reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions.  It also performs simple dead load elimination.
//
// Note that this pass does the value numbering itself; it does not use the
// ValueNumbering analysis passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/VNCoercion.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::gvn;
using namespace llvm::VNCoercion;
using namespace PatternMatch;

#define DEBUG_TYPE "gvn"

STATISTIC(NumGVNInstr,  "Number of instructions deleted");
STATISTIC(NumGVNLoad,   "Number of loads deleted");
STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
STATISTIC(NumGVNBlocks, "Number of blocks merged");
STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
STATISTIC(NumGVNEqProp, "Number of equalities propagated");
STATISTIC(NumPRELoad,   "Number of loads PRE'd");

static cl::opt<bool> EnablePRE("enable-pre",
                               cl::init(true), cl::Hidden);
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));

// Maximum allowed recursion depth.
static cl::opt<uint32_t>
MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
                cl::desc("Max recurse depth in GVN (default = 1000)"));

static cl::opt<uint32_t> MaxNumDeps(
    "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
    cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));

struct llvm::GVN::Expression {
  uint32_t opcode;
  Type *type;
  bool commutative = false;
  SmallVector<uint32_t, 4> varargs;

  Expression(uint32_t o = ~2U) : opcode(o) {}

  bool operator==(const Expression &other) const {
    if (opcode != other.opcode)
      return false;
    if (opcode == ~0U || opcode == ~1U)
      return true;
    if (type != other.type)
      return false;
    if (varargs != other.varargs)
      return false;
    return true;
  }

  friend hash_code hash_value(const Expression &Value) {
    return hash_combine(
        Value.opcode, Value.type,
        hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
  }
};

namespace llvm {

template <> struct DenseMapInfo<GVN::Expression> {
  static inline GVN::Expression getEmptyKey() { return ~0U; }
  static inline GVN::Expression getTombstoneKey() { return ~1U; }

  static unsigned getHashValue(const GVN::Expression &e) {
    using llvm::hash_value;

    return static_cast<unsigned>(hash_value(e));
  }

  static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
    return LHS == RHS;
  }
};

} // end namespace llvm

/// Represents a particular available value that we know how to materialize.
/// Materialization of an AvailableValue never fails.  An AvailableValue is
/// implicitly associated with a rematerialization point which is the
/// location of the instruction from which it was formed.
struct llvm::gvn::AvailableValue {
  enum ValType {
    SimpleVal, // A simple offsetted value that is accessed.
    LoadVal,   // A value produced by a load.
    MemIntrin, // A memory intrinsic which is loaded from.
    UndefVal   // A UndefValue representing a value from dead block (which
               // is not yet physically removed from the CFG).
  };

  /// V - The value that is live out of the block.
  PointerIntPair<Value *, 2, ValType> Val;

  /// Offset - The byte offset in Val that is interesting for the load query.
  unsigned Offset;

  static AvailableValue get(Value *V, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(V);
    Res.Val.setInt(SimpleVal);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(MI);
    Res.Val.setInt(MemIntrin);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
    AvailableValue Res;
    Res.Val.setPointer(LI);
    Res.Val.setInt(LoadVal);
    Res.Offset = Offset;
    return Res;
  }

  static AvailableValue getUndef() {
    AvailableValue Res;
    Res.Val.setPointer(nullptr);
    Res.Val.setInt(UndefVal);
    Res.Offset = 0;
    return Res;
  }

  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
  bool isUndefValue() const { return Val.getInt() == UndefVal; }

  Value *getSimpleValue() const {
    assert(isSimpleValue() && "Wrong accessor");
    return Val.getPointer();
  }

  LoadInst *getCoercedLoadValue() const {
    assert(isCoercedLoadValue() && "Wrong accessor");
    return cast<LoadInst>(Val.getPointer());
  }

  MemIntrinsic *getMemIntrinValue() const {
    assert(isMemIntrinValue() && "Wrong accessor");
    return cast<MemIntrinsic>(Val.getPointer());
  }

  /// Emit code at the specified insertion point to adjust the value defined
  /// here to the specified type. This handles various coercion cases.
  Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
                                  GVN &gvn) const;
};

