reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
//===- ScopBuilder.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopBuilder.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scops"

STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
STATISTIC(InfeasibleScops,
          "Number of SCoPs with statically infeasible context.");

bool polly::ModelReadOnlyScalars;

// The maximal number of dimensions we allow during invariant load construction.
// More complex access ranges will result in very high compile time and are also
// unlikely to result in good code. This value is very high and should only
// trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
static int const MaxDimensionsInAccessRange = 9;

static cl::opt<bool, true> XModelReadOnlyScalars(
    "polly-analyze-read-only-scalars",
    cl::desc("Model read-only scalar values in the scop description"),
    cl::location(ModelReadOnlyScalars), cl::Hidden, cl::ZeroOrMore,
    cl::init(true), cl::cat(PollyCategory));

static cl::opt<int>
    OptComputeOut("polly-analysis-computeout",
                  cl::desc("Bound the scop analysis by a maximal amount of "
                           "computational steps (0 means no bound)"),
                  cl::Hidden, cl::init(800000), cl::ZeroOrMore,
                  cl::cat(PollyCategory));

static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams(
    "polly-allow-dereference-of-all-function-parameters",
    cl::desc(
        "Treat all parameters to functions that are pointers as dereferencible."
        " This is useful for invariant load hoisting, since we can generate"
        " less runtime checks. This is only valid if all pointers to functions"
        " are always initialized, so that Polly can choose to hoist"
        " their loads. "),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
    "polly-rtc-max-arrays-per-group",
    cl::desc("The maximal number of arrays to compare in each alias group."),
    cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));

static cl::opt<int> RunTimeChecksMaxAccessDisjuncts(
    "polly-rtc-max-array-disjuncts",
    cl::desc("The maximal number of disjunts allowed in memory accesses to "
             "to build RTCs."),
    cl::Hidden, cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));

static cl::opt<unsigned> RunTimeChecksMaxParameters(
    "polly-rtc-max-parameters",
    cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
    cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));

static cl::opt<bool> UnprofitableScalarAccs(
    "polly-unprofitable-scalar-accs",
    cl::desc("Count statements with scalar accesses as not optimizable"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<std::string> UserContextStr(
    "polly-context", cl::value_desc("isl parameter set"),
    cl::desc("Provide additional constraints on the context parameters"),
    cl::init(""), cl::cat(PollyCategory));

static cl::opt<bool> DetectFortranArrays(
    "polly-detect-fortran-arrays",
    cl::desc("Detect Fortran arrays and use this for code generation"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> DetectReductions("polly-detect-reductions",
                                      cl::desc("Detect and exploit reductions"),
                                      cl::Hidden, cl::ZeroOrMore,
                                      cl::init(true), cl::cat(PollyCategory));

// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool> DisableMultiplicativeReductions(
    "polly-disable-multiplicative-reductions",
    cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
    cl::init(false), cl::cat(PollyCategory));

enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores };

static cl::opt<GranularityChoice> StmtGranularity(
    "polly-stmt-granularity",
    cl::desc(
        "Algorithm to use for splitting basic blocks into multiple statements"),
    cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb",
                          "One statement per basic block"),
               clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep",
                          "Scalar independence heuristic"),
               clEnumValN(GranularityChoice::Stores, "store",
                          "Store-level granularity")),
    cl::init(GranularityChoice::ScalarIndependence), cl::cat(PollyCategory));

/// Helper to treat non-affine regions and basic blocks the same.
///
///{

/// Return the block that is the representing block for @p RN.
static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
  return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
                           : RN->getNodeAs<BasicBlock>();
}

/// Return the @p idx'th block that is executed after @p RN.
static inline BasicBlock *
getRegionNodeSuccessor(RegionNode *RN, Instruction *TI, unsigned idx) {
  if (RN->isSubRegion()) {
    assert(idx == 0);
    return RN->getNodeAs<Region>()->getExit();
  }
  return TI->getSuccessor(idx);
}

static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
                               const DominatorTree &DT) {
  if (!RN->isSubRegion())
    return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
  for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
    if (isErrorBlock(*BB, R, LI, DT))
      return true;
  return false;
}

///}

/// Create a map to map from a given iteration to a subsequent iteration.
///
/// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
/// is incremented by one and all other dimensions are equal, e.g.,
///             [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
///
/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
static isl::map createNextIterationMap(isl::space SetSpace, unsigned Dim) {
  isl::space MapSpace = SetSpace.map_from_set();
  isl::map NextIterationMap = isl::map::universe(MapSpace);
  for (unsigned u = 0; u < NextIterationMap.dim(isl::dim::in); u++)
    if (u != Dim)
      NextIterationMap =
          NextIterationMap.equate(isl::dim::in, u, isl::dim::out, u);
  isl::constraint C =
      isl::constraint::alloc_equality(isl::local_space(MapSpace));
  C = C.set_constant_si(1);
  C = C.set_coefficient_si(isl::dim::in, Dim, 1);
  C = C.set_coefficient_si(isl::dim::out, Dim, -1);
  NextIterationMap = NextIterationMap.add_constraint(C);
  return NextIterationMap;
}

/// Add @p BSet to set @p BoundedParts if @p BSet is bounded.
static isl::set collectBoundedParts(isl::set S) {
  isl::set BoundedParts = isl::set::empty(S.get_space());
  for (isl::basic_set BSet : S.get_basic_set_list())
    if (BSet.is_bounded())
      BoundedParts = BoundedParts.unite(isl::set(BSet));
  return BoundedParts;
}

/// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
///
/// @returns A separation of @p S into first an unbounded then a bounded subset,
///          both with regards to the dimension @p Dim.
static std::pair<isl::set, isl::set> partitionSetParts(isl::set S,
                                                       unsigned Dim) {
  for (unsigned u = 0, e = S.n_dim(); u < e; u++)
    S = S.lower_bound_si(isl::dim::set, u, 0);

  unsigned NumDimsS = S.n_dim();
  isl::set OnlyDimS = S;

  // Remove dimensions that are greater than Dim as they are not interesting.
  assert(NumDimsS >= Dim + 1);
  OnlyDimS = OnlyDimS.project_out(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);

  // Create artificial parametric upper bounds for dimensions smaller than Dim
  // as we are not interested in them.
  OnlyDimS = OnlyDimS.insert_dims(isl::dim::param, 0, Dim);

  for (unsigned u = 0; u < Dim; u++) {
    isl::constraint C = isl::constraint::alloc_inequality(
        isl::local_space(OnlyDimS.get_space()));
    C = C.set_coefficient_si(isl::dim::param, u, 1);
    C = C.set_coefficient_si(isl::dim::set, u, -1);
    OnlyDimS = OnlyDimS.add_constraint(C);
  }

  // Collect all bounded parts of OnlyDimS.
  isl::set BoundedParts = collectBoundedParts(OnlyDimS);

  // Create the dimensions greater than Dim again.
  BoundedParts =
      BoundedParts.insert_dims(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);

  // Remove the artificial upper bound parameters again.
  BoundedParts = BoundedParts.remove_dims(isl::dim::param, 0, Dim);

  isl::set UnboundedParts = S.subtract(BoundedParts);
  return std::make_pair(UnboundedParts, BoundedParts);
}

/// Create the conditions under which @p L @p Pred @p R is true.
static isl::set buildConditionSet(ICmpInst::Predicate Pred, isl::pw_aff L,
                                  isl::pw_aff R) {
  switch (Pred) {
  case ICmpInst::ICMP_EQ:
    return L.eq_set(R);
  case ICmpInst::ICMP_NE:
    return L.ne_set(R);
  case ICmpInst::ICMP_SLT:
    return L.lt_set(R);
  case ICmpInst::ICMP_SLE:
    return L.le_set(R);
  case ICmpInst::ICMP_SGT:
    return L.gt_set(R);
  case ICmpInst::ICMP_SGE:
    return L.ge_set(R);
  case ICmpInst::ICMP_ULT:
    return L.lt_set(R);
  case ICmpInst::ICMP_UGT:
    return L.gt_set(R);
  case ICmpInst::ICMP_ULE:
    return L.le_set(R);
  case ICmpInst::ICMP_UGE:
    return L.ge_set(R);
  default:
    llvm_unreachable("Non integer predicate not supported");
  }
}

isl::set ScopBuilder::adjustDomainDimensions(isl::set Dom, Loop *OldL,
                                             Loop *NewL) {
  // If the loops are the same there is nothing to do.
  if (NewL == OldL)
    return Dom;

  int OldDepth = scop->getRelativeLoopDepth(OldL);
  int NewDepth = scop->getRelativeLoopDepth(NewL);
  // If both loops are non-affine loops there is nothing to do.
  if (OldDepth == -1 && NewDepth == -1)
    return Dom;

  // Distinguish three cases:
  //   1) The depth is the same but the loops are not.
  //      => One loop was left one was entered.
  //   2) The depth increased from OldL to NewL.
  //      => One loop was entered, none was left.
  //   3) The depth decreased from OldL to NewL.
  //      => Loops were left were difference of the depths defines how many.
  if (OldDepth == NewDepth) {
    assert(OldL->getParentLoop() == NewL->getParentLoop());
    Dom = Dom.project_out(isl::dim::set, NewDepth, 1);
    Dom = Dom.add_dims(isl::dim::set, 1);
  } else if (OldDepth < NewDepth) {
    assert(OldDepth + 1 == NewDepth);
    auto &R = scop->getRegion();
    (void)R;
    assert(NewL->getParentLoop() == OldL ||
           ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
    Dom = Dom.add_dims(isl::dim::set, 1);
  } else {
    assert(OldDepth > NewDepth);
    int Diff = OldDepth - NewDepth;
    int NumDim = Dom.n_dim();
    assert(NumDim >= Diff);
    Dom = Dom.project_out(isl::dim::set, NumDim - Diff, Diff);
  }

  return Dom;
}

/// Compute the isl representation for the SCEV @p E in this BB.
///
/// @param BB               The BB for which isl representation is to be
/// computed.
/// @param InvalidDomainMap A map of BB to their invalid domains.
/// @param E                The SCEV that should be translated.
/// @param NonNegative      Flag to indicate the @p E has to be non-negative.
///
/// Note that this function will also adjust the invalid context accordingly.

__isl_give isl_pw_aff *
ScopBuilder::getPwAff(BasicBlock *BB,
                      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
                      const SCEV *E, bool NonNegative) {
  PWACtx PWAC = scop->getPwAff(E, BB, NonNegative);
  InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(PWAC.second);
  return PWAC.first.release();
}

/// Build condition sets for unsigned ICmpInst(s).
/// Special handling is required for unsigned operands to ensure that if
/// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
/// it should wrap around.
///
/// @param IsStrictUpperBound holds information on the predicate relation
/// between TestVal and UpperBound, i.e,
/// TestVal < UpperBound  OR  TestVal <= UpperBound
__isl_give isl_set *ScopBuilder::buildUnsignedConditionSets(
    BasicBlock *BB, Value *Condition, __isl_keep isl_set *Domain,
    const SCEV *SCEV_TestVal, const SCEV *SCEV_UpperBound,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    bool IsStrictUpperBound) {
  // Do not take NonNeg assumption on TestVal
  // as it might have MSB (Sign bit) set.
  isl_pw_aff *TestVal = getPwAff(BB, InvalidDomainMap, SCEV_TestVal, false);
  // Take NonNeg assumption on UpperBound.
  isl_pw_aff *UpperBound =
      getPwAff(BB, InvalidDomainMap, SCEV_UpperBound, true);

  // 0 <= TestVal
  isl_set *First =
      isl_pw_aff_le_set(isl_pw_aff_zero_on_domain(isl_local_space_from_space(
                            isl_pw_aff_get_domain_space(TestVal))),
                        isl_pw_aff_copy(TestVal));

  isl_set *Second;
  if (IsStrictUpperBound)
    // TestVal < UpperBound
    Second = isl_pw_aff_lt_set(TestVal, UpperBound);
  else
    // TestVal <= UpperBound
    Second = isl_pw_aff_le_set(TestVal, UpperBound);

  isl_set *ConsequenceCondSet = isl_set_intersect(First, Second);
  return ConsequenceCondSet;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  Value *Condition = getConditionFromTerminator(SI);
  assert(Condition && "No condition for switch");

  isl_pw_aff *LHS, *RHS;
  LHS = getPwAff(BB, InvalidDomainMap, SE.getSCEVAtScope(Condition, L));

  unsigned NumSuccessors = SI->getNumSuccessors();
  ConditionSets.resize(NumSuccessors);
  for (auto &Case : SI->cases()) {
    unsigned Idx = Case.getSuccessorIndex();
    ConstantInt *CaseValue = Case.getCaseValue();

    RHS = getPwAff(BB, InvalidDomainMap, SE.getSCEV(CaseValue));
    isl_set *CaseConditionSet =
        buildConditionSet(ICmpInst::ICMP_EQ, isl::manage_copy(LHS),
                          isl::manage(RHS))
            .release();
    ConditionSets[Idx] = isl_set_coalesce(
        isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
  }

  assert(ConditionSets[0] == nullptr && "Default condition set was set");
  isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
  for (unsigned u = 2; u < NumSuccessors; u++)
    ConditionSetUnion =
        isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
  ConditionSets[0] = isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion);

  isl_pw_aff_free(LHS);

  return true;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, Value *Condition, Instruction *TI, Loop *L,
    __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  isl_set *ConsequenceCondSet = nullptr;

  if (auto Load = dyn_cast<LoadInst>(Condition)) {
    const SCEV *LHSSCEV = SE.getSCEVAtScope(Load, L);
    const SCEV *RHSSCEV = SE.getZero(LHSSCEV->getType());
    bool NonNeg = false;
    isl_pw_aff *LHS = getPwAff(BB, InvalidDomainMap, LHSSCEV, NonNeg);
    isl_pw_aff *RHS = getPwAff(BB, InvalidDomainMap, RHSSCEV, NonNeg);
    ConsequenceCondSet = buildConditionSet(ICmpInst::ICMP_SLE, isl::manage(LHS),
                                           isl::manage(RHS))
                             .release();
  } else if (auto *PHI = dyn_cast<PHINode>(Condition)) {
    auto *Unique = dyn_cast<ConstantInt>(
        getUniqueNonErrorValue(PHI, &scop->getRegion(), LI, DT));

    if (Unique->isZero())
      ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
    else
      ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
  } else if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
    if (CCond->isZero())
      ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
    else
      ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
  } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
    auto Opcode = BinOp->getOpcode();
    assert(Opcode == Instruction::And || Opcode == Instruction::Or);

    bool Valid = buildConditionSets(BB, BinOp->getOperand(0), TI, L, Domain,
                                    InvalidDomainMap, ConditionSets) &&
                 buildConditionSets(BB, BinOp->getOperand(1), TI, L, Domain,
                                    InvalidDomainMap, ConditionSets);
    if (!Valid) {
      while (!ConditionSets.empty())
        isl_set_free(ConditionSets.pop_back_val());
      return false;
    }

    isl_set_free(ConditionSets.pop_back_val());
    isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
    isl_set_free(ConditionSets.pop_back_val());
    isl_set *ConsCondPart1 = ConditionSets.pop_back_val();

    if (Opcode == Instruction::And)
      ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
    else
      ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
  } else {
    auto *ICond = dyn_cast<ICmpInst>(Condition);
    assert(ICond &&
           "Condition of exiting branch was neither constant nor ICmp!");

