) {
      *HasNonCallUses = true;
    }
  }
}

// Search for virtual calls that load from VPtr and add them to DevirtCalls.
static void findLoadCallsAtConstantOffset(
    const Module *M, SmallVectorImpl<DevirtCallSite> &DevirtCalls, Value *VPtr,
    int64_t Offset, const CallInst *CI, DominatorTree &DT) {
  for (const Use &U : VPtr->uses()) {
    Value *User = U.getUser();
    if (isa<BitCastInst>(User)) {
      findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset, CI, DT);
    } else if (isa<LoadInst>(User)) {
      findCallsAtConstantOffset(DevirtCalls, nullptr, User, Offset, CI, DT);
    } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
      // Take into account the GEP offset.
      if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
        SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
        int64_t GEPOffset = M->getDataLayout().getIndexedOffsetInType(
            GEP->getSourceElementType(), Indices);
        findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset + GEPOffset,
                                      CI, DT);
      }
    }
  }
}

void llvm::findDevirtualizableCallsForTypeTest(
    SmallVectorImpl<DevirtCallSite> &DevirtCalls,
    SmallVectorImpl<CallInst *> &Assumes, const CallInst *CI,
    DominatorTree &DT) {
  assert(CI->getCalledFunction()->getIntrinsicID() == Intrinsic::type_test);

  const Module *M = CI->getParent()->getParent()->getParent();

  // Find llvm.assume intrinsics for this llvm.type.test call.
  for (const Use &CIU : CI->uses()) {
    if (auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser())) {
      Function *F = AssumeCI->getCalledFunction();
      if (F && F->getIntrinsicID() == Intrinsic::assume)
        Assumes.push_back(AssumeCI);
    }
  }

  // If we found any, search for virtual calls based on %p and add them to
  // DevirtCalls.
  if (!Assumes.empty())
    findLoadCallsAtConstantOffset(
        M, DevirtCalls, CI->getArgOperand(0)->stripPointerCasts(), 0, CI, DT);
}

void llvm::findDevirtualizableCallsForTypeCheckedLoad(
    SmallVectorImpl<DevirtCallSite> &DevirtCalls,
    SmallVectorImpl<Instruction *> &LoadedPtrs,
    SmallVectorImpl<Instruction *> &Preds, bool &HasNonCallUses,
    const CallInst *CI, DominatorTree &DT) {
  assert(CI->getCalledFunction()->getIntrinsicID() ==
         Intrinsic::type_checked_load);

  auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  if (!Offset) {
    HasNonCallUses = true;
    return;
  }

  for (const Use &U : CI->uses()) {
    auto CIU = U.getUser();
    if (auto EVI = dyn_cast<ExtractValueInst>(CIU)) {
      if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 0) {
        LoadedPtrs.push_back(EVI);
        continue;
      }
      if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 1) {
        Preds.push_back(EVI);
        continue;
      }
    }
    HasNonCallUses = true;
  }

  for (Value *LoadedPtr : LoadedPtrs)
    findCallsAtConstantOffset(DevirtCalls, &HasNonCallUses, LoadedPtr,
                              Offset->getZExtValue(), CI, DT);
}

Constant *llvm::getPointerAtOffset(Constant *I, uint64_t Offset, Module &M) {
  if (I->getType()->isPointerTy()) {
    if (Offset == 0)
      return I;
    return nullptr;
  }

  const DataLayout &DL = M.getDataLayout();

  if (auto *C = dyn_cast<ConstantStruct>(I)) {
    const StructLayout *SL = DL.getStructLayout(C->getType());
    if (Offset >= SL->getSizeInBytes())
      return nullptr;

    unsigned Op = SL->getElementContainingOffset(Offset);
    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
                              Offset - SL->getElementOffset(Op), M);
  }
  if (auto *C = dyn_cast<ConstantArray>(I)) {
    ArrayType *VTableTy = C->getType();
    uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());

    unsigned Op = Offset / ElemSize;
    if (Op >= C->getNumOperands())
      return nullptr;

    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
                              Offset % ElemSize, M);
  }
  return nullptr;
}