/// Represents an AvailableValue which can be rematerialized at the end of
/// the associated BasicBlock.
struct llvm::gvn::AvailableValueInBlock {
  /// BB - The basic block in question.
  BasicBlock *BB;

  /// AV - The actual available value
  AvailableValue AV;

  static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
    AvailableValueInBlock Res;
    Res.BB = BB;
    Res.AV = std::move(AV);
    return Res;
  }

  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
                                   unsigned Offset = 0) {
    return get(BB, AvailableValue::get(V, Offset));
  }

  static AvailableValueInBlock getUndef(BasicBlock *BB) {
    return get(BB, AvailableValue::getUndef());
  }

  /// Emit code at the end of this block to adjust the value defined here to
  /// the specified type. This handles various coercion cases.
  Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
    return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
  }
};

//===----------------------------------------------------------------------===//
//                     ValueTable Internal Functions
//===----------------------------------------------------------------------===//

GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
  Expression e;
  e.type = I->getType();
  e.opcode = I->getOpcode();
  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
       OI != OE; ++OI)
    e.varargs.push_back(lookupOrAdd(*OI));
  if (I->isCommutative()) {
    // Ensure that commutative instructions that only differ by a permutation
    // of their operands get the same value number by sorting the operand value
    // numbers.  Since all commutative instructions have two operands it is more
    // efficient to sort by hand rather than using, say, std::sort.
    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    if (e.varargs[0] > e.varargs[1])
      std::swap(e.varargs[0], e.varargs[1]);
    e.commutative = true;
  }

  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    // Sort the operand value numbers so x<y and y>x get the same value number.
    CmpInst::Predicate Predicate = C->getPredicate();
    if (e.varargs[0] > e.varargs[1]) {
      std::swap(e.varargs[0], e.varargs[1]);
      Predicate = CmpInst::getSwappedPredicate(Predicate);
    }
    e.opcode = (C->getOpcode() << 8) | Predicate;
    e.commutative = true;
  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
         II != IE; ++II)
      e.varargs.push_back(*II);
  }

  return e;
}

GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
                                               CmpInst::Predicate Predicate,
                                               Value *LHS, Value *RHS) {
  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
         "Not a comparison!");
  Expression e;
  e.type = CmpInst::makeCmpResultType(LHS->getType());
  e.varargs.push_back(lookupOrAdd(LHS));
  e.varargs.push_back(lookupOrAdd(RHS));

  // Sort the operand value numbers so x<y and y>x get the same value number.
  if (e.varargs[0] > e.varargs[1]) {
    std::swap(e.varargs[0], e.varargs[1]);
    Predicate = CmpInst::getSwappedPredicate(Predicate);
  }
  e.opcode = (Opcode << 8) | Predicate;
  e.commutative = true;
  return e;
}

GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
  assert(EI && "Not an ExtractValueInst?");
  Expression e;
  e.type = EI->getType();
  e.opcode = 0;

  WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
  if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
    // EI is an extract from one of our with.overflow intrinsics. Synthesize
    // a semantically equivalent expression instead of an extract value
    // expression.
    e.opcode = WO->getBinaryOp();
    e.varargs.push_back(lookupOrAdd(WO->getLHS()));
    e.varargs.push_back(lookupOrAdd(WO->getRHS()));
    return e;
  }

  // Not a recognised intrinsic. Fall back to producing an extract value
  // expression.
  e.opcode = EI->getOpcode();
  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
       OI != OE; ++OI)
    e.varargs.push_back(lookupOrAdd(*OI));

  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
         II != IE; ++II)
    e.varargs.push_back(*II);

  return e;
}

//===----------------------------------------------------------------------===//
//                     ValueTable External Functions
//===----------------------------------------------------------------------===//

GVN::ValueTable::ValueTable() = default;
GVN::ValueTable::ValueTable(const ValueTable &) = default;
GVN::ValueTable::ValueTable(ValueTable &&) = default;
GVN::ValueTable::~ValueTable() = default;