    Region &R = scop->getRegion();

    isl_pw_aff *LHS, *RHS;
    // For unsigned comparisons we assumed the signed bit of neither operand
    // to be set. The comparison is equal to a signed comparison under this
    // assumption.
    bool NonNeg = ICond->isUnsigned();
    const SCEV *LeftOperand = SE.getSCEVAtScope(ICond->getOperand(0), L),
               *RightOperand = SE.getSCEVAtScope(ICond->getOperand(1), L);

    LeftOperand = tryForwardThroughPHI(LeftOperand, R, SE, LI, DT);
    RightOperand = tryForwardThroughPHI(RightOperand, R, SE, LI, DT);

    switch (ICond->getPredicate()) {
    case ICmpInst::ICMP_ULT:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
                                     RightOperand, InvalidDomainMap, true);
      break;
    case ICmpInst::ICMP_ULE:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
                                     RightOperand, InvalidDomainMap, false);
      break;
    case ICmpInst::ICMP_UGT:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
                                     LeftOperand, InvalidDomainMap, true);
      break;
    case ICmpInst::ICMP_UGE:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
                                     LeftOperand, InvalidDomainMap, false);
      break;
    default:
      LHS = getPwAff(BB, InvalidDomainMap, LeftOperand, NonNeg);
      RHS = getPwAff(BB, InvalidDomainMap, RightOperand, NonNeg);
      ConsequenceCondSet = buildConditionSet(ICond->getPredicate(),
                                             isl::manage(LHS), isl::manage(RHS))
                               .release();
      break;
    }
  }

  // If no terminator was given we are only looking for parameter constraints
  // under which @p Condition is true/false.
  if (!TI)
    ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
  assert(ConsequenceCondSet);
  ConsequenceCondSet = isl_set_coalesce(
      isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)));

  isl_set *AlternativeCondSet = nullptr;
  bool TooComplex =
      isl_set_n_basic_set(ConsequenceCondSet) >= MaxDisjunctsInDomain;

  if (!TooComplex) {
    AlternativeCondSet = isl_set_subtract(isl_set_copy(Domain),
                                          isl_set_copy(ConsequenceCondSet));
    TooComplex =
        isl_set_n_basic_set(AlternativeCondSet) >= MaxDisjunctsInDomain;
  }

  if (TooComplex) {
    scop->invalidate(COMPLEXITY, TI ? TI->getDebugLoc() : DebugLoc(),
                     TI ? TI->getParent() : nullptr /* BasicBlock */);
    isl_set_free(AlternativeCondSet);
    isl_set_free(ConsequenceCondSet);
    return false;
  }

  ConditionSets.push_back(ConsequenceCondSet);
  ConditionSets.push_back(isl_set_coalesce(AlternativeCondSet));

  return true;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, Instruction *TI, Loop *L, __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
    return buildConditionSets(BB, SI, L, Domain, InvalidDomainMap,
                              ConditionSets);

  assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");

  if (TI->getNumSuccessors() == 1) {
    ConditionSets.push_back(isl_set_copy(Domain));
    return true;
  }

  Value *Condition = getConditionFromTerminator(TI);
  assert(Condition && "No condition for Terminator");

  return buildConditionSets(BB, Condition, TI, L, Domain, InvalidDomainMap,
                            ConditionSets);
}

bool ScopBuilder::propagateDomainConstraints(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // Iterate over the region R and propagate the domain constrains from the
  // predecessors to the current node. In contrast to the
  // buildDomainsWithBranchConstraints function, this one will pull the domain
  // information from the predecessors instead of pushing it to the successors.
  // Additionally, we assume the domains to be already present in the domain
  // map here. However, we iterate again in reverse post order so we know all
  // predecessors have been visited before a block or non-affine subregion is
  // visited.

  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {
    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        if (!propagateDomainConstraints(SubRegion, InvalidDomainMap))
          return false;
        continue;
      }
    }

    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    isl::set &Domain = scop->getOrInitEmptyDomain(BB);
    assert(Domain);

    // Under the union of all predecessor conditions we can reach this block.
    isl::set PredDom = getPredecessorDomainConstraints(BB, Domain);
    Domain = Domain.intersect(PredDom).coalesce();
    Domain = Domain.align_params(scop->getParamSpace());

    Loop *BBLoop = getRegionNodeLoop(RN, LI);
    if (BBLoop && BBLoop->getHeader() == BB && scop->contains(BBLoop))
      if (!addLoopBoundsToHeaderDomain(BBLoop, InvalidDomainMap))
        return false;
  }

  return true;
}

void ScopBuilder::propagateDomainConstraintsToRegionExit(
    BasicBlock *BB, Loop *BBLoop,
    SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // Check if the block @p BB is the entry of a region. If so we propagate it's
  // domain to the exit block of the region. Otherwise we are done.
  auto *RI = scop->getRegion().getRegionInfo();
  auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
  auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
  if (!BBReg || BBReg->getEntry() != BB || !scop->contains(ExitBB))
    return;

  // Do not propagate the domain if there is a loop backedge inside the region
  // that would prevent the exit block from being executed.
  auto *L = BBLoop;
  while (L && scop->contains(L)) {
    SmallVector<BasicBlock *, 4> LatchBBs;
    BBLoop->getLoopLatches(LatchBBs);
    for (auto *LatchBB : LatchBBs)
      if (BB != LatchBB && BBReg->contains(LatchBB))
        return;
    L = L->getParentLoop();
  }

  isl::set Domain = scop->getOrInitEmptyDomain(BB);
  assert(Domain && "Cannot propagate a nullptr");

  Loop *ExitBBLoop = getFirstNonBoxedLoopFor(ExitBB, LI, scop->getBoxedLoops());

  // Since the dimensions of @p BB and @p ExitBB might be different we have to
  // adjust the domain before we can propagate it.
  isl::set AdjustedDomain = adjustDomainDimensions(Domain, BBLoop, ExitBBLoop);
  isl::set &ExitDomain = scop->getOrInitEmptyDomain(ExitBB);

  // If the exit domain is not yet created we set it otherwise we "add" the
  // current domain.
  ExitDomain = ExitDomain ? AdjustedDomain.unite(ExitDomain) : AdjustedDomain;

  // Initialize the invalid domain.
  InvalidDomainMap[ExitBB] = ExitDomain.empty(ExitDomain.get_space());

  FinishedExitBlocks.insert(ExitBB);
}

isl::set ScopBuilder::getPredecessorDomainConstraints(BasicBlock *BB,
                                                      isl::set Domain) {
  // If @p BB is the ScopEntry we are done
  if (scop->getRegion().getEntry() == BB)
    return isl::set::universe(Domain.get_space());

  // The region info of this function.
  auto &RI = *scop->getRegion().getRegionInfo();

  Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, scop->getBoxedLoops());

  // A domain to collect all predecessor domains, thus all conditions under
  // which the block is executed. To this end we start with the empty domain.
  isl::set PredDom = isl::set::empty(Domain.get_space());

  // Set of regions of which the entry block domain has been propagated to BB.
  // all predecessors inside any of the regions can be skipped.
  SmallSet<Region *, 8> PropagatedRegions;

  for (auto *PredBB : predecessors(BB)) {
    // Skip backedges.
    if (DT.dominates(BB, PredBB))
      continue;

    // If the predecessor is in a region we used for propagation we can skip it.
    auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(PredBB); };
    if (std::any_of(PropagatedRegions.begin(), PropagatedRegions.end(),
                    PredBBInRegion)) {
      continue;
    }

    // Check if there is a valid region we can use for propagation, thus look
    // for a region that contains the predecessor and has @p BB as exit block.
    auto *PredR = RI.getRegionFor(PredBB);
    while (PredR->getExit() != BB && !PredR->contains(BB))
      PredR->getParent();

    // If a valid region for propagation was found use the entry of that region
    // for propagation, otherwise the PredBB directly.
    if (PredR->getExit() == BB) {
      PredBB = PredR->getEntry();
      PropagatedRegions.insert(PredR);
    }

    isl::set PredBBDom = scop->getDomainConditions(PredBB);
    Loop *PredBBLoop =
        getFirstNonBoxedLoopFor(PredBB, LI, scop->getBoxedLoops());
    PredBBDom = adjustDomainDimensions(PredBBDom, PredBBLoop, BBLoop);
    PredDom = PredDom.unite(PredBBDom);
  }

  return PredDom;
}

bool ScopBuilder::addLoopBoundsToHeaderDomain(
    Loop *L, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  int LoopDepth = scop->getRelativeLoopDepth(L);
  assert(LoopDepth >= 0 && "Loop in region should have at least depth one");

  BasicBlock *HeaderBB = L->getHeader();
  assert(scop->isDomainDefined(HeaderBB));
  isl::set &HeaderBBDom = scop->getOrInitEmptyDomain(HeaderBB);

  isl::map NextIterationMap =
      createNextIterationMap(HeaderBBDom.get_space(), LoopDepth);

  isl::set UnionBackedgeCondition = HeaderBBDom.empty(HeaderBBDom.get_space());

  SmallVector<BasicBlock *, 4> LatchBlocks;
  L->getLoopLatches(LatchBlocks);

  for (BasicBlock *LatchBB : LatchBlocks) {
    // If the latch is only reachable via error statements we skip it.
    if (!scop->isDomainDefined(LatchBB))
      continue;

    isl::set LatchBBDom = scop->getDomainConditions(LatchBB);

    isl::set BackedgeCondition = nullptr;

    Instruction *TI = LatchBB->getTerminator();
    BranchInst *BI = dyn_cast<BranchInst>(TI);
    assert(BI && "Only branch instructions allowed in loop latches");

    if (BI->isUnconditional())
      BackedgeCondition = LatchBBDom;
    else {
      SmallVector<isl_set *, 8> ConditionSets;
      int idx = BI->getSuccessor(0) != HeaderBB;
      if (!buildConditionSets(LatchBB, TI, L, LatchBBDom.get(),
                              InvalidDomainMap, ConditionSets))
        return false;

      // Free the non back edge condition set as we do not need it.
      isl_set_free(ConditionSets[1 - idx]);

      BackedgeCondition = isl::manage(ConditionSets[idx]);
    }

    int LatchLoopDepth = scop->getRelativeLoopDepth(LI.getLoopFor(LatchBB));
    assert(LatchLoopDepth >= LoopDepth);
    BackedgeCondition = BackedgeCondition.project_out(
        isl::dim::set, LoopDepth + 1, LatchLoopDepth - LoopDepth);
    UnionBackedgeCondition = UnionBackedgeCondition.unite(BackedgeCondition);
  }

  isl::map ForwardMap = ForwardMap.lex_le(HeaderBBDom.get_space());
  for (int i = 0; i < LoopDepth; i++)
    ForwardMap = ForwardMap.equate(isl::dim::in, i, isl::dim::out, i);

  isl::set UnionBackedgeConditionComplement =
      UnionBackedgeCondition.complement();
  UnionBackedgeConditionComplement =
      UnionBackedgeConditionComplement.lower_bound_si(isl::dim::set, LoopDepth,
                                                      0);
  UnionBackedgeConditionComplement =
      UnionBackedgeConditionComplement.apply(ForwardMap);
  HeaderBBDom = HeaderBBDom.subtract(UnionBackedgeConditionComplement);
  HeaderBBDom = HeaderBBDom.apply(NextIterationMap);

  auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
  HeaderBBDom = Parts.second;

  // Check if there is a <nsw> tagged AddRec for this loop and if so do not add
  // the bounded assumptions to the context as they are already implied by the
  // <nsw> tag.
  if (scop->hasNSWAddRecForLoop(L))
    return true;

  isl::set UnboundedCtx = Parts.first.params();
  scop->recordAssumption(INFINITELOOP, UnboundedCtx,
                         HeaderBB->getTerminator()->getDebugLoc(),
                         AS_RESTRICTION);
  return true;
}

void ScopBuilder::buildInvariantEquivalenceClasses() {
  DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;

  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LInst : RIL) {
    const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());

    Type *Ty = LInst->getType();
    LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)];
    if (ClassRep) {
      scop->addInvariantLoadMapping(LInst, ClassRep);
      continue;
    }

    ClassRep = LInst;
    scop->addInvariantEquivClass(
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), nullptr, Ty});
  }
}

bool ScopBuilder::buildDomains(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  bool IsOnlyNonAffineRegion = scop->isNonAffineSubRegion(R);
  auto *EntryBB = R->getEntry();
  auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(EntryBB);
  int LD = scop->getRelativeLoopDepth(L);
  auto *S =
      isl_set_universe(isl_space_set_alloc(scop->getIslCtx().get(), 0, LD + 1));

  InvalidDomainMap[EntryBB] = isl::manage(isl_set_empty(isl_set_get_space(S)));
  isl::noexceptions::set Domain = isl::manage(S);
  scop->setDomain(EntryBB, Domain);

  if (IsOnlyNonAffineRegion)
    return !containsErrorBlock(R->getNode(), *R, LI, DT);

  if (!buildDomainsWithBranchConstraints(R, InvalidDomainMap))
    return false;

  if (!propagateDomainConstraints(R, InvalidDomainMap))
    return false;

  // Error blocks and blocks dominated by them have been assumed to never be
  // executed. Representing them in the Scop does not add any value. In fact,
  // it is likely to cause issues during construction of the ScopStmts. The
  // contents of error blocks have not been verified to be expressible and
  // will cause problems when building up a ScopStmt for them.
  // Furthermore, basic blocks dominated by error blocks may reference
  // instructions in the error block which, if the error block is not modeled,
  // can themselves not be constructed properly. To this end we will replace
  // the domains of error blocks and those only reachable via error blocks
  // with an empty set. Additionally, we will record for each block under which
  // parameter combination it would be reached via an error block in its
  // InvalidDomain. This information is needed during load hoisting.
  if (!propagateInvalidStmtDomains(R, InvalidDomainMap))
    return false;

  return true;
}

bool ScopBuilder::buildDomainsWithBranchConstraints(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // To create the domain for each block in R we iterate over all blocks and
  // subregions in R and propagate the conditions under which the current region
  // element is executed. To this end we iterate in reverse post order over R as
  // it ensures that we first visit all predecessors of a region node (either a
  // basic block or a subregion) before we visit the region node itself.
  // Initially, only the domain for the SCoP region entry block is set and from
  // there we propagate the current domain to all successors, however we add the
  // condition that the successor is actually executed next.
  // As we are only interested in non-loop carried constraints here we can
  // simply skip loop back edges.

  SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {
    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        if (!buildDomainsWithBranchConstraints(SubRegion, InvalidDomainMap))
          return false;
        continue;
      }
    }

    if (containsErrorBlock(RN, scop->getRegion(), LI, DT))
      scop->notifyErrorBlock();
    ;

    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    Instruction *TI = BB->getTerminator();

    if (isa<UnreachableInst>(TI))
      continue;

    if (!scop->isDomainDefined(BB))
      continue;
    isl::set Domain = scop->getDomainConditions(BB);

    scop->updateMaxLoopDepth(isl_set_n_dim(Domain.get()));

    auto *BBLoop = getRegionNodeLoop(RN, LI);
    // Propagate the domain from BB directly to blocks that have a superset
    // domain, at the moment only region exit nodes of regions that start in BB.
    propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks,
                                           InvalidDomainMap);

    // If all successors of BB have been set a domain through the propagation
    // above we do not need to build condition sets but can just skip this
    // block. However, it is important to note that this is a local property
    // with regards to the region @p R. To this end FinishedExitBlocks is a
    // local variable.
    auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
      return FinishedExitBlocks.count(SuccBB);
    };
    if (std::all_of(succ_begin(BB), succ_end(BB), IsFinishedRegionExit))
      continue;

    // Build the condition sets for the successor nodes of the current region
    // node. If it is a non-affine subregion we will always execute the single
    // exit node, hence the single entry node domain is the condition set. For
    // basic blocks we use the helper function buildConditionSets.
    SmallVector<isl_set *, 8> ConditionSets;
    if (RN->isSubRegion())
      ConditionSets.push_back(Domain.copy());
    else if (!buildConditionSets(BB, TI, BBLoop, Domain.get(), InvalidDomainMap,
                                 ConditionSets))
      return false;

    // Now iterate over the successors and set their initial domain based on
    // their condition set. We skip back edges here and have to be careful when
    // we leave a loop not to keep constraints over a dimension that doesn't
    // exist anymore.
    assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
    for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
      isl::set CondSet = isl::manage(ConditionSets[u]);
      BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);

      // Skip blocks outside the region.
      if (!scop->contains(SuccBB))
        continue;

      // If we propagate the domain of some block to "SuccBB" we do not have to
      // adjust the domain.
      if (FinishedExitBlocks.count(SuccBB))
        continue;

      // Skip back edges.
      if (DT.dominates(SuccBB, BB))
        continue;

      Loop *SuccBBLoop =
          getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());

      CondSet = adjustDomainDimensions(CondSet, BBLoop, SuccBBLoop);

      // Set the domain for the successor or merge it with an existing domain in
      // case there are multiple paths (without loop back edges) to the
      // successor block.
      isl::set &SuccDomain = scop->getOrInitEmptyDomain(SuccBB);

      if (SuccDomain) {
        SuccDomain = SuccDomain.unite(CondSet).coalesce();
      } else {
        // Initialize the invalid domain.
        InvalidDomainMap[SuccBB] = CondSet.empty(CondSet.get_space());
        SuccDomain = CondSet;
      }

      SuccDomain = SuccDomain.detect_equalities();

      // Check if the maximal number of domain disjunctions was reached.
      // In case this happens we will clean up and bail.
      if (SuccDomain.n_basic_set() < MaxDisjunctsInDomain)
        continue;

      scop->invalidate(COMPLEXITY, DebugLoc());
      while (++u < ConditionSets.size())
        isl_set_free(ConditionSets[u]);
      return false;
    }
  }

  return true;
}

bool ScopBuilder::propagateInvalidStmtDomains(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {

    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        propagateInvalidStmtDomains(SubRegion, InvalidDomainMap);
        continue;
      }
    }

    bool ContainsErrorBlock = containsErrorBlock(RN, scop->getRegion(), LI, DT);
    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    isl::set &Domain = scop->getOrInitEmptyDomain(BB);
    assert(Domain && "Cannot propagate a nullptr");

    isl::set InvalidDomain = InvalidDomainMap[BB];

    bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(InvalidDomain);

    if (!IsInvalidBlock) {
      InvalidDomain = InvalidDomain.intersect(Domain);
    } else {
      InvalidDomain = Domain;
      isl::set DomPar = Domain.params();
      scop->recordAssumption(ERRORBLOCK, DomPar,
                             BB->getTerminator()->getDebugLoc(),
                             AS_RESTRICTION);
      Domain = isl::set::empty(Domain.get_space());
    }

    if (InvalidDomain.is_empty()) {
      InvalidDomainMap[BB] = InvalidDomain;
      continue;
    }

    auto *BBLoop = getRegionNodeLoop(RN, LI);
    auto *TI = BB->getTerminator();
    unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
    for (unsigned u = 0; u < NumSuccs; u++) {
      auto *SuccBB = getRegionNodeSuccessor(RN, TI, u);

      // Skip successors outside the SCoP.
      if (!scop->contains(SuccBB))
        continue;

      // Skip backedges.
      if (DT.dominates(SuccBB, BB))
        continue;

      Loop *SuccBBLoop =
          getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());

      auto AdjustedInvalidDomain =
          adjustDomainDimensions(InvalidDomain, BBLoop, SuccBBLoop);

      isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB];
      SuccInvalidDomain = SuccInvalidDomain.unite(AdjustedInvalidDomain);
      SuccInvalidDomain = SuccInvalidDomain.coalesce();

      InvalidDomainMap[SuccBB] = SuccInvalidDomain;

      // Check if the maximal number of domain disjunctions was reached.
      // In case this happens we will bail.
      if (SuccInvalidDomain.n_basic_set() < MaxDisjunctsInDomain)
        continue;

      InvalidDomainMap.erase(BB);
      scop->invalidate(COMPLEXITY, TI->getDebugLoc(), TI->getParent());
      return false;
    }

    InvalidDomainMap[BB] = InvalidDomain;
  }

  return true;
}

void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
                                   Region *NonAffineSubRegion,
                                   bool IsExitBlock) {
  // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
  // true, are not modeled as ordinary PHI nodes as they are not part of the
  // region. However, we model the operands in the predecessor blocks that are
  // part of the region as regular scalar accesses.

  // If we can synthesize a PHI we can skip it, however only if it is in
  // the region. If it is not it can only be in the exit block of the region.
  // In this case we model the operands but not the PHI itself.
  auto *Scope = LI.getLoopFor(PHI->getParent());
  if (!IsExitBlock && canSynthesize(PHI, *scop, &SE, Scope))
    return;

  // PHI nodes are modeled as if they had been demoted prior to the SCoP
  // detection. Hence, the PHI is a load of a new memory location in which the
  // incoming value was written at the end of the incoming basic block.
  bool OnlyNonAffineSubRegionOperands = true;
  for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
    Value *Op = PHI->getIncomingValue(u);
    BasicBlock *OpBB = PHI->getIncomingBlock(u);
    ScopStmt *OpStmt = scop->getIncomingStmtFor(PHI->getOperandUse(u));

    // Do not build PHI dependences inside a non-affine subregion, but make
    // sure that the necessary scalar values are still made available.
    if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)) {
      auto *OpInst = dyn_cast<Instruction>(Op);
      if (!OpInst || !NonAffineSubRegion->contains(OpInst))
        ensureValueRead(Op, OpStmt);
      continue;
    }

    OnlyNonAffineSubRegionOperands = false;
    ensurePHIWrite(PHI, OpStmt, OpBB, Op, IsExitBlock);
  }

  if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
    addPHIReadAccess(PHIStmt, PHI);
  }
}

void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt,
                                         Instruction *Inst) {
  assert(!isa<PHINode>(Inst));

  // Pull-in required operands.
  for (Use &Op : Inst->operands())
    ensureValueRead(Op.get(), UserStmt);
}

// Create a sequence of two schedules. Either argument may be null and is
// interpreted as the empty schedule. Can also return null if both schedules are
// empty.
static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) {
  if (!Prev)
    return Succ;
  if (!Succ)
    return Prev;

  return Prev.sequence(Succ);
}

// Create an isl_multi_union_aff that defines an identity mapping from the
// elements of USet to their N-th dimension.
//
// # Example:
//
//            Domain: { A[i,j]; B[i,j,k] }
//                 N: 1
//
// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
//
// @param USet   A union set describing the elements for which to generate a
//               mapping.
// @param N      The dimension to map to.
// @returns      A mapping from USet to its N-th dimension.
static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, int N) {
  assert(N >= 0);
  assert(USet);
  assert(!USet.is_empty());

  auto Result = isl::union_pw_multi_aff::empty(USet.get_space());

  for (isl::set S : USet.get_set_list()) {
    int Dim = S.dim(isl::dim::set);
    auto PMA = isl::pw_multi_aff::project_out_map(S.get_space(), isl::dim::set,
                                                  N, Dim - N);
    if (N > 1)
      PMA = PMA.drop_dims(isl::dim::out, 0, N - 1);

    Result = Result.add_pw_multi_aff(PMA);
  }

  return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result));
}

void ScopBuilder::buildSchedule() {
  Loop *L = getLoopSurroundingScop(*scop, LI);
  LoopStackTy LoopStack({LoopStackElementTy(L, nullptr, 0)});
  buildSchedule(scop->getRegion().getNode(), LoopStack);
  assert(LoopStack.size() == 1 && LoopStack.back().L == L);
  scop->setScheduleTree(LoopStack[0].Schedule);
}

/// To generate a schedule for the elements in a Region we traverse the Region
/// in reverse-post-order and add the contained RegionNodes in traversal order
/// to the schedule of the loop that is currently at the top of the LoopStack.
/// For loop-free codes, this results in a correct sequential ordering.
///
/// Example:
///           bb1(0)
///         /     \.
///      bb2(1)   bb3(2)
///         \    /  \.
///          bb4(3)  bb5(4)
///             \   /
///              bb6(5)
///
/// Including loops requires additional processing. Whenever a loop header is
/// encountered, the corresponding loop is added to the @p LoopStack. Starting
/// from an empty schedule, we first process all RegionNodes that are within
/// this loop and complete the sequential schedule at this loop-level before
/// processing about any other nodes. To implement this
/// loop-nodes-first-processing, the reverse post-order traversal is
/// insufficient. Hence, we additionally check if the traversal yields
/// sub-regions or blocks that are outside the last loop on the @p LoopStack.
/// These region-nodes are then queue and only traverse after the all nodes
/// within the current loop have been processed.
void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) {
  Loop *OuterScopLoop = getLoopSurroundingScop(*scop, LI);

  ReversePostOrderTraversal<Region *> RTraversal(R);
  std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
  std::deque<RegionNode *> DelayList;
  bool LastRNWaiting = false;

  // Iterate over the region @p R in reverse post-order but queue
  // sub-regions/blocks iff they are not part of the last encountered but not
  // completely traversed loop. The variable LastRNWaiting is a flag to indicate
  // that we queued the last sub-region/block from the reverse post-order
  // iterator. If it is set we have to explore the next sub-region/block from
  // the iterator (if any) to guarantee progress. If it is not set we first try
  // the next queued sub-region/blocks.
  while (!WorkList.empty() || !DelayList.empty()) {
    RegionNode *RN;

    if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) {
      RN = WorkList.front();
      WorkList.pop_front();
      LastRNWaiting = false;
    } else {
      RN = DelayList.front();
      DelayList.pop_front();
    }

    Loop *L = getRegionNodeLoop(RN, LI);
    if (!scop->contains(L))
      L = OuterScopLoop;

    Loop *LastLoop = LoopStack.back().L;
    if (LastLoop != L) {
      if (LastLoop && !LastLoop->contains(L)) {
        LastRNWaiting = true;
        DelayList.push_back(RN);
        continue;
      }
      LoopStack.push_back({L, nullptr, 0});
    }
    buildSchedule(RN, LoopStack);
  }
}

void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) {
  if (RN->isSubRegion()) {
    auto *LocalRegion = RN->getNodeAs<Region>();
    if (!scop->isNonAffineSubRegion(LocalRegion)) {
      buildSchedule(LocalRegion, LoopStack);
      return;
    }
  }

  assert(LoopStack.rbegin() != LoopStack.rend());
  auto LoopData = LoopStack.rbegin();
  LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN);

  for (auto *Stmt : scop->getStmtListFor(RN)) {
    isl::union_set UDomain{Stmt->getDomain()};
    auto StmtSchedule = isl::schedule::from_domain(UDomain);
    LoopData->Schedule = combineInSequence(LoopData->Schedule, StmtSchedule);
  }

  // Check if we just processed the last node in this loop. If we did, finalize
  // the loop by:
  //
  //   - adding new schedule dimensions
  //   - folding the resulting schedule into the parent loop schedule
  //   - dropping the loop schedule from the LoopStack.
  //
  // Then continue to check surrounding loops, which might also have been
  // completed by this node.
  size_t Dimension = LoopStack.size();
  while (LoopData->L &&
         LoopData->NumBlocksProcessed == getNumBlocksInLoop(LoopData->L)) {
    isl::schedule Schedule = LoopData->Schedule;
    auto NumBlocksProcessed = LoopData->NumBlocksProcessed;

    assert(std::next(LoopData) != LoopStack.rend());
    ++LoopData;
    --Dimension;

    if (Schedule) {
      isl::union_set Domain = Schedule.get_domain();
      isl::multi_union_pw_aff MUPA = mapToDimension(Domain, Dimension);
      Schedule = Schedule.insert_partial_schedule(MUPA);
      LoopData->Schedule = combineInSequence(LoopData->Schedule, Schedule);
    }

    LoopData->NumBlocksProcessed += NumBlocksProcessed;
  }
  // Now pop all loops processed up there from the LoopStack
  LoopStack.erase(LoopStack.begin() + Dimension, LoopStack.end());
}

void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
  // Check for uses of this instruction outside the scop. Because we do not
  // iterate over such instructions and therefore did not "ensure" the existence
  // of a write, we must determine such use here.
  if (scop->isEscaping(Inst))
    ensureValueWrite(Inst);
}

/// Check that a value is a Fortran Array descriptor.
///
/// We check if V has the following structure:
/// %"struct.array1_real(kind=8)" = type { i8*, i<zz>, i<zz>,
///                                   [<num> x %struct.descriptor_dimension] }
///
///
/// %struct.descriptor_dimension = type { i<zz>, i<zz>, i<zz> }
///
/// 1. V's type name starts with "struct.array"
/// 2. V's type has layout as shown.
/// 3. Final member of V's type has name "struct.descriptor_dimension",
/// 4. "struct.descriptor_dimension" has layout as shown.
/// 5. Consistent use of i<zz> where <zz> is some fixed integer number.
///
/// We are interested in such types since this is the code that dragonegg
/// generates for Fortran array descriptors.
///
/// @param V the Value to be checked.
///
/// @returns True if V is a Fortran array descriptor, False otherwise.
bool isFortranArrayDescriptor(Value *V) {
  PointerType *PTy = dyn_cast<PointerType>(V->getType());

  if (!PTy)
    return false;

  Type *Ty = PTy->getElementType();
  assert(Ty && "Ty expected to be initialized");
  auto *StructArrTy = dyn_cast<StructType>(Ty);

  if (!(StructArrTy && StructArrTy->hasName()))
    return false;

  if (!StructArrTy->getName().startswith("struct.array"))
    return false;

  if (StructArrTy->getNumElements() != 4)
    return false;

  const ArrayRef<Type *> ArrMemberTys = StructArrTy->elements();

  // i8* match
  if (ArrMemberTys[0] != Type::getInt8PtrTy(V->getContext()))
    return false;

  // Get a reference to the int type and check that all the members
  // share the same int type
  Type *IntTy = ArrMemberTys[1];
  if (ArrMemberTys[2] != IntTy)
    return false;

  // type: [<num> x %struct.descriptor_dimension]
  ArrayType *DescriptorDimArrayTy = dyn_cast<ArrayType>(ArrMemberTys[3]);
  if (!DescriptorDimArrayTy)
    return false;

  // type: %struct.descriptor_dimension := type { ixx, ixx, ixx }
  StructType *DescriptorDimTy =
      dyn_cast<StructType>(DescriptorDimArrayTy->getElementType());

  if (!(DescriptorDimTy && DescriptorDimTy->hasName()))
    return false;

  if (DescriptorDimTy->getName() != "struct.descriptor_dimension")
    return false;

  if (DescriptorDimTy->getNumElements() != 3)
    return false;

  for (auto MemberTy : DescriptorDimTy->elements()) {
    if (MemberTy != IntTy)
      return false;
  }

  return true;
}

Value *ScopBuilder::findFADAllocationVisible(MemAccInst Inst) {
  // match: 4.1 & 4.2 store/load
  if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst))
    return nullptr;

  // match: 4
  if (Inst.getAlignment() != 8)
    return nullptr;

  Value *Address = Inst.getPointerOperand();

  const BitCastInst *Bitcast = nullptr;
  // [match: 3]
  if (auto *Slot = dyn_cast<GetElementPtrInst>(Address)) {
    Value *TypedMem = Slot->getPointerOperand();
    // match: 2
    Bitcast = dyn_cast<BitCastInst>(TypedMem);
  } else {
    // match: 2
    Bitcast = dyn_cast<BitCastInst>(Address);
  }

  if (!Bitcast)
    return nullptr;

  auto *MallocMem = Bitcast->getOperand(0);

  // match: 1
  auto *MallocCall = dyn_cast<CallInst>(MallocMem);
  if (!MallocCall)
    return nullptr;

  Function *MallocFn = MallocCall->getCalledFunction();
  if (!(MallocFn && MallocFn->hasName() && MallocFn->getName() == "malloc"))
    return nullptr;

  // Find all uses the malloc'd memory.
  // We are looking for a "store" into a struct with the type being the Fortran
  // descriptor type
  for (auto user : MallocMem->users()) {
    /// match: 5
    auto *MallocStore = dyn_cast<StoreInst>(user);
    if (!MallocStore)
      continue;

    auto *DescriptorGEP =
        dyn_cast<GEPOperator>(MallocStore->getPointerOperand());
    if (!DescriptorGEP)
      continue;

    // match: 5
    auto DescriptorType =
        dyn_cast<StructType>(DescriptorGEP->getSourceElementType());
    if (!(DescriptorType && DescriptorType->hasName()))
      continue;

    Value *Descriptor = dyn_cast<Value>(DescriptorGEP->getPointerOperand());

    if (!Descriptor)
      continue;

    if (!isFortranArrayDescriptor(Descriptor))
      continue;

    return Descriptor;
  }

  return nullptr;
}

Value *ScopBuilder::findFADAllocationInvisible(MemAccInst Inst) {
  // match: 3
  if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst))
    return nullptr;

  Value *Slot = Inst.getPointerOperand();

  LoadInst *MemLoad = nullptr;
  // [match: 2]
  if (auto *SlotGEP = dyn_cast<GetElementPtrInst>(Slot)) {
    // match: 1
    MemLoad = dyn_cast<LoadInst>(SlotGEP->getPointerOperand());
  } else {
    // match: 1
    MemLoad = dyn_cast<LoadInst>(Slot);
  }

  if (!MemLoad)
    return nullptr;

  auto *BitcastOperator =
      dyn_cast<BitCastOperator>(MemLoad->getPointerOperand());
  if (!BitcastOperator)
    return nullptr;

  Value *Descriptor = dyn_cast<Value>(BitcastOperator->getOperand(0));
  if (!Descriptor)
    return nullptr;

  if (!isFortranArrayDescriptor(Descriptor))
    return nullptr;

  return Descriptor;
}

void ScopBuilder::addRecordedAssumptions() {
  for (auto &AS : llvm::reverse(scop->recorded_assumptions())) {

    if (!AS.BB) {
      scop->addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign,
                          nullptr /* BasicBlock */);
      continue;
    }

    // If the domain was deleted the assumptions are void.
    isl_set *Dom = scop->getDomainConditions(AS.BB).release();
    if (!Dom)
      continue;

    // If a basic block was given use its domain to simplify the assumption.
    // In case of restrictions we know they only have to hold on the domain,
    // thus we can intersect them with the domain of the block. However, for
    // assumptions the domain has to imply them, thus:
    //                     _              _____
    //   Dom => S   <==>   A v B   <==>   A - B
    //
    // To avoid the complement we will register A - B as a restriction not an
    // assumption.
    isl_set *S = AS.Set.copy();
    if (AS.Sign == AS_RESTRICTION)
      S = isl_set_params(isl_set_intersect(S, Dom));
    else /* (AS.Sign == AS_ASSUMPTION) */
      S = isl_set_params(isl_set_subtract(Dom, S));

    scop->addAssumption(AS.Kind, isl::manage(S), AS.Loc, AS_RESTRICTION, AS.BB);
  }
  scop->clearRecordedAssumptions();
}

void ScopBuilder::addUserAssumptions(
    AssumptionCache &AC, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  for (auto &Assumption : AC.assumptions()) {
    auto *CI = dyn_cast_or_null<CallInst>(Assumption);
    if (!CI || CI->getNumArgOperands() != 1)
      continue;

    bool InScop = scop->contains(CI);
    if (!InScop && !scop->isDominatedBy(DT, CI->getParent()))
      continue;

    auto *L = LI.getLoopFor(CI->getParent());
    auto *Val = CI->getArgOperand(0);
    ParameterSetTy DetectedParams;
    auto &R = scop->getRegion();
    if (!isAffineConstraint(Val, &R, L, SE, DetectedParams)) {
      ORE.emit(
          OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption", CI)
          << "Non-affine user assumption ignored.");
      continue;
    }

    // Collect all newly introduced parameters.
    ParameterSetTy NewParams;
    for (auto *Param : DetectedParams) {
      Param = extractConstantFactor(Param, SE).second;
      Param = scop->getRepresentingInvariantLoadSCEV(Param);
      if (scop->isParam(Param))
        continue;
      NewParams.insert(Param);
    }

    SmallVector<isl_set *, 2> ConditionSets;
    auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
    BasicBlock *BB = InScop ? CI->getParent() : R.getEntry();
    auto *Dom = InScop ? isl_set_copy(scop->getDomainConditions(BB).get())
                       : isl_set_copy(scop->getContext().get());
    assert(Dom && "Cannot propagate a nullptr.");
    bool Valid = buildConditionSets(BB, Val, TI, L, Dom, InvalidDomainMap,
                                    ConditionSets);
    isl_set_free(Dom);

    if (!Valid)
      continue;

    isl_set *AssumptionCtx = nullptr;
    if (InScop) {
      AssumptionCtx = isl_set_complement(isl_set_params(ConditionSets[1]));
      isl_set_free(ConditionSets[0]);
    } else {
      AssumptionCtx = isl_set_complement(ConditionSets[1]);
      AssumptionCtx = isl_set_intersect(AssumptionCtx, ConditionSets[0]);
    }

    // Project out newly introduced parameters as they are not otherwise useful.
    if (!NewParams.empty()) {
      for (unsigned u = 0; u < isl_set_n_param(AssumptionCtx); u++) {
        auto *Id = isl_set_get_dim_id(AssumptionCtx, isl_dim_param, u);
        auto *Param = static_cast<const SCEV *>(isl_id_get_user(Id));
        isl_id_free(Id);

        if (!NewParams.count(Param))
          continue;

        AssumptionCtx =
            isl_set_project_out(AssumptionCtx, isl_dim_param, u--, 1);
      }
    }
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption", CI)
             << "Use user assumption: " << stringFromIslObj(AssumptionCtx));
    isl::set newContext =
        scop->getContext().intersect(isl::manage(AssumptionCtx));
    scop->setContext(newContext);
  }
}

bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) {
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  Value *Address = Inst.getPointerOperand();
  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
    auto *Src = BitCast->getOperand(0);
    auto *SrcTy = Src->getType();
    auto *DstTy = BitCast->getType();
    // Do not try to delinearize non-sized (opaque) pointers.
    if ((SrcTy->isPointerTy() && !SrcTy->getPointerElementType()->isSized()) ||
        (DstTy->isPointerTy() && !DstTy->getPointerElementType()->isSized())) {
      return false;
    }
    if (SrcTy->isPointerTy() && DstTy->isPointerTy() &&
        DL.getTypeAllocSize(SrcTy->getPointerElementType()) ==
            DL.getTypeAllocSize(DstTy->getPointerElementType()))
      Address = Src;
  }

  auto *GEP = dyn_cast<GetElementPtrInst>(Address);
  if (!GEP)
    return false;

  std::vector<const SCEV *> Subscripts;
  std::vector<int> Sizes;
  std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
  auto *BasePtr = GEP->getOperand(0);

  if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
    BasePtr = BasePtrCast->getOperand(0);

  // Check for identical base pointers to ensure that we do not miss index
  // offsets that have been added before this GEP is applied.
  if (BasePtr != BasePointer->getValue())
    return false;

  std::vector<const SCEV *> SizesSCEV;

  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  for (auto *Subscript : Subscripts) {
    InvariantLoadsSetTy AccessILS;
    if (!isAffineExpr(&scop->getRegion(), SurroundingLoop, Subscript, SE,
                      &AccessILS))
      return false;

    for (LoadInst *LInst : AccessILS)
      if (!ScopRIL.count(LInst))
        return false;
  }

  if (Sizes.empty())
    return false;

  SizesSCEV.push_back(nullptr);

  for (auto V : Sizes)
    SizesSCEV.push_back(SE.getSCEV(
        ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 true, Subscripts, SizesSCEV, Val);
  return true;
}

bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
  if (!PollyDelinearize)
    return false;

  Value *Address = Inst.getPointerOperand();
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  unsigned ElementSize = DL.getTypeAllocSize(ElementType);
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  assert(BasePointer && "Could not find base pointer");

  auto &InsnToMemAcc = scop->getInsnToMemAccMap();
  auto AccItr = InsnToMemAcc.find(Inst);
  if (AccItr == InsnToMemAcc.end())
    return false;

  std::vector<const SCEV *> Sizes = {nullptr};

  Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(),
               AccItr->second.Shape->DelinearizedSizes.end());

  // In case only the element size is contained in the 'Sizes' array, the
  // access does not access a real multi-dimensional array. Hence, we allow
  // the normal single-dimensional access construction to handle this.
  if (Sizes.size() == 1)
    return false;

  // Remove the element size. This information is already provided by the
  // ElementSize parameter. In case the element size of this access and the
  // element size used for delinearization differs the delinearization is
  // incorrect. Hence, we invalidate the scop.
  //
  // TODO: Handle delinearization with differing element sizes.
  auto DelinearizedSize =
      cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
  Sizes.pop_back();
  if (ElementSize != DelinearizedSize)
    scop->invalidate(DELINEARIZATION, Inst->getDebugLoc(), Inst->getParent());

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 true, AccItr->second.DelinearizedSubscripts, Sizes, Val);
  return true;
}

bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) {
  auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);

  if (MemIntr == nullptr)
    return false;

  auto *L = LI.getLoopFor(Inst->getParent());
  auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
  assert(LengthVal);

  // Check if the length val is actually affine or if we overapproximate it
  InvariantLoadsSetTy AccessILS;
  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  bool LengthIsAffine = isAffineExpr(&scop->getRegion(), SurroundingLoop,
                                     LengthVal, SE, &AccessILS);
  for (LoadInst *LInst : AccessILS)
    if (!ScopRIL.count(LInst))
      LengthIsAffine = false;
  if (!LengthIsAffine)
    LengthVal = nullptr;

  auto *DestPtrVal = MemIntr->getDest();
  assert(DestPtrVal);

  auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
  assert(DestAccFunc);
  // Ignore accesses to "NULL".
  // TODO: We could use this to optimize the region further, e.g., intersect
  //       the context with
  //          isl_set_complement(isl_set_params(getDomain()))
  //       as we know it would be undefined to execute this instruction anyway.
  if (DestAccFunc->isZero())
    return true;

  auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
  assert(DestPtrSCEV);
  DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
  addArrayAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
                 IntegerType::getInt8Ty(DestPtrVal->getContext()),
                 LengthIsAffine, {DestAccFunc, LengthVal}, {nullptr},
                 Inst.getValueOperand());

  auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
  if (!MemTrans)
    return true;

  auto *SrcPtrVal = MemTrans->getSource();
  assert(SrcPtrVal);

  auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
  assert(SrcAccFunc);
  // Ignore accesses to "NULL".
  // TODO: See above TODO
  if (SrcAccFunc->isZero())
    return true;

  auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
  assert(SrcPtrSCEV);
  SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
  addArrayAccess(Stmt, Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
                 IntegerType::getInt8Ty(SrcPtrVal->getContext()),
                 LengthIsAffine, {SrcAccFunc, LengthVal}, {nullptr},
                 Inst.getValueOperand());

  return true;
}

bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) {
  auto *CI = dyn_cast_or_null<CallInst>(Inst);

  if (CI == nullptr)
    return false;

  if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI) || isDebugCall(CI))
    return true;

  bool ReadOnly = false;
  auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
  auto *CalledFunction = CI->getCalledFunction();
  switch (AA.getModRefBehavior(CalledFunction)) {
  case FMRB_UnknownModRefBehavior:
    llvm_unreachable("Unknown mod ref behaviour cannot be represented.");
  case FMRB_DoesNotAccessMemory:
    return true;
  case FMRB_DoesNotReadMemory:
  case FMRB_OnlyAccessesInaccessibleMem:
  case FMRB_OnlyAccessesInaccessibleOrArgMem:
    return false;
  case FMRB_OnlyReadsMemory:
    GlobalReads.emplace_back(Stmt, CI);
    return true;
  case FMRB_OnlyReadsArgumentPointees:
    ReadOnly = true;
    LLVM_FALLTHROUGH;
  case FMRB_OnlyAccessesArgumentPointees: {
    auto AccType = ReadOnly ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
    Loop *L = LI.getLoopFor(Inst->getParent());
    for (const auto &Arg : CI->arg_operands()) {
      if (!Arg->getType()->isPointerTy())
        continue;

      auto *ArgSCEV = SE.getSCEVAtScope(Arg, L);
      if (ArgSCEV->isZero())
        continue;

      auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
      addArrayAccess(Stmt, Inst, AccType, ArgBasePtr->getValue(),
                     ArgBasePtr->getType(), false, {AF}, {nullptr}, CI);
    }
    return true;
  }
  }

  return true;
}

void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) {
  Value *Address = Inst.getPointerOperand();
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  assert(BasePointer && "Could not find base pointer");
  AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);

  // Check if the access depends on a loop contained in a non-affine subregion.
  bool isVariantInNonAffineLoop = false;
  SetVector<const Loop *> Loops;
  findLoops(AccessFunction, Loops);
  for (const Loop *L : Loops)
    if (Stmt->contains(L)) {
      isVariantInNonAffineLoop = true;
      break;
    }

  InvariantLoadsSetTy AccessILS;

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  bool IsAffine = !isVariantInNonAffineLoop &&
                  isAffineExpr(&scop->getRegion(), SurroundingLoop,
                               AccessFunction, SE, &AccessILS);

  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LInst : AccessILS)
    if (!ScopRIL.count(LInst))
      IsAffine = false;

  if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
    AccType = MemoryAccess::MAY_WRITE;

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 IsAffine, {AccessFunction}, {nullptr}, Val);
}

void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) {
  if (buildAccessMemIntrinsic(Inst, Stmt))
    return;

  if (buildAccessCallInst(Inst, Stmt))
    return;

  if (buildAccessMultiDimFixed(Inst, Stmt))
    return;

  if (buildAccessMultiDimParam(Inst, Stmt))
    return;

  buildAccessSingleDim(Inst, Stmt);
}

void ScopBuilder::buildAccessFunctions() {
  for (auto &Stmt : *scop) {
    if (Stmt.isBlockStmt()) {
      buildAccessFunctions(&Stmt, *Stmt.getBasicBlock());
      continue;
    }

    Region *R = Stmt.getRegion();
    for (BasicBlock *BB : R->blocks())
      buildAccessFunctions(&Stmt, *BB, R);
  }