/// add - Insert a value into the table with a specified value number.
void GVN::ValueTable::add(Value *V, uint32_t num) {
  valueNumbering.insert(std::make_pair(V, num));
  if (PHINode *PN = dyn_cast<PHINode>(V))
    NumberingPhi[num] = PN;
}

uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
  if (AA->doesNotAccessMemory(C)) {
    Expression exp = createExpr(C);
    uint32_t e = assignExpNewValueNum(exp).first;
    valueNumbering[C] = e;
    return e;
  } else if (MD && AA->onlyReadsMemory(C)) {
    Expression exp = createExpr(C);
    auto ValNum = assignExpNewValueNum(exp);
    if (ValNum.second) {
      valueNumbering[C] = ValNum.first;
      return ValNum.first;
    }

    MemDepResult local_dep = MD->getDependency(C);

    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
      valueNumbering[C] =  nextValueNumber;
      return nextValueNumber++;
    }

    if (local_dep.isDef()) {
      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());

      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
        valueNumbering[C] = nextValueNumber;
        return nextValueNumber++;
      }

      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
        uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
        uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
        if (c_vn != cd_vn) {
          valueNumbering[C] = nextValueNumber;
          return nextValueNumber++;
        }
      }

      uint32_t v = lookupOrAdd(local_cdep);
      valueNumbering[C] = v;
      return v;
    }

    // Non-local case.
    const MemoryDependenceResults::NonLocalDepInfo &deps =
        MD->getNonLocalCallDependency(C);
    // FIXME: Move the checking logic to MemDep!
    CallInst* cdep = nullptr;

    // Check to see if we have a single dominating call instruction that is
    // identical to C.
    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
      const NonLocalDepEntry *I = &deps[i];
      if (I->getResult().isNonLocal())
        continue;

      // We don't handle non-definitions.  If we already have a call, reject
      // instruction dependencies.
      if (!I->getResult().isDef() || cdep != nullptr) {
        cdep = nullptr;
        break;
      }

      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
      // FIXME: All duplicated with non-local case.
      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
        cdep = NonLocalDepCall;
        continue;
      }

      cdep = nullptr;
      break;
    }

    if (!cdep) {
      valueNumbering[C] = nextValueNumber;
      return nextValueNumber++;
    }

    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
      valueNumbering[C] = nextValueNumber;
      return nextValueNumber++;
    }
    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
      uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
      uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
      if (c_vn != cd_vn) {
        valueNumbering[C] = nextValueNumber;
        return nextValueNumber++;
      }
    }

    uint32_t v = lookupOrAdd(cdep);
    valueNumbering[C] = v;
    return v;
  } else {
    valueNumbering[C] = nextValueNumber;
    return nextValueNumber++;
  }
}

/// Returns true if a value number exists for the specified value.
bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }

/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
  if (VI != valueNumbering.end())
    return VI->second;

  if (!isa<Instruction>(V)) {
    valueNumbering[V] = nextValueNumber;
    return nextValueNumber++;
  }

  Instruction* I = cast<Instruction>(V);
  Expression exp;
  switch (I->getOpcode()) {
    case Instruction::Call:
      return lookupOrAddCall(cast<CallInst>(I));
    case Instruction::FNeg:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::AddrSpaceCast:
    case Instruction::BitCast:
    case Instruction::Select:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::InsertValue:
    case Instruction::GetElementPtr:
      exp = createExpr(I);
      break;
    case Instruction::ExtractValue:
      exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
      break;
    case Instruction::PHI:
      valueNumbering[V] = nextValueNumber;
      NumberingPhi[nextValueNumber] = cast<PHINode>(V);
      return nextValueNumber++;
    default:
      valueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
  }

  uint32_t e = assignExpNewValueNum(exp).first;
  valueNumbering[V] = e;
  return e;
}

/// Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
  if (Verify) {
    assert(VI != valueNumbering.end() && "Value not numbered?");
    return VI->second;
  }
  return (VI != valueNumbering.end()) ? VI->second : 0;
}

/// Returns the value number of the given comparison,
/// assigning it a new number if it did not have one before.  Useful when
/// we deduced the result of a comparison, but don't immediately have an
/// instruction realizing that comparison to hand.
uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
                                         CmpInst::Predicate Predicate,
                                         Value *LHS, Value *RHS) {
  Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
  return assignExpNewValueNum(exp).first;
}

/// Remove all entries from the ValueTable.
void GVN::ValueTable::clear() {
  valueNumbering.clear();
  expressionNumbering.clear();
  NumberingPhi.clear();
  PhiTranslateTable.clear();
  nextValueNumber = 1;
  Expressions.clear();
  ExprIdx.clear();
  nextExprNumber = 0;
}