  // Build write accesses for values that are used after the SCoP.
  // The instructions defining them might be synthesizable and therefore not
  // contained in any statement, hence we iterate over the original instructions
  // to identify all escaping values.
  for (BasicBlock *BB : scop->getRegion().blocks()) {
    for (Instruction &Inst : *BB)
      buildEscapingDependences(&Inst);
  }
}

bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) {
  return !Inst->isTerminator() && !isIgnoredIntrinsic(Inst) &&
         !canSynthesize(Inst, *scop, &SE, L);
}

/// Generate a name for a statement.
///
/// @param BB     The basic block the statement will represent.
/// @param BBIdx  The index of the @p BB relative to other BBs/regions.
/// @param Count  The index of the created statement in @p BB.
/// @param IsMain Whether this is the main of all statement for @p BB. If true,
///               no suffix will be added.
/// @param IsLast Uses a special indicator for the last statement of a BB.
static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count,
                                bool IsMain, bool IsLast = false) {
  std::string Suffix;
  if (!IsMain) {
    if (UseInstructionNames)
      Suffix = '_';
    if (IsLast)
      Suffix += "last";
    else if (Count < 26)
      Suffix += 'a' + Count;
    else
      Suffix += std::to_string(Count);
  }
  return getIslCompatibleName("Stmt", BB, BBIdx, Suffix, UseInstructionNames);
}

/// Generate a name for a statement that represents a non-affine subregion.
///
/// @param R    The region the statement will represent.
/// @param RIdx The index of the @p R relative to other BBs/regions.
static std::string makeStmtName(Region *R, long RIdx) {
  return getIslCompatibleName("Stmt", R->getNameStr(), RIdx, "",
                              UseInstructionNames);
}

void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) {
  Loop *SurroundingLoop = LI.getLoopFor(BB);

  int Count = 0;
  long BBIdx = scop->getNextStmtIdx();
  std::vector<Instruction *> Instructions;
  for (Instruction &Inst : *BB) {
    if (shouldModelInst(&Inst, SurroundingLoop))
      Instructions.push_back(&Inst);
    if (Inst.getMetadata("polly_split_after") ||
        (SplitOnStore && isa<StoreInst>(Inst))) {
      std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
      scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
      Count++;
      Instructions.clear();
    }
  }

  std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
  scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
}

/// Is @p Inst an ordered instruction?
///
/// An unordered instruction is an instruction, such that a sequence of
/// unordered instructions can be permuted without changing semantics. Any
/// instruction for which this is not always the case is ordered.
static bool isOrderedInstruction(Instruction *Inst) {
  return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory();
}

/// Join instructions to the same statement if one uses the scalar result of the
/// other.
static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind,
                            ArrayRef<Instruction *> ModeledInsts) {
  for (Instruction *Inst : ModeledInsts) {
    if (isa<PHINode>(Inst))
      continue;

    for (Use &Op : Inst->operands()) {
      Instruction *OpInst = dyn_cast<Instruction>(Op.get());
      if (!OpInst)
        continue;

      // Check if OpInst is in the BB and is a modeled instruction.
      auto OpVal = UnionFind.findValue(OpInst);
      if (OpVal == UnionFind.end())
        continue;

      UnionFind.unionSets(Inst, OpInst);
    }
  }
}

/// Ensure that the order of ordered instructions does not change.
///
/// If we encounter an ordered instruction enclosed in instructions belonging to
/// a different statement (which might as well contain ordered instructions, but
/// this is not tested here), join them.
static void
joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind,
                        ArrayRef<Instruction *> ModeledInsts) {
  SetVector<Instruction *> SeenLeaders;
  for (Instruction *Inst : ModeledInsts) {
    if (!isOrderedInstruction(Inst))
      continue;

    Instruction *Leader = UnionFind.getLeaderValue(Inst);
    // Since previous iterations might have merged sets, some items in
    // SeenLeaders are not leaders anymore. However, The new leader of
    // previously merged instructions must be one of the former leaders of
    // these merged instructions.
    bool Inserted = SeenLeaders.insert(Leader);
    if (Inserted)
      continue;

    // Merge statements to close holes. Say, we have already seen statements A
    // and B, in this order. Then we see an instruction of A again and we would
    // see the pattern "A B A". This function joins all statements until the
    // only seen occurrence of A.
    for (Instruction *Prev : reverse(SeenLeaders)) {
      // We are backtracking from the last element until we see Inst's leader
      // in SeenLeaders and merge all into one set. Although leaders of
      // instructions change during the execution of this loop, it's irrelevant
      // as we are just searching for the element that we already confirmed is
      // in the list.
      if (Prev == Leader)
        break;
      UnionFind.unionSets(Prev, Leader);
    }
  }
}

/// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for
/// the incoming values from this block are executed after the PHI READ.
///
/// Otherwise it could overwrite the incoming value from before the BB with the
/// value for the next execution. This can happen if the PHI WRITE is added to
/// the statement with the instruction that defines the incoming value (instead
/// of the last statement of the same BB). To ensure that the PHI READ and WRITE
/// are in order, we put both into the statement. PHI WRITEs are always executed
/// after PHI READs when they are in the same statement.
///
/// TODO: This is an overpessimization. We only have to ensure that the PHI
/// WRITE is not put into a statement containing the PHI itself. That could also
/// be done by
/// - having all (strongly connected) PHIs in a single statement,
/// - unite only the PHIs in the operand tree of the PHI WRITE (because it only
///   has a chance of being lifted before a PHI by being in a statement with a
///   PHI that comes before in the basic block), or
/// - when uniting statements, ensure that no (relevant) PHIs are overtaken.
static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind,
                            ArrayRef<Instruction *> ModeledInsts) {
  for (Instruction *Inst : ModeledInsts) {
    PHINode *PHI = dyn_cast<PHINode>(Inst);
    if (!PHI)
      continue;

    int Idx = PHI->getBasicBlockIndex(PHI->getParent());
    if (Idx < 0)
      continue;

    Instruction *IncomingVal =
        dyn_cast<Instruction>(PHI->getIncomingValue(Idx));
    if (!IncomingVal)
      continue;

    UnionFind.unionSets(PHI, IncomingVal);
  }
}

void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) {
  Loop *L = LI.getLoopFor(BB);

  // Extracting out modeled instructions saves us from checking
  // shouldModelInst() repeatedly.
  SmallVector<Instruction *, 32> ModeledInsts;
  EquivalenceClasses<Instruction *> UnionFind;
  Instruction *MainInst = nullptr, *MainLeader = nullptr;
  for (Instruction &Inst : *BB) {
    if (!shouldModelInst(&Inst, L))
      continue;
    ModeledInsts.push_back(&Inst);
    UnionFind.insert(&Inst);

    // When a BB is split into multiple statements, the main statement is the
    // one containing the 'main' instruction. We select the first instruction
    // that is unlikely to be removed (because it has side-effects) as the main
    // one. It is used to ensure that at least one statement from the bb has the
    // same name as with -polly-stmt-granularity=bb.
    if (!MainInst && (isa<StoreInst>(Inst) ||
                      (isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))))
      MainInst = &Inst;
  }

  joinOperandTree(UnionFind, ModeledInsts);
  joinOrderedInstructions(UnionFind, ModeledInsts);
  joinOrderedPHIs(UnionFind, ModeledInsts);

  // The list of instructions for statement (statement represented by the leader
  // instruction).
  MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList;

  // The order of statements must be preserved w.r.t. their ordered
  // instructions. Without this explicit scan, we would also use non-ordered
  // instructions (whose order is arbitrary) to determine statement order.
  for (Instruction &Inst : *BB) {
    if (!isOrderedInstruction(&Inst))
      continue;

    auto LeaderIt = UnionFind.findLeader(&Inst);
    if (LeaderIt == UnionFind.member_end())
      continue;

    // Insert element for the leader instruction.
    (void)LeaderToInstList[*LeaderIt];
  }

  // Collect the instructions of all leaders. UnionFind's member iterator
  // unfortunately are not in any specific order.
  for (Instruction &Inst : *BB) {
    auto LeaderIt = UnionFind.findLeader(&Inst);
    if (LeaderIt == UnionFind.member_end())
      continue;

    if (&Inst == MainInst)
      MainLeader = *LeaderIt;
    std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt];
    InstList.push_back(&Inst);
  }

  // Finally build the statements.
  int Count = 0;
  long BBIdx = scop->getNextStmtIdx();
  for (auto &Instructions : LeaderToInstList) {
    std::vector<Instruction *> &InstList = Instructions.second;

    // If there is no main instruction, make the first statement the main.
    bool IsMain = (MainInst ? MainLeader == Instructions.first : Count == 0);

    std::string Name = makeStmtName(BB, BBIdx, Count, IsMain);
    scop->addScopStmt(BB, Name, L, std::move(InstList));
    Count += 1;
  }

  // Unconditionally add an epilogue (last statement). It contains no
  // instructions, but holds the PHI write accesses for successor basic blocks,
  // if the incoming value is not defined in another statement if the same BB.
  // The epilogue becomes the main statement only if there is no other
  // statement that could become main.
  // The epilogue will be removed if no PHIWrite is added to it.
  std::string EpilogueName = makeStmtName(BB, BBIdx, Count, Count == 0, true);
  scop->addScopStmt(BB, EpilogueName, L, {});
}

void ScopBuilder::buildStmts(Region &SR) {
  if (scop->isNonAffineSubRegion(&SR)) {
    std::vector<Instruction *> Instructions;
    Loop *SurroundingLoop =
        getFirstNonBoxedLoopFor(SR.getEntry(), LI, scop->getBoxedLoops());
    for (Instruction &Inst : *SR.getEntry())
      if (shouldModelInst(&Inst, SurroundingLoop))
        Instructions.push_back(&Inst);
    long RIdx = scop->getNextStmtIdx();
    std::string Name = makeStmtName(&SR, RIdx);
    scop->addScopStmt(&SR, Name, SurroundingLoop, Instructions);
    return;
  }

  for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
    if (I->isSubRegion())
      buildStmts(*I->getNodeAs<Region>());
    else {
      BasicBlock *BB = I->getNodeAs<BasicBlock>();
      switch (StmtGranularity) {
      case GranularityChoice::BasicBlocks:
        buildSequentialBlockStmts(BB);
        break;
      case GranularityChoice::ScalarIndependence:
        buildEqivClassBlockStmts(BB);
        break;
      case GranularityChoice::Stores:
        buildSequentialBlockStmts(BB, true);
        break;
      }
    }
}

void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
                                       Region *NonAffineSubRegion) {
  assert(
      Stmt &&
      "The exit BB is the only one that cannot be represented by a statement");
  assert(Stmt->represents(&BB));

  // We do not build access functions for error blocks, as they may contain
  // instructions we can not model.
  if (isErrorBlock(BB, scop->getRegion(), LI, DT))
    return;

  auto BuildAccessesForInst = [this, Stmt,
                               NonAffineSubRegion](Instruction *Inst) {
    PHINode *PHI = dyn_cast<PHINode>(Inst);
    if (PHI)
      buildPHIAccesses(Stmt, PHI, NonAffineSubRegion, false);

    if (auto MemInst = MemAccInst::dyn_cast(*Inst)) {
      assert(Stmt && "Cannot build access function in non-existing statement");
      buildMemoryAccess(MemInst, Stmt);
    }

    // PHI nodes have already been modeled above and terminators that are
    // not part of a non-affine subregion are fully modeled and regenerated
    // from the polyhedral domains. Hence, they do not need to be modeled as
    // explicit data dependences.
    if (!PHI)
      buildScalarDependences(Stmt, Inst);
  };

  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  bool IsEntryBlock = (Stmt->getEntryBlock() == &BB);
  if (IsEntryBlock) {
    for (Instruction *Inst : Stmt->getInstructions())
      BuildAccessesForInst(Inst);
    if (Stmt->isRegionStmt())
      BuildAccessesForInst(BB.getTerminator());
  } else {
    for (Instruction &Inst : BB) {
      if (isIgnoredIntrinsic(&Inst))
        continue;

      // Invariant loads already have been processed.
      if (isa<LoadInst>(Inst) && RIL.count(cast<LoadInst>(&Inst)))
        continue;

      BuildAccessesForInst(&Inst);
    }
  }
}

MemoryAccess *ScopBuilder::addMemoryAccess(
    ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType,
    Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
    ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
    MemoryKind Kind) {
  bool isKnownMustAccess = false;

  // Accesses in single-basic block statements are always executed.
  if (Stmt->isBlockStmt())
    isKnownMustAccess = true;

  if (Stmt->isRegionStmt()) {
    // Accesses that dominate the exit block of a non-affine region are always
    // executed. In non-affine regions there may exist MemoryKind::Values that
    // do not dominate the exit. MemoryKind::Values will always dominate the
    // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the
    // non-affine region.
    if (Inst && DT.dominates(Inst->getParent(), Stmt->getRegion()->getExit()))
      isKnownMustAccess = true;
  }

  // Non-affine PHI writes do not "happen" at a particular instruction, but
  // after exiting the statement. Therefore they are guaranteed to execute and
  // overwrite the old value.
  if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI)
    isKnownMustAccess = true;

  if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
    AccType = MemoryAccess::MAY_WRITE;

  auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType,
                                  Affine, Subscripts, Sizes, AccessValue, Kind);

  scop->addAccessFunction(Access);
  Stmt->addAccess(Access);
  return Access;
}

void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
                                 MemoryAccess::AccessType AccType,
                                 Value *BaseAddress, Type *ElementType,
                                 bool IsAffine,
                                 ArrayRef<const SCEV *> Subscripts,
                                 ArrayRef<const SCEV *> Sizes,
                                 Value *AccessValue) {
  ArrayBasePointers.insert(BaseAddress);
  auto *MemAccess = addMemoryAccess(Stmt, MemAccInst, AccType, BaseAddress,
                                    ElementType, IsAffine, AccessValue,
                                    Subscripts, Sizes, MemoryKind::Array);

  if (!DetectFortranArrays)
    return;

  if (Value *FAD = findFADAllocationInvisible(MemAccInst))
    MemAccess->setFortranArrayDescriptor(FAD);
  else if (Value *FAD = findFADAllocationVisible(MemAccInst))
    MemAccess->setFortranArrayDescriptor(FAD);
}

/// Check if @p Expr is divisible by @p Size.
static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
  assert(Size != 0);
  if (Size == 1)
    return true;

  // Only one factor needs to be divisible.
  if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
    for (auto *FactorExpr : MulExpr->operands())
      if (isDivisible(FactorExpr, Size, SE))
        return true;
    return false;
  }

  // For other n-ary expressions (Add, AddRec, Max,...) all operands need
  // to be divisible.
  if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
    for (auto *OpExpr : NAryExpr->operands())
      if (!isDivisible(OpExpr, Size, SE))
        return false;
    return true;
  }

  auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
  auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
  auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
  return MulSCEV == Expr;
}

void ScopBuilder::foldSizeConstantsToRight() {
  isl::union_set Accessed = scop->getAccesses().range();

  for (auto Array : scop->arrays()) {
    if (Array->getNumberOfDimensions() <= 1)
      continue;

    isl::space Space = Array->getSpace();
    Space = Space.align_params(Accessed.get_space());

    if (!Accessed.contains(Space))
      continue;

    isl::set Elements = Accessed.extract_set(Space);
    isl::map Transform = isl::map::universe(Array->getSpace().map_from_set());

    std::vector<int> Int;
    int Dims = Elements.dim(isl::dim::set);
    for (int i = 0; i < Dims; i++) {
      isl::set DimOnly = isl::set(Elements).project_out(isl::dim::set, 0, i);
      DimOnly = DimOnly.project_out(isl::dim::set, 1, Dims - i - 1);
      DimOnly = DimOnly.lower_bound_si(isl::dim::set, 0, 0);

      isl::basic_set DimHull = DimOnly.affine_hull();

      if (i == Dims - 1) {
        Int.push_back(1);
        Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
        continue;
      }

      if (DimHull.dim(isl::dim::div) == 1) {
        isl::aff Diff = DimHull.get_div(0);
        isl::val Val = Diff.get_denominator_val();

        int ValInt = 1;
        if (Val.is_int()) {
          auto ValAPInt = APIntFromVal(Val);
          if (ValAPInt.isSignedIntN(32))
            ValInt = ValAPInt.getSExtValue();
        } else {
        }

        Int.push_back(ValInt);
        isl::constraint C = isl::constraint::alloc_equality(
            isl::local_space(Transform.get_space()));
        C = C.set_coefficient_si(isl::dim::out, i, ValInt);
        C = C.set_coefficient_si(isl::dim::in, i, -1);
        Transform = Transform.add_constraint(C);
        continue;
      }

      isl::basic_set ZeroSet = isl::basic_set(DimHull);
      ZeroSet = ZeroSet.fix_si(isl::dim::set, 0, 0);

      int ValInt = 1;
      if (ZeroSet.is_equal(DimHull)) {
        ValInt = 0;
      }

      Int.push_back(ValInt);
      Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
    }

    isl::set MappedElements = isl::map(Transform).domain();
    if (!Elements.is_subset(MappedElements))
      continue;

    bool CanFold = true;
    if (Int[0] <= 1)
      CanFold = false;

    unsigned NumDims = Array->getNumberOfDimensions();
    for (unsigned i = 1; i < NumDims - 1; i++)
      if (Int[0] != Int[i] && Int[i])
        CanFold = false;

    if (!CanFold)
      continue;

    for (auto &Access : scop->access_functions())
      if (Access->getScopArrayInfo() == Array)
        Access->setAccessRelation(
            Access->getAccessRelation().apply_range(Transform));

    std::vector<const SCEV *> Sizes;
    for (unsigned i = 0; i < NumDims; i++) {
      auto Size = Array->getDimensionSize(i);

      if (i == NumDims - 1)
        Size = SE.getMulExpr(Size, SE.getConstant(Size->getType(), Int[0]));
      Sizes.push_back(Size);
    }

    Array->updateSizes(Sizes, false /* CheckConsistency */);
  }
}

void ScopBuilder::markFortranArrays() {
  for (ScopStmt &Stmt : *scop) {
    for (MemoryAccess *MemAcc : Stmt) {
      Value *FAD = MemAcc->getFortranArrayDescriptor();
      if (!FAD)
        continue;

      // TODO: const_cast-ing to edit
      ScopArrayInfo *SAI =
          const_cast<ScopArrayInfo *>(MemAcc->getLatestScopArrayInfo());
      assert(SAI && "memory access into a Fortran array does not "
                    "have an associated ScopArrayInfo");
      SAI->applyAndSetFAD(FAD);
    }
  }
}

void ScopBuilder::finalizeAccesses() {
  updateAccessDimensionality();
  foldSizeConstantsToRight();
  foldAccessRelations();
  assumeNoOutOfBounds();
  markFortranArrays();
}

void ScopBuilder::updateAccessDimensionality() {
  // Check all array accesses for each base pointer and find a (virtual) element
  // size for the base pointer that divides all access functions.
  for (ScopStmt &Stmt : *scop)
    for (MemoryAccess *Access : Stmt) {
      if (!Access->isArrayKind())
        continue;
      ScopArrayInfo *Array =
          const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());

      if (Array->getNumberOfDimensions() != 1)
        continue;
      unsigned DivisibleSize = Array->getElemSizeInBytes();
      const SCEV *Subscript = Access->getSubscript(0);
      while (!isDivisible(Subscript, DivisibleSize, SE))
        DivisibleSize /= 2;
      auto *Ty = IntegerType::get(SE.getContext(), DivisibleSize * 8);
      Array->updateElementType(Ty);
    }

  for (auto &Stmt : *scop)
    for (auto &Access : Stmt)
      Access->updateDimensionality();
}

void ScopBuilder::foldAccessRelations() {
  for (auto &Stmt : *scop)
    for (auto &Access : Stmt)
      Access->foldAccessRelation();
}

void ScopBuilder::assumeNoOutOfBounds() {
  for (auto &Stmt : *scop)
    for (auto &Access : Stmt)
      Access->assumeNoOutOfBound();
}

void ScopBuilder::ensureValueWrite(Instruction *Inst) {
  // Find the statement that defines the value of Inst. That statement has to
  // write the value to make it available to those statements that read it.
  ScopStmt *Stmt = scop->getStmtFor(Inst);

  // It is possible that the value is synthesizable within a loop (such that it
  // is not part of any statement), but not after the loop (where you need the
  // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will
  // avoid this. In case the IR has no such PHI, use the last statement (where
  // the value is synthesizable) to write the value.
  if (!Stmt)
    Stmt = scop->getLastStmtFor(Inst->getParent());

  // Inst not defined within this SCoP.
  if (!Stmt)
    return;

  // Do not process further if the instruction is already written.
  if (Stmt->lookupValueWriteOf(Inst))
    return;

  addMemoryAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, Inst, Inst->getType(),
                  true, Inst, ArrayRef<const SCEV *>(),
                  ArrayRef<const SCEV *>(), MemoryKind::Value);
}

void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) {
  // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality
  // to be able to replace this one. Currently, there is a split responsibility.
  // In a first step, the MemoryAccess is created, but without the
  // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the
  // AccessRelation is created. At least for scalar accesses, there is no new
  // information available at ScopStmt::buildAccessRelations(), so we could
  // create the AccessRelation right away. This is what
  // ScopStmt::ensureValueRead(Value*) does.

  auto *Scope = UserStmt->getSurroundingLoop();
  auto VUse = VirtualUse::create(scop.get(), UserStmt, Scope, V, false);
  switch (VUse.getKind()) {
  case VirtualUse::Constant:
  case VirtualUse::Block:
  case VirtualUse::Synthesizable:
  case VirtualUse::Hoisted:
  case VirtualUse::Intra:
    // Uses of these kinds do not need a MemoryAccess.
    break;

  case VirtualUse::ReadOnly:
    // Add MemoryAccess for invariant values only if requested.
    if (!ModelReadOnlyScalars)
      break;

    LLVM_FALLTHROUGH;
  case VirtualUse::Inter:

    // Do not create another MemoryAccess for reloading the value if one already
    // exists.
    if (UserStmt->lookupValueReadOf(V))
      break;

    addMemoryAccess(UserStmt, nullptr, MemoryAccess::READ, V, V->getType(),
                    true, V, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
                    MemoryKind::Value);

    // Inter-statement uses need to write the value in their defining statement.
    if (VUse.isInter())
      ensureValueWrite(cast<Instruction>(V));
    break;
  }
}

void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt,
                                 BasicBlock *IncomingBlock,
                                 Value *IncomingValue, bool IsExitBlock) {
  // As the incoming block might turn out to be an error statement ensure we
  // will create an exit PHI SAI object. It is needed during code generation
  // and would be created later anyway.
  if (IsExitBlock)
    scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
                                   MemoryKind::ExitPHI);

  // This is possible if PHI is in the SCoP's entry block. The incoming blocks
  // from outside the SCoP's region have no statement representation.
  if (!IncomingStmt)
    return;

  // Take care for the incoming value being available in the incoming block.
  // This must be done before the check for multiple PHI writes because multiple
  // exiting edges from subregion each can be the effective written value of the
  // subregion. As such, all of them must be made available in the subregion
  // statement.
  ensureValueRead(IncomingValue, IncomingStmt);

  // Do not add more than one MemoryAccess per PHINode and ScopStmt.
  if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
    assert(Acc->getAccessInstruction() == PHI);
    Acc->addIncoming(IncomingBlock, IncomingValue);
    return;
  }

  MemoryAccess *Acc = addMemoryAccess(
      IncomingStmt, PHI, MemoryAccess::MUST_WRITE, PHI, PHI->getType(), true,
      PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
      IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI);
  assert(Acc);
  Acc->addIncoming(IncomingBlock, IncomingValue);
}

void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) {
  addMemoryAccess(PHIStmt, PHI, MemoryAccess::READ, PHI, PHI->getType(), true,
                  PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
                  MemoryKind::PHI);
}

void ScopBuilder::buildDomain(ScopStmt &Stmt) {
  isl::id Id = isl::id::alloc(scop->getIslCtx(), Stmt.getBaseName(), &Stmt);

  Stmt.Domain = scop->getDomainConditions(&Stmt);
  Stmt.Domain = Stmt.Domain.set_tuple_id(Id);
}

void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) {
  isl::set Domain = Stmt.getDomain();
  BasicBlock *BB = Stmt.getEntryBlock();

  Loop *L = LI.getLoopFor(BB);

  while (L && Stmt.isRegionStmt() && Stmt.getRegion()->contains(L))
    L = L->getParentLoop();

  SmallVector<llvm::Loop *, 8> Loops;

  while (L && Stmt.getParent()->getRegion().contains(L)) {
    Loops.push_back(L);
    L = L->getParentLoop();
  }

  Stmt.NestLoops.insert(Stmt.NestLoops.begin(), Loops.rbegin(), Loops.rend());
}

/// Return the reduction type for a given binary operator.
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
                                                    const Instruction *Load) {
  if (!BinOp)
    return MemoryAccess::RT_NONE;
  switch (BinOp->getOpcode()) {
  case Instruction::FAdd:
    if (!BinOp->isFast())
      return MemoryAccess::RT_NONE;
    LLVM_FALLTHROUGH;
  case Instruction::Add:
    return MemoryAccess::RT_ADD;
  case Instruction::Or:
    return MemoryAccess::RT_BOR;
  case Instruction::Xor:
    return MemoryAccess::RT_BXOR;
  case Instruction::And:
    return MemoryAccess::RT_BAND;
  case Instruction::FMul:
    if (!BinOp->isFast())
      return MemoryAccess::RT_NONE;
    LLVM_FALLTHROUGH;
  case Instruction::Mul:
    if (DisableMultiplicativeReductions)
      return MemoryAccess::RT_NONE;
    return MemoryAccess::RT_MUL;
  default:
    return MemoryAccess::RT_NONE;
  }
}

void ScopBuilder::checkForReductions(ScopStmt &Stmt) {
  SmallVector<MemoryAccess *, 2> Loads;
  SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;

  // First collect candidate load-store reduction chains by iterating over all
  // stores and collecting possible reduction loads.
  for (MemoryAccess *StoreMA : Stmt) {
    if (StoreMA->isRead())
      continue;

    Loads.clear();
    collectCandidateReductionLoads(StoreMA, Loads);
    for (MemoryAccess *LoadMA : Loads)
      Candidates.push_back(std::make_pair(LoadMA, StoreMA));
  }

  // Then check each possible candidate pair.
  for (const auto &CandidatePair : Candidates) {
    bool Valid = true;
    isl::map LoadAccs = CandidatePair.first->getAccessRelation();
    isl::map StoreAccs = CandidatePair.second->getAccessRelation();

    // Skip those with obviously unequal base addresses.
    if (!LoadAccs.has_equal_space(StoreAccs)) {
      continue;
    }

    // And check if the remaining for overlap with other memory accesses.
    isl::map AllAccsRel = LoadAccs.unite(StoreAccs);
    AllAccsRel = AllAccsRel.intersect_domain(Stmt.getDomain());
    isl::set AllAccs = AllAccsRel.range();

    for (MemoryAccess *MA : Stmt) {
      if (MA == CandidatePair.first || MA == CandidatePair.second)
        continue;

      isl::map AccRel =
          MA->getAccessRelation().intersect_domain(Stmt.getDomain());
      isl::set Accs = AccRel.range();

      if (AllAccs.has_equal_space(Accs)) {
        isl::set OverlapAccs = Accs.intersect(AllAccs);
        Valid = Valid && OverlapAccs.is_empty();
      }
    }

    if (!Valid)
      continue;

    const LoadInst *Load =
        dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
    MemoryAccess::ReductionType RT =
        getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);

    // If no overlapping access was found we mark the load and store as
    // reduction like.
    CandidatePair.first->markAsReductionLike(RT);
    CandidatePair.second->markAsReductionLike(RT);
  }
}

void ScopBuilder::verifyInvariantLoads() {
  auto &RIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LI : RIL) {
    assert(LI && scop->contains(LI));
    // If there exists a statement in the scop which has a memory access for
    // @p LI, then mark this scop as infeasible for optimization.
    for (ScopStmt &Stmt : *scop)
      if (Stmt.getArrayAccessOrNULLFor(LI)) {
        scop->invalidate(INVARIANTLOAD, LI->getDebugLoc(), LI->getParent());
        return;
      }
  }
}

void ScopBuilder::hoistInvariantLoads() {
  if (!PollyInvariantLoadHoisting)
    return;

  isl::union_map Writes = scop->getWrites();
  for (ScopStmt &Stmt : *scop) {
    InvariantAccessesTy InvariantAccesses;

    for (MemoryAccess *Access : Stmt)
      if (isl::set NHCtx = getNonHoistableCtx(Access, Writes))
        InvariantAccesses.push_back({Access, NHCtx});

    // Transfer the memory access from the statement to the SCoP.
    for (auto InvMA : InvariantAccesses)
      Stmt.removeMemoryAccess(InvMA.MA);
    addInvariantLoads(Stmt, InvariantAccesses);
  }
}

/// Check if an access range is too complex.
///
/// An access range is too complex, if it contains either many disjuncts or
/// very complex expressions. As a simple heuristic, we assume if a set to
/// be too complex if the sum of existentially quantified dimensions and
/// set dimensions is larger than a threshold. This reliably detects both
/// sets with many disjuncts as well as sets with many divisions as they
/// arise in h264.
///
/// @param AccessRange The range to check for complexity.
///
/// @returns True if the access range is too complex.
static bool isAccessRangeTooComplex(isl::set AccessRange) {
  int NumTotalDims = 0;

  for (isl::basic_set BSet : AccessRange.get_basic_set_list()) {
    NumTotalDims += BSet.dim(isl::dim::div);
    NumTotalDims += BSet.dim(isl::dim::set);
  }

  if (NumTotalDims > MaxDimensionsInAccessRange)
    return true;

  return false;
}

bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
                                               isl::union_map Writes) {
  if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) {
    return getNonHoistableCtx(BasePtrMA, Writes).is_null();
  }