/// Remove a value from the value numbering.
void GVN::ValueTable::erase(Value *V) {
  uint32_t Num = valueNumbering.lookup(V);
  valueNumbering.erase(V);
  // If V is PHINode, V <--> value number is an one-to-one mapping.
  if (isa<PHINode>(V))
    NumberingPhi.erase(Num);
}

/// verifyRemoved - Verify that the value is removed from all internal data
/// structures.
void GVN::ValueTable::verifyRemoved(const Value *V) const {
  for (DenseMap<Value*, uint32_t>::const_iterator
         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    assert(I->first != V && "Inst still occurs in value numbering map!");
  }
}

//===----------------------------------------------------------------------===//
//                                GVN Pass
//===----------------------------------------------------------------------===//

PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
  // FIXME: The order of evaluation of these 'getResult' calls is very
  // significant! Re-ordering these variables will cause GVN when run alone to
  // be less effective! We should fix memdep and basic-aa to not exhibit this
  // behavior, but until then don't change the order here.
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<GlobalsAA>();
  PA.preserve<TargetLibraryAnalysis>();
  if (LI)
    PA.preserve<LoopAnalysis>();
  return PA;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
  errs() << "{\n";
  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
       E = d.end(); I != E; ++I) {
      errs() << I->first << "\n";
      I->second->dump();
  }
  errs() << "}\n";
}
#endif

/// Return true if we can prove that the value
/// we're analyzing is fully available in the specified block.  As we go, keep
/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
/// map is actually a tri-state map with the following values:
///   0) we know the block *is not* fully available.
///   1) we know the block *is* fully available.
///   2) we do not know whether the block is fully available or not, but we are
///      currently speculating that it will be.
///   3) we are speculating for this block and have used that to speculate for
///      other blocks.
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
                            uint32_t RecurseDepth) {
  if (RecurseDepth > MaxRecurseDepth)
    return false;

  // Optimistically assume that the block is fully available and check to see
  // if we already know about this block in one lookup.
  std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
    FullyAvailableBlocks.insert(std::make_pair(BB, 2));

  // If the entry already existed for this block, return the precomputed value.
  if (!IV.second) {
    // If this is a speculative "available" value, mark it as being used for
    // speculation of other blocks.
    if (IV.first->second == 2)
      IV.first->second = 3;
    return IV.first->second != 0;
  }

  // Otherwise, see if it is fully available in all predecessors.
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);

  // If this block has no predecessors, it isn't live-in here.
  if (PI == PE)
    goto SpeculationFailure;

  for (; PI != PE; ++PI)
    // If the value isn't fully available in one of our predecessors, then it
    // isn't fully available in this block either.  Undo our previous
    // optimistic assumption and bail out.
    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
      goto SpeculationFailure;

  return true;

// If we get here, we found out that this is not, after
// all, a fully-available block.  We have a problem if we speculated on this and
// used the speculation to mark other blocks as available.
SpeculationFailure:
  char &BBVal = FullyAvailableBlocks[BB];

  // If we didn't speculate on this, just return with it set to false.
  if (BBVal == 2) {
    BBVal = 0;
    return false;
  }

  // If we did speculate on this value, we could have blocks set to 1 that are
  // incorrect.  Walk the (transitive) successors of this block and mark them as
  // 0 if set to one.
  SmallVector<BasicBlock*, 32> BBWorklist;
  BBWorklist.push_back(BB);

  do {
    BasicBlock *Entry = BBWorklist.pop_back_val();
    // Note that this sets blocks to 0 (unavailable) if they happen to not
    // already be in FullyAvailableBlocks.  This is safe.
    char &EntryVal = FullyAvailableBlocks[Entry];
    if (EntryVal == 0) continue;  // Already unavailable.