  Value *BaseAddr = MA->getOriginalBaseAddr();
  if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr))
    if (!isa<LoadInst>(BasePtrInst))
      return scop->contains(BasePtrInst);

  return false;
}

void ScopBuilder::addUserContext() {
  if (UserContextStr.empty())
    return;

  isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str());
  isl::space Space = scop->getParamSpace();
  if (Space.dim(isl::dim::param) != UserContext.dim(isl::dim::param)) {
    std::string SpaceStr = Space.to_str();
    errs() << "Error: the context provided in -polly-context has not the same "
           << "number of dimensions than the computed context. Due to this "
           << "mismatch, the -polly-context option is ignored. Please provide "
           << "the context in the parameter space: " << SpaceStr << ".\n";
    return;
  }

  for (unsigned i = 0; i < Space.dim(isl::dim::param); i++) {
    std::string NameContext =
        scop->getContext().get_dim_name(isl::dim::param, i);
    std::string NameUserContext = UserContext.get_dim_name(isl::dim::param, i);

    if (NameContext != NameUserContext) {
      std::string SpaceStr = Space.to_str();
      errs() << "Error: the name of dimension " << i
             << " provided in -polly-context "
             << "is '" << NameUserContext << "', but the name in the computed "
             << "context is '" << NameContext
             << "'. Due to this name mismatch, "
             << "the -polly-context option is ignored. Please provide "
             << "the context in the parameter space: " << SpaceStr << ".\n";
      return;
    }

    UserContext = UserContext.set_dim_id(isl::dim::param, i,
                                         Space.get_dim_id(isl::dim::param, i));
  }
  isl::set newContext = scop->getContext().intersect(UserContext);
  scop->setContext(newContext);
}

isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access,
                                         isl::union_map Writes) {
  // TODO: Loads that are not loop carried, hence are in a statement with
  //       zero iterators, are by construction invariant, though we
  //       currently "hoist" them anyway. This is necessary because we allow
  //       them to be treated as parameters (e.g., in conditions) and our code
  //       generation would otherwise use the old value.

  auto &Stmt = *Access->getStatement();
  BasicBlock *BB = Stmt.getEntryBlock();

  if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
      Access->isMemoryIntrinsic())
    return nullptr;

  // Skip accesses that have an invariant base pointer which is defined but
  // not loaded inside the SCoP. This can happened e.g., if a readnone call
  // returns a pointer that is used as a base address. However, as we want
  // to hoist indirect pointers, we allow the base pointer to be defined in
  // the region if it is also a memory access. Each ScopArrayInfo object
  // that has a base pointer origin has a base pointer that is loaded and
  // that it is invariant, thus it will be hoisted too. However, if there is
  // no base pointer origin we check that the base pointer is defined
  // outside the region.
  auto *LI = cast<LoadInst>(Access->getAccessInstruction());
  if (hasNonHoistableBasePtrInScop(Access, Writes))
    return nullptr;

  isl::map AccessRelation = Access->getAccessRelation();
  assert(!AccessRelation.is_empty());

  if (AccessRelation.involves_dims(isl::dim::in, 0, Stmt.getNumIterators()))
    return nullptr;

  AccessRelation = AccessRelation.intersect_domain(Stmt.getDomain());
  isl::set SafeToLoad;

  auto &DL = scop->getFunction().getParent()->getDataLayout();
  if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getType(),
                                  MaybeAlign(LI->getAlignment()), DL)) {
    SafeToLoad = isl::set::universe(AccessRelation.get_space().range());
  } else if (BB != LI->getParent()) {
    // Skip accesses in non-affine subregions as they might not be executed
    // under the same condition as the entry of the non-affine subregion.
    return nullptr;
  } else {
    SafeToLoad = AccessRelation.range();
  }

  if (isAccessRangeTooComplex(AccessRelation.range()))
    return nullptr;

  isl::union_map Written = Writes.intersect_range(SafeToLoad);
  isl::set WrittenCtx = Written.params();
  bool IsWritten = !WrittenCtx.is_empty();

  if (!IsWritten)
    return WrittenCtx;

  WrittenCtx = WrittenCtx.remove_divs();
  bool TooComplex = WrittenCtx.n_basic_set() >= MaxDisjunctsInDomain;
  if (TooComplex || !isRequiredInvariantLoad(LI))
    return nullptr;

  scop->addAssumption(INVARIANTLOAD, WrittenCtx, LI->getDebugLoc(),
                      AS_RESTRICTION, LI->getParent());
  return WrittenCtx;
}

static bool isAParameter(llvm::Value *maybeParam, const Function &F) {
  for (const llvm::Argument &Arg : F.args())
    if (&Arg == maybeParam)
      return true;

  return false;
}

bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA,
                                     bool StmtInvalidCtxIsEmpty,
                                     bool MAInvalidCtxIsEmpty,
                                     bool NonHoistableCtxIsEmpty) {
  LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
  const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout();
  if (PollyAllowDereferenceOfAllFunctionParams &&
      isAParameter(LInst->getPointerOperand(), scop->getFunction()))
    return true;

  // TODO: We can provide more information for better but more expensive
  //       results.
  if (!isDereferenceableAndAlignedPointer(
          LInst->getPointerOperand(), LInst->getType(),
          MaybeAlign(LInst->getAlignment()), DL))
    return false;

  // If the location might be overwritten we do not hoist it unconditionally.
  //
  // TODO: This is probably too conservative.
  if (!NonHoistableCtxIsEmpty)
    return false;

  // If a dereferenceable load is in a statement that is modeled precisely we
  // can hoist it.
  if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
    return true;

  // Even if the statement is not modeled precisely we can hoist the load if it
  // does not involve any parameters that might have been specialized by the
  // statement domain.
  for (unsigned u = 0, e = MA->getNumSubscripts(); u < e; u++)
    if (!isa<SCEVConstant>(MA->getSubscript(u)))
      return false;
  return true;
}

void ScopBuilder::addInvariantLoads(ScopStmt &Stmt,
                                    InvariantAccessesTy &InvMAs) {
  if (InvMAs.empty())
    return;

  isl::set StmtInvalidCtx = Stmt.getInvalidContext();
  bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty();

  // Get the context under which the statement is executed but remove the error
  // context under which this statement is reached.
  isl::set DomainCtx = Stmt.getDomain().params();
  DomainCtx = DomainCtx.subtract(StmtInvalidCtx);

  if (DomainCtx.n_basic_set() >= MaxDisjunctsInDomain) {
    auto *AccInst = InvMAs.front().MA->getAccessInstruction();
    scop->invalidate(COMPLEXITY, AccInst->getDebugLoc(), AccInst->getParent());
    return;
  }

  // Project out all parameters that relate to loads in the statement. Otherwise
  // we could have cyclic dependences on the constraints under which the
  // hoisted loads are executed and we could not determine an order in which to
  // pre-load them. This happens because not only lower bounds are part of the
  // domain but also upper bounds.
  for (auto &InvMA : InvMAs) {
    auto *MA = InvMA.MA;
    Instruction *AccInst = MA->getAccessInstruction();
    if (SE.isSCEVable(AccInst->getType())) {
      SetVector<Value *> Values;
      for (const SCEV *Parameter : scop->parameters()) {
        Values.clear();
        findValues(Parameter, SE, Values);
        if (!Values.count(AccInst))
          continue;

        if (isl::id ParamId = scop->getIdForParam(Parameter)) {
          int Dim = DomainCtx.find_dim_by_id(isl::dim::param, ParamId);
          if (Dim >= 0)
            DomainCtx = DomainCtx.eliminate(isl::dim::param, Dim, 1);
        }
      }
    }
  }

  for (auto &InvMA : InvMAs) {
    auto *MA = InvMA.MA;
    isl::set NHCtx = InvMA.NonHoistableCtx;

    // Check for another invariant access that accesses the same location as
    // MA and if found consolidate them. Otherwise create a new equivalence
    // class at the end of InvariantEquivClasses.
    LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
    Type *Ty = LInst->getType();
    const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());

    isl::set MAInvalidCtx = MA->getInvalidContext();
    bool NonHoistableCtxIsEmpty = NHCtx.is_empty();
    bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty();

    isl::set MACtx;
    // Check if we know that this pointer can be speculatively accessed.
    if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
                           NonHoistableCtxIsEmpty)) {
      MACtx = isl::set::universe(DomainCtx.get_space());
    } else {
      MACtx = DomainCtx;
      MACtx = MACtx.subtract(MAInvalidCtx.unite(NHCtx));
      MACtx = MACtx.gist_params(scop->getContext());
    }

    bool Consolidated = false;
    for (auto &IAClass : scop->invariantEquivClasses()) {
      if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
        continue;

      // If the pointer and the type is equal check if the access function wrt.
      // to the domain is equal too. It can happen that the domain fixes
      // parameter values and these can be different for distinct part of the
      // SCoP. If this happens we cannot consolidate the loads but need to
      // create a new invariant load equivalence class.
      auto &MAs = IAClass.InvariantAccesses;
      if (!MAs.empty()) {
        auto *LastMA = MAs.front();

        isl::set AR = MA->getAccessRelation().range();
        isl::set LastAR = LastMA->getAccessRelation().range();
        bool SameAR = AR.is_equal(LastAR);

        if (!SameAR)
          continue;
      }

      // Add MA to the list of accesses that are in this class.
      MAs.push_front(MA);

      Consolidated = true;

      // Unify the execution context of the class and this statement.
      isl::set IAClassDomainCtx = IAClass.ExecutionContext;
      if (IAClassDomainCtx)
        IAClassDomainCtx = IAClassDomainCtx.unite(MACtx).coalesce();
      else
        IAClassDomainCtx = MACtx;
      IAClass.ExecutionContext = IAClassDomainCtx;
      break;
    }

    if (Consolidated)
      continue;

    MACtx = MACtx.coalesce();

    // If we did not consolidate MA, thus did not find an equivalence class
    // for it, we create a new one.
    scop->addInvariantEquivClass(
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty});
  }
}

void ScopBuilder::collectCandidateReductionLoads(
    MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
  ScopStmt *Stmt = StoreMA->getStatement();

  auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
  if (!Store)
    return;

  // Skip if there is not one binary operator between the load and the store
  auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
  if (!BinOp)
    return;

  // Skip if the binary operators has multiple uses
  if (BinOp->getNumUses() != 1)
    return;

  // Skip if the opcode of the binary operator is not commutative/associative
  if (!BinOp->isCommutative() || !BinOp->isAssociative())
    return;

  // Skip if the binary operator is outside the current SCoP
  if (BinOp->getParent() != Store->getParent())
    return;

  // Skip if it is a multiplicative reduction and we disabled them
  if (DisableMultiplicativeReductions &&
      (BinOp->getOpcode() == Instruction::Mul ||
       BinOp->getOpcode() == Instruction::FMul))
    return;

  // Check the binary operator operands for a candidate load
  auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
  auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
  if (!PossibleLoad0 && !PossibleLoad1)
    return;

  // A load is only a candidate if it cannot escape (thus has only this use)
  if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
    if (PossibleLoad0->getParent() == Store->getParent())
      Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad0));
  if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
    if (PossibleLoad1->getParent() == Store->getParent())
      Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad1));
}

/// Find the canonical scop array info object for a set of invariant load
/// hoisted loads. The canonical array is the one that corresponds to the
/// first load in the list of accesses which is used as base pointer of a
/// scop array.
static const ScopArrayInfo *findCanonicalArray(Scop &S,
                                               MemoryAccessList &Accesses) {
  for (MemoryAccess *Access : Accesses) {
    const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull(
        Access->getAccessInstruction(), MemoryKind::Array);
    if (CanonicalArray)
      return CanonicalArray;
  }
  return nullptr;
}

/// Check if @p Array severs as base array in an invariant load.
static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) {
  for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses())
    for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
      if (Access2->getScopArrayInfo() == Array)
        return true;
  return false;
}

/// Replace the base pointer arrays in all memory accesses referencing @p Old,
/// with a reference to @p New.
static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old,
                                 const ScopArrayInfo *New) {
  for (ScopStmt &Stmt : S)
    for (MemoryAccess *Access : Stmt) {
      if (Access->getLatestScopArrayInfo() != Old)
        continue;

      isl::id Id = New->getBasePtrId();
      isl::map Map = Access->getAccessRelation();
      Map = Map.set_tuple_id(isl::dim::out, Id);
      Access->setAccessRelation(Map);
    }
}

void ScopBuilder::canonicalizeDynamicBasePtrs() {
  for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) {
    MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;

    const ScopArrayInfo *CanonicalBasePtrSAI =
        findCanonicalArray(*scop, BasePtrAccesses);

    if (!CanonicalBasePtrSAI)
      continue;

    for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
      const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull(
          BasePtrAccess->getAccessInstruction(), MemoryKind::Array);
      if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
          !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI))
        continue;

      // we currently do not canonicalize arrays where some accesses are
      // hoisted as invariant loads. If we would, we need to update the access
      // function of the invariant loads as well. However, as this is not a
      // very common situation, we leave this for now to avoid further
      // complexity increases.
      if (isUsedForIndirectHoistedLoad(*scop, BasePtrSAI))
        continue;

      replaceBasePtrArrays(*scop, BasePtrSAI, CanonicalBasePtrSAI);
    }
  }
}

void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) {
  for (MemoryAccess *Access : Stmt.MemAccs) {
    Type *ElementType = Access->getElementType();

    MemoryKind Ty;
    if (Access->isPHIKind())
      Ty = MemoryKind::PHI;
    else if (Access->isExitPHIKind())
      Ty = MemoryKind::ExitPHI;
    else if (Access->isValueKind())
      Ty = MemoryKind::Value;
    else
      Ty = MemoryKind::Array;

    auto *SAI = scop->getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(),
                                               ElementType, Access->Sizes, Ty);
    Access->buildAccessRelation(SAI);
    scop->addAccessData(Access);
  }
}

/// Add the minimal/maximal access in @p Set to @p User.
///
/// @return True if more accesses should be added, false if we reached the
///         maximal number of run-time checks to be generated.
static bool buildMinMaxAccess(isl::set Set,
                              Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) {
  isl::pw_multi_aff MinPMA, MaxPMA;
  isl::pw_aff LastDimAff;
  isl::aff OneAff;
  unsigned Pos;

  Set = Set.remove_divs();
  polly::simplify(Set);

  if (Set.n_basic_set() > RunTimeChecksMaxAccessDisjuncts)
    Set = Set.simple_hull();

  // Restrict the number of parameters involved in the access as the lexmin/
  // lexmax computation will take too long if this number is high.
  //
  // Experiments with a simple test case using an i7 4800MQ:
  //
  //  #Parameters involved | Time (in sec)
  //            6          |     0.01
  //            7          |     0.04
  //            8          |     0.12
  //            9          |     0.40
  //           10          |     1.54
  //           11          |     6.78
  //           12          |    30.38
  //
  if (isl_set_n_param(Set.get()) > RunTimeChecksMaxParameters) {
    unsigned InvolvedParams = 0;
    for (unsigned u = 0, e = isl_set_n_param(Set.get()); u < e; u++)
      if (Set.involves_dims(isl::dim::param, u, 1))
        InvolvedParams++;

    if (InvolvedParams > RunTimeChecksMaxParameters)
      return false;
  }

  MinPMA = Set.lexmin_pw_multi_aff();
  MaxPMA = Set.lexmax_pw_multi_aff();

  MinPMA = MinPMA.coalesce();
  MaxPMA = MaxPMA.coalesce();

  // Adjust the last dimension of the maximal access by one as we want to
  // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
  // we test during code generation might now point after the end of the
  // allocated array but we will never dereference it anyway.
  assert((!MaxPMA || MaxPMA.dim(isl::dim::out)) &&
         "Assumed at least one output dimension");

  Pos = MaxPMA.dim(isl::dim::out) - 1;
  LastDimAff = MaxPMA.get_pw_aff(Pos);
  OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space()));
  OneAff = OneAff.add_constant_si(1);
  LastDimAff = LastDimAff.add(OneAff);
  MaxPMA = MaxPMA.set_pw_aff(Pos, LastDimAff);

  if (!MinPMA || !MaxPMA)
    return false;