    // Mark as unavailable.
    EntryVal = 0;

    BBWorklist.append(succ_begin(Entry), succ_end(Entry));
  } while (!BBWorklist.empty());

  return false;
}

/// Given a set of loads specified by ValuesPerBlock,
/// construct SSA form, allowing us to eliminate LI.  This returns the value
/// that should be used at LI's definition site.
static Value *ConstructSSAForLoadSet(LoadInst *LI,
                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
                                     GVN &gvn) {
  // Check for the fully redundant, dominating load case.  In this case, we can
  // just use the dominating value directly.
  if (ValuesPerBlock.size() == 1 &&
      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
                                               LI->getParent())) {
    assert(!ValuesPerBlock[0].AV.isUndefValue() &&
           "Dead BB dominate this block");
    return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
  }

  // Otherwise, we have to construct SSA form.
  SmallVector<PHINode*, 8> NewPHIs;
  SSAUpdater SSAUpdate(&NewPHIs);
  SSAUpdate.Initialize(LI->getType(), LI->getName());

  for (const AvailableValueInBlock &AV : ValuesPerBlock) {
    BasicBlock *BB = AV.BB;

    if (SSAUpdate.HasValueForBlock(BB))
      continue;

    // If the value is the load that we will be eliminating, and the block it's
    // available in is the block that the load is in, then don't add it as
    // SSAUpdater will resolve the value to the relevant phi which may let it
    // avoid phi construction entirely if there's actually only one value.
    if (BB == LI->getParent() &&
        ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
         (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
      continue;

    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
  }

  // Perform PHI construction.
  return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
}

Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
                                                Instruction *InsertPt,
                                                GVN &gvn) const {
  Value *Res;
  Type *LoadTy = LI->getType();
  const DataLayout &DL = LI->getModule()->getDataLayout();
  if (isSimpleValue()) {
    Res = getSimpleValue();
    if (Res->getType() != LoadTy) {
      Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);

      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
                        << "  " << *getSimpleValue() << '\n'
                        << *Res << '\n'
                        << "\n\n\n");
    }
  } else if (isCoercedLoadValue()) {
    LoadInst *Load = getCoercedLoadValue();
    if (Load->getType() == LoadTy && Offset == 0) {
      Res = Load;
    } else {
      Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
      // We would like to use gvn.markInstructionForDeletion here, but we can't
      // because the load is already memoized into the leader map table that GVN
      // tracks.  It is potentially possible to remove the load from the table,
      // but then there all of the operations based on it would need to be
      // rehashed.  Just leave the dead load around.
      gvn.getMemDep().removeInstruction(Load);
      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
                        << "  " << *getCoercedLoadValue() << '\n'
                        << *Res << '\n'
                        << "\n\n\n");
    }
  } else if (isMemIntrinValue()) {
    Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
                                 InsertPt, DL);
    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
                      << "  " << *getMemIntrinValue() << '\n'
                      << *Res << '\n'
                      << "\n\n\n");
  } else {
    assert(isUndefValue() && "Should be UndefVal");
    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
    return UndefValue::get(LoadTy);
  }
  assert(Res && "failed to materialize?");
  return Res;
}

static bool isLifetimeStart(const Instruction *Inst) {
  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
    return II->getIntrinsicID() == Intrinsic::lifetime_start;
  return false;
}

/// Try to locate the three instruction involved in a missed
/// load-elimination case that is due to an intervening store.
static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
                                   DominatorTree *DT,
                                   OptimizationRemarkEmitter *ORE) {
  using namespace ore;

  User *OtherAccess = nullptr;

  OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
  R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
    << setExtraArgs();

  for (auto *U : LI->getPointerOperand()->users())
    if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
        DT->dominates(cast<Instruction>(U), LI)) {
      // FIXME: for now give up if there are multiple memory accesses that
      // dominate the load.  We need further analysis to decide which one is
      // that we're forwarding from.
      if (OtherAccess)
        OtherAccess = nullptr;
      else
        OtherAccess = U;
    }

  if (OtherAccess)
    R << " in favor of " << NV("OtherAccess", OtherAccess);

  R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());

  ORE->emit(R);
}

bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
                                  Value *Address, AvailableValue &Res) {
  assert((DepInfo.isDef() || DepInfo.isClobber()) &&
         "expected a local dependence");
  assert(LI->isUnordered() && "rules below are incorrect for ordered access");

  const DataLayout &DL = LI->getModule()->getDataLayout();

  Instruction *DepInst = DepInfo.getInst();
  if (DepInfo.isClobber()) {
    // If the dependence is to a store that writes to a superset of the bits
    // read by the load, we can extract the bits we need for the load from the
    // stored value.
    if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
      // Can't forward from non-atomic to atomic without violating memory model.
      if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
        int Offset =
          analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
        if (Offset != -1) {
          Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
          return true;
        }
      }
    }

    // Check to see if we have something like this:
    //    load i32* P
    //    load i8* (P+1)
    // if we have this, replace the later with an extraction from the former.
    if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
      // If this is a clobber and L is the first instruction in its block, then
      // we have the first instruction in the entry block.
      // Can't forward from non-atomic to atomic without violating memory model.
      if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
        int Offset =
          analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);

        if (Offset != -1) {
          Res = AvailableValue::getLoad(DepLI, Offset);
          return true;
        }
      }
    }

    // If the clobbering value is a memset/memcpy/memmove, see if we can
    // forward a value on from it.
    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
      if (Address && !LI->isAtomic()) {
        int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
                                                      DepMI, DL);
        if (Offset != -1) {
          Res = AvailableValue::getMI(DepMI, Offset);
          return true;
        }
      }
    }
    // Nothing known about this clobber, have to be conservative
    LLVM_DEBUG(
        // fast print dep, using operator<< on instruction is too slow.
        dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
        dbgs() << " is clobbered by " << *DepInst << '\n';);
    if (ORE->allowExtraAnalysis(DEBUG_TYPE))
      reportMayClobberedLoad(LI, DepInfo, DT, ORE);

    return false;
  }
  assert(DepInfo.isDef() && "follows from above");

  // Loading the allocation -> undef.
  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
      // Loading immediately after lifetime begin -> undef.
      isLifetimeStart(DepInst)) {
    Res = AvailableValue::get(UndefValue::get(LI->getType()));
    return true;
  }

  // Loading from calloc (which zero initializes memory) -> zero
  if (isCallocLikeFn(DepInst, TLI)) {
    Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
    return true;
  }

  if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
    // Reject loads and stores that are to the same address but are of
    // different types if we have to. If the stored value is larger or equal to
    // the loaded value, we can reuse it.
    if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
                                         DL))
      return false;

    // Can't forward from non-atomic to atomic without violating memory model.
    if (S->isAtomic() < LI->isAtomic())
      return false;

    Res = AvailableValue::get(S->getValueOperand());
    return true;
  }

  if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
    // If the types mismatch and we can't handle it, reject reuse of the load.
    // If the stored value is larger or equal to the loaded value, we can reuse
    // it.
    if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
      return false;

    // Can't forward from non-atomic to atomic without violating memory model.
    if (LD->isAtomic() < LI->isAtomic())
      return false;

    Res = AvailableValue::getLoad(LD);
    return true;
  }

  // Unknown def - must be conservative
  LLVM_DEBUG(
      // fast print dep, using operator<< on instruction is too slow.
      dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
      dbgs() << " has unknown def " << *DepInst << '\n';);
  return false;
}

void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
                                  AvailValInBlkVect &ValuesPerBlock,
                                  UnavailBlkVect &UnavailableBlocks) {
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
  // where we have a value available in repl, also keep track of whether we see
  // dependencies that produce an unknown value for the load (such as a call
  // that could potentially clobber the load).
  unsigned NumDeps = Deps.size();
  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
    BasicBlock *DepBB = Deps[i].getBB();
    MemDepResult DepInfo = Deps[i].getResult();

    if (DeadBlocks.count(DepBB)) {
      // Dead dependent mem-op disguise as a load evaluating the same value
      // as the load in question.
      ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
      continue;
    }

    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
      UnavailableBlocks.push_back(DepBB);
      continue;
    }

    // The address being loaded in this non-local block may not be the same as
    // the pointer operand of the load if PHI translation occurs.  Make sure
    // to consider the right address.
    Value *Address = Deps[i].getAddress();

    AvailableValue AV;
    if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
      // subtlety: because we know this was a non-local dependency, we know
      // it's safe to materialize anywhere between the instruction within
      // DepInfo and the end of it's block.
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
                                                          std::move(AV)));
    } else {
      UnavailableBlocks.push_back(DepBB);
    }
  }

  assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
         "post condition violation");
}

bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
                         UnavailBlkVect &UnavailableBlocks) {
  // Okay, we have *some* definitions of the value.  This means that the value
  // is available in some of our (transitive) predecessors.  Lets think about
  // doing PRE of this load.  This will involve inserting a new load into the
  // predecessor when it's not available.  We could do this in general, but
  // prefer to not increase code size.  As such, we only do this when we know
  // that we only have to insert *one* load (which means we're basically moving
  // the load, not inserting a new one).

  SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
                                        UnavailableBlocks.end());

  // Let's find the first basic block with more than one predecessor.  Walk
  // backwards through predecessors if needed.
  BasicBlock *LoadBB = LI->getParent();
  BasicBlock *TmpBB = LoadBB;
  bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);

  // Check that there is no implicit control flow instructions above our load in
  // its block. If there is an instruction that doesn't always pass the
  // execution to the following instruction, then moving through it may become
  // invalid. For example:
  //
  // int arr[LEN];
  // int index = ???;
  // ...
  // guard(0 <= index && index < LEN);
  // use(arr[index]);
  //
  // It is illegal to move the array access to any point above the guard,
  // because if the index is out of bounds we should deoptimize rather than
  // access the array.
  // Check that there is no guard in this block above our instruction.
  if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
    return false;
  while (TmpBB->getSinglePredecessor()) {
    TmpBB = TmpBB->getSinglePredecessor();
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
      return false;
    if (Blockers.count(TmpBB))
      return false;

    // If any of these blocks has more than one successor (i.e. if the edge we
    // just traversed was critical), then there are other paths through this
    // block along which the load may not be anticipated.  Hoisting the load
    // above this block would be adding the load to execution paths along
    // which it was not previously executed.
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
      return false;

    // Check that there is no implicit control flow in a block above.
    if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
      return false;
  }

  assert(TmpBB);
  LoadBB = TmpBB;

  // Check to see how many predecessors have the loaded value fully
  // available.
  MapVector<BasicBlock *, Value *> PredLoads;
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
  for (const AvailableValueInBlock &AV : ValuesPerBlock)
    FullyAvailableBlocks[AV.BB] = true;
  for (BasicBlock *UnavailableBB : UnavailableBlocks)
    FullyAvailableBlocks[UnavailableBB] = false;

  SmallVector<BasicBlock *, 4> CriticalEdgePred;
  for (BasicBlock *Pred : predecessors(LoadBB)) {
    // If any predecessor block is an EH pad that does not allow non-PHI
    // instructions before the terminator, we can't PRE the load.
    if (Pred->getTerminator()->isEHPad()) {
      LLVM_DEBUG(
          dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
                 << Pred->getName() << "': " << *LI << '\n');
      return false;
    }

    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
      continue;
    }

    if (Pred->getTerminator()->getNumSuccessors() != 1) {
      if (isa<IndirectBrInst>(Pred->getTerminator())) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      // FIXME: Can we support the fallthrough edge?
      if (isa<CallBrInst>(Pred->getTerminator())) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      if (LoadBB->isEHPad()) {
        LLVM_DEBUG(
            dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
                   << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      CriticalEdgePred.push_back(Pred);
    } else {
      // Only add the predecessors that will not be split for now.
      PredLoads[Pred] = nullptr;
    }
  }

  // Decide whether PRE is profitable for this load.
  unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
  assert(NumUnavailablePreds != 0 &&
         "Fully available value should already be eliminated!");

  // If this load is unavailable in multiple predecessors, reject it.
  // FIXME: If we could restructure the CFG, we could make a common pred with
  // all the preds that don't have an available LI and insert a new load into
  // that one block.
  if (NumUnavailablePreds != 1)
      return false;

  // Split critical edges, and update the unavailable predecessors accordingly.
  for (BasicBlock *OrigPred : CriticalEdgePred) {
    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
    assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
    PredLoads[NewPred] = nullptr;
    LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
                      << LoadBB->getName() << '\n');
  }

  // Check if the load can safely be moved to all the unavailable predecessors.
  bool CanDoPRE = true;
  const DataLayout &DL = LI->getModule()->getDataLayout();
  SmallVector<Instruction*, 8> NewInsts;
  for (auto &PredLoad : PredLoads) {
    BasicBlock *UnavailablePred = PredLoad.first;

    // Do PHI translation to get its value in the predecessor if necessary.  The
    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
    // We do the translation for each edge we skipped by going from LI's block
    // to LoadBB, otherwise we might miss pieces needing translation.