  MinMaxAccesses.push_back(std::make_pair(MinPMA, MaxPMA));

  return true;
}

/// Wrapper function to calculate minimal/maximal accesses to each array.
bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup,
                                        Scop::MinMaxVectorTy &MinMaxAccesses) {
  MinMaxAccesses.reserve(AliasGroup.size());

  isl::union_set Domains = scop->getDomains();
  isl::union_map Accesses = isl::union_map::empty(scop->getParamSpace());

  for (MemoryAccess *MA : AliasGroup)
    Accesses = Accesses.add_map(MA->getAccessRelation());

  Accesses = Accesses.intersect_domain(Domains);
  isl::union_set Locations = Accesses.range();

  bool LimitReached = false;
  for (isl::set Set : Locations.get_set_list()) {
    LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, *scop);
    if (LimitReached)
      break;
  }

  return !LimitReached;
}

static isl::set getAccessDomain(MemoryAccess *MA) {
  isl::set Domain = MA->getStatement()->getDomain();
  Domain = Domain.project_out(isl::dim::set, 0, Domain.n_dim());
  return Domain.reset_tuple_id();
}

bool ScopBuilder::buildAliasChecks() {
  if (!PollyUseRuntimeAliasChecks)
    return true;

  if (buildAliasGroups()) {
    // Aliasing assumptions do not go through addAssumption but we still want to
    // collect statistics so we do it here explicitly.
    if (scop->getAliasGroups().size())
      Scop::incrementNumberOfAliasingAssumptions(1);
    return true;
  }

  // If a problem occurs while building the alias groups we need to delete
  // this SCoP and pretend it wasn't valid in the first place. To this end
  // we make the assumed context infeasible.
  scop->invalidate(ALIASING, DebugLoc());

  LLVM_DEBUG(
      dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr()
             << " could not be created as the number of parameters involved "
                "is too high. The SCoP will be "
                "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
                "the maximal number of parameters but be advised that the "
                "compile time might increase exponentially.\n\n");
  return false;
}

std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
ScopBuilder::buildAliasGroupsForAccesses() {
  AliasSetTracker AST(AA);

  DenseMap<Value *, MemoryAccess *> PtrToAcc;
  DenseSet<const ScopArrayInfo *> HasWriteAccess;
  for (ScopStmt &Stmt : *scop) {

    isl::set StmtDomain = Stmt.getDomain();
    bool StmtDomainEmpty = StmtDomain.is_empty();

    // Statements with an empty domain will never be executed.
    if (StmtDomainEmpty)
      continue;

    for (MemoryAccess *MA : Stmt) {
      if (MA->isScalarKind())
        continue;
      if (!MA->isRead())
        HasWriteAccess.insert(MA->getScopArrayInfo());
      MemAccInst Acc(MA->getAccessInstruction());
      if (MA->isRead() && isa<MemTransferInst>(Acc))
        PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA;
      else
        PtrToAcc[Acc.getPointerOperand()] = MA;
      AST.add(Acc);
    }
  }

  AliasGroupVectorTy AliasGroups;
  for (AliasSet &AS : AST) {
    if (AS.isMustAlias() || AS.isForwardingAliasSet())
      continue;
    AliasGroupTy AG;
    for (auto &PR : AS)
      AG.push_back(PtrToAcc[PR.getValue()]);
    if (AG.size() < 2)
      continue;
    AliasGroups.push_back(std::move(AG));
  }

  return std::make_tuple(AliasGroups, HasWriteAccess);
}

bool ScopBuilder::buildAliasGroups() {
  // To create sound alias checks we perform the following steps:
  //   o) We partition each group into read only and non read only accesses.
  //   o) For each group with more than one base pointer we then compute minimal
  //      and maximal accesses to each array of a group in read only and non
  //      read only partitions separately.
  AliasGroupVectorTy AliasGroups;
  DenseSet<const ScopArrayInfo *> HasWriteAccess;

  std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses();

  splitAliasGroupsByDomain(AliasGroups);

  for (AliasGroupTy &AG : AliasGroups) {
    if (!scop->hasFeasibleRuntimeContext())
      return false;

    {
      IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut);
      bool Valid = buildAliasGroup(AG, HasWriteAccess);
      if (!Valid)
        return false;
    }
    if (isl_ctx_last_error(scop->getIslCtx().get()) == isl_error_quota) {
      scop->invalidate(COMPLEXITY, DebugLoc());
      return false;
    }
  }

  return true;
}

bool ScopBuilder::buildAliasGroup(
    AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) {
  AliasGroupTy ReadOnlyAccesses;
  AliasGroupTy ReadWriteAccesses;
  SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
  SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;

  if (AliasGroup.size() < 2)
    return true;

  for (MemoryAccess *Access : AliasGroup) {
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias",
                                        Access->getAccessInstruction())
             << "Possibly aliasing pointer, use restrict keyword.");
    const ScopArrayInfo *Array = Access->getScopArrayInfo();
    if (HasWriteAccess.count(Array)) {
      ReadWriteArrays.insert(Array);
      ReadWriteAccesses.push_back(Access);
    } else {
      ReadOnlyArrays.insert(Array);
      ReadOnlyAccesses.push_back(Access);
    }
  }

  // If there are no read-only pointers, and less than two read-write pointers,
  // no alias check is needed.
  if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
    return true;

  // If there is no read-write pointer, no alias check is needed.
  if (ReadWriteArrays.empty())
    return true;

  // For non-affine accesses, no alias check can be generated as we cannot
  // compute a sufficiently tight lower and upper bound: bail out.
  for (MemoryAccess *MA : AliasGroup) {
    if (!MA->isAffine()) {
      scop->invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc(),
                       MA->getAccessInstruction()->getParent());
      return false;
    }
  }

  // Ensure that for all memory accesses for which we generate alias checks,
  // their base pointers are available.
  for (MemoryAccess *MA : AliasGroup) {
    if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA))
      scop->addRequiredInvariantLoad(
          cast<LoadInst>(BasePtrMA->getAccessInstruction()));
  }

  //  scop->getAliasGroups().emplace_back();
  //  Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back();
  Scop::MinMaxVectorTy MinMaxAccessesReadWrite;
  Scop::MinMaxVectorTy MinMaxAccessesReadOnly;

  bool Valid;

  Valid = calculateMinMaxAccess(ReadWriteAccesses, MinMaxAccessesReadWrite);

  if (!Valid)
    return false;

  // Bail out if the number of values we need to compare is too large.
  // This is important as the number of comparisons grows quadratically with
  // the number of values we need to compare.
  if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
      RunTimeChecksMaxArraysPerGroup)
    return false;

  Valid = calculateMinMaxAccess(ReadOnlyAccesses, MinMaxAccessesReadOnly);

  scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly);
  if (!Valid)
    return false;

  return true;
}

void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
  for (unsigned u = 0; u < AliasGroups.size(); u++) {
    AliasGroupTy NewAG;
    AliasGroupTy &AG = AliasGroups[u];
    AliasGroupTy::iterator AGI = AG.begin();
    isl::set AGDomain = getAccessDomain(*AGI);
    while (AGI != AG.end()) {
      MemoryAccess *MA = *AGI;
      isl::set MADomain = getAccessDomain(MA);
      if (AGDomain.is_disjoint(MADomain)) {
        NewAG.push_back(MA);
        AGI = AG.erase(AGI);
      } else {
        AGDomain = AGDomain.unite(MADomain);
        AGI++;
      }
    }
    if (NewAG.size() > 1)
      AliasGroups.push_back(std::move(NewAG));
  }
}

#ifndef NDEBUG
static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) {
  auto PhysUse = VirtualUse::create(S, Op, &LI, false);
  auto VirtUse = VirtualUse::create(S, Op, &LI, true);
  assert(PhysUse.getKind() == VirtUse.getKind());
}

/// Check the consistency of every statement's MemoryAccesses.
///
/// The check is carried out by expecting the "physical" kind of use (derived
/// from the BasicBlocks instructions resides in) to be same as the "virtual"
/// kind of use (derived from a statement's MemoryAccess).
///
/// The "physical" uses are taken by ensureValueRead to determine whether to
/// create MemoryAccesses. When done, the kind of scalar access should be the
/// same no matter which way it was derived.
///
/// The MemoryAccesses might be changed by later SCoP-modifying passes and hence
/// can intentionally influence on the kind of uses (not corresponding to the
/// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has
/// to pick up the virtual uses. But here in the code generator, this has not
/// happened yet, such that virtual and physical uses are equivalent.
static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) {
  for (auto *BB : S->getRegion().blocks()) {
    for (auto &Inst : *BB) {
      auto *Stmt = S->getStmtFor(&Inst);
      if (!Stmt)
        continue;

      if (isIgnoredIntrinsic(&Inst))
        continue;

      // Branch conditions are encoded in the statement domains.
      if (Inst.isTerminator() && Stmt->isBlockStmt())
        continue;

      // Verify all uses.
      for (auto &Op : Inst.operands())
        verifyUse(S, Op, LI);

      // Stores do not produce values used by other statements.
      if (isa<StoreInst>(Inst))
        continue;

      // For every value defined in the block, also check that a use of that
      // value in the same statement would not be an inter-statement use. It can
      // still be synthesizable or load-hoisted, but these kind of instructions
      // are not directly copied in code-generation.
      auto VirtDef =
          VirtualUse::create(S, Stmt, Stmt->getSurroundingLoop(), &Inst, true);
      assert(VirtDef.getKind() == VirtualUse::Synthesizable ||
             VirtDef.getKind() == VirtualUse::Intra ||
             VirtDef.getKind() == VirtualUse::Hoisted);
    }
  }

  if (S->hasSingleExitEdge())
    return;

  // PHINodes in the SCoP region's exit block are also uses to be checked.
  if (!S->getRegion().isTopLevelRegion()) {
    for (auto &Inst : *S->getRegion().getExit()) {
      if (!isa<PHINode>(Inst))
        break;

      for (auto &Op : Inst.operands())
        verifyUse(S, Op, LI);
    }
  }
}
#endif

void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
  scop.reset(new Scop(R, SE, LI, DT, *SD.getDetectionContext(&R), ORE));

  buildStmts(R);

  // Create all invariant load instructions first. These are categorized as
  // 'synthesizable', therefore are not part of any ScopStmt but need to be
  // created somewhere.
  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  for (BasicBlock *BB : scop->getRegion().blocks()) {
    if (isErrorBlock(*BB, scop->getRegion(), LI, DT))
      continue;

    for (Instruction &Inst : *BB) {
      LoadInst *Load = dyn_cast<LoadInst>(&Inst);
      if (!Load)
        continue;

      if (!RIL.count(Load))
        continue;

      // Invariant loads require a MemoryAccess to be created in some statement.
      // It is not important to which statement the MemoryAccess is added
      // because it will later be removed from the ScopStmt again. We chose the
      // first statement of the basic block the LoadInst is in.
      ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB);
      assert(!List.empty());
      ScopStmt *RILStmt = List.front();
      buildMemoryAccess(Load, RILStmt);
    }
  }
  buildAccessFunctions();

  // In case the region does not have an exiting block we will later (during
  // code generation) split the exit block. This will move potential PHI nodes
  // from the current exit block into the new region exiting block. Hence, PHI
  // nodes that are at this point not part of the region will be.
  // To handle these PHI nodes later we will now model their operands as scalar
  // accesses. Note that we do not model anything in the exit block if we have
  // an exiting block in the region, as there will not be any splitting later.
  if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) {
    for (Instruction &Inst : *R.getExit()) {
      PHINode *PHI = dyn_cast<PHINode>(&Inst);
      if (!PHI)
        break;

      buildPHIAccesses(nullptr, PHI, nullptr, true);
    }
  }

  // Create memory accesses for global reads since all arrays are now known.
  auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
  for (auto GlobalReadPair : GlobalReads) {
    ScopStmt *GlobalReadStmt = GlobalReadPair.first;
    Instruction *GlobalRead = GlobalReadPair.second;
    for (auto *BP : ArrayBasePointers)
      addArrayAccess(GlobalReadStmt, MemAccInst(GlobalRead), MemoryAccess::READ,
                     BP, BP->getType(), false, {AF}, {nullptr}, GlobalRead);
  }

  buildInvariantEquivalenceClasses();

  /// A map from basic blocks to their invalid domains.
  DenseMap<BasicBlock *, isl::set> InvalidDomainMap;

  if (!buildDomains(&R, InvalidDomainMap)) {
    LLVM_DEBUG(
        dbgs() << "Bailing-out because buildDomains encountered problems\n");
    return;
  }

  addUserAssumptions(AC, InvalidDomainMap);

  // Initialize the invalid domain.
  for (ScopStmt &Stmt : scop->Stmts)
    if (Stmt.isBlockStmt())
      Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]);
    else
      Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock(
          Stmt.getRegion()->getNode())]);

  // Remove empty statements.
  // Exit early in case there are no executable statements left in this scop.
  scop->removeStmtNotInDomainMap();
  scop->simplifySCoP(false);
  if (scop->isEmpty()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n");
    return;
  }

  // The ScopStmts now have enough information to initialize themselves.
  for (ScopStmt &Stmt : *scop) {
    collectSurroundingLoops(Stmt);

    buildDomain(Stmt);
    buildAccessRelations(Stmt);

    if (DetectReductions)
      checkForReductions(Stmt);
  }

  // Check early for a feasible runtime context.
  if (!scop->hasFeasibleRuntimeContext()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (early)\n");
    return;
  }

  // Check early for profitability. Afterwards it cannot change anymore,
  // only the runtime context could become infeasible.
  if (!scop->isProfitable(UnprofitableScalarAccs)) {
    scop->invalidate(PROFITABLE, DebugLoc());
    LLVM_DEBUG(
        dbgs() << "Bailing-out because SCoP is not considered profitable\n");
    return;
  }

  buildSchedule();

  finalizeAccesses();

  scop->realignParams();
  addUserContext();

  // After the context was fully constructed, thus all our knowledge about
  // the parameters is in there, we add all recorded assumptions to the
  // assumed/invalid context.
  addRecordedAssumptions();

  scop->simplifyContexts();
  if (!buildAliasChecks()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n");
    return;
  }

  hoistInvariantLoads();
  canonicalizeDynamicBasePtrs();
  verifyInvariantLoads();
  scop->simplifySCoP(true);

  // Check late for a feasible runtime context because profitability did not
  // change.
  if (!scop->hasFeasibleRuntimeContext()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n");
    return;
  }

#ifndef NDEBUG
  verifyUses(scop.get(), LI, DT);
#endif
}

ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
                         const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
                         ScopDetection &SD, ScalarEvolution &SE,
                         OptimizationRemarkEmitter &ORE)
    : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) {
  DebugLoc Beg, End;
  auto P = getBBPairForRegion(R);
  getDebugLocations(P, Beg, End);

  std::string Msg = "SCoP begins here.";
  ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first)
           << Msg);

  buildScop(*R, AC);

  LLVM_DEBUG(dbgs() << *scop);

  if (!scop->hasFeasibleRuntimeContext()) {
    InfeasibleScops++;
    Msg = "SCoP ends here but was dismissed.";
    LLVM_DEBUG(dbgs() << "SCoP detected but dismissed\n");
    scop.reset();
  } else {
    Msg = "SCoP ends here.";
    ++ScopFound;
    if (scop->getMaxLoopDepth() > 0)
      ++RichScopFound;
  }

  if (R->isTopLevelRegion())
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first)
             << Msg);
  else
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second)
             << Msg);
}