    // If all preds have a single successor, then we know it is safe to insert
    // the load on the pred (?!?), so we can insert code to materialize the
    // pointer if it is not available.
    Value *LoadPtr = LI->getPointerOperand();
    BasicBlock *Cur = LI->getParent();
    while (Cur != LoadBB) {
      PHITransAddr Address(LoadPtr, DL, AC);
      LoadPtr = Address.PHITranslateWithInsertion(
          Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
      if (!LoadPtr) {
        CanDoPRE = false;
        break;
      }
      Cur = Cur->getSinglePredecessor();
    }

    if (LoadPtr) {
      PHITransAddr Address(LoadPtr, DL, AC);
      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
                                                  NewInsts);
    }
    // If we couldn't find or insert a computation of this phi translated value,
    // we fail PRE.
    if (!LoadPtr) {
      LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
                        << *LI->getPointerOperand() << "\n");
      CanDoPRE = false;
      break;
    }

    PredLoad.second = LoadPtr;
  }

  if (!CanDoPRE) {
    while (!NewInsts.empty()) {
      // Erase instructions generated by the failed PHI translation before
      // trying to number them. PHI translation might insert instructions
      // in basic blocks other than the current one, and we delete them
      // directly, as markInstructionForDeletion only allows removing from the
      // current basic block.
      NewInsts.pop_back_val()->eraseFromParent();
    }
    // HINT: Don't revert the edge-splitting as following transformation may
    // also need to split these critical edges.
    return !CriticalEdgePred.empty();
  }

  // Okay, we can eliminate this load by inserting a reload in the predecessor
  // and using PHI construction to get the value in the other predecessors, do
  // it.
  LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
  LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
             << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
             << '\n');

  // Assign value numbers to the new instructions.
  for (Instruction *I : NewInsts) {
    // Instructions that have been inserted in predecessor(s) to materialize
    // the load address do not retain their original debug locations. Doing
    // so could lead to confusing (but correct) source attributions.
    if (const DebugLoc &DL = I->getDebugLoc())
      I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));

    // FIXME: We really _ought_ to insert these value numbers into their
    // parent's availability map.  However, in doing so, we risk getting into
    // ordering issues.  If a block hasn't been processed yet, we would be
    // marking a value as AVAIL-IN, which isn't what we intend.
    VN.lookupOrAdd(I);
  }

  for (const auto &PredLoad : PredLoads) {
    BasicBlock *UnavailablePred = PredLoad.first;
    Value *LoadPtr = PredLoad.second;

    auto *NewLoad = new LoadInst(
        LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
        MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(),
        UnavailablePred->getTerminator());
    NewLoad->setDebugLoc(LI->getDebugLoc());

    // Transfer the old load's AA tags to the new load.
    AAMDNodes Tags;
    LI->getAAMetadata(Tags);
    if (Tags)
      NewLoad->setAAMetadata(Tags);

    if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
      NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
    if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
      NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
    if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
      NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);

    // We do not propagate the old load's debug location, because the new
    // load now lives in a different BB, and we want to avoid a jumpy line
    // table.
    // FIXME: How do we retain source locations without causing poor debugging
    // behavior?

    // Add the newly created load.
    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
                                                        NewLoad));
    MD->invalidateCachedPointerInfo(LoadPtr);
    LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
  }

  // Perform PHI construction.
  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
  LI->replaceAllUsesWith(V);
  if (isa<PHINode>(V))
    V->takeName(LI);
  if (Instruction *I = dyn_cast<Instruction>(V))
    I->setDebugLoc(LI->getDebugLoc());
  if (V->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(V);
  markInstructionForDeletion(LI);
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
           << "load eliminated by PRE";
  });
  ++NumPRELoad;
  return true;
}

static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
                           OptimizationRemarkEmitter *ORE) {
  using namespace ore;

  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
           << "load of type " << NV("Type", LI->getType()) << " eliminated"
           << setExtraArgs() << " in favor of "
           << NV("InfavorOfValue", AvailableValue);
  });
}

/// Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI) {
  // non-local speculations are not allowed under asan.
  if (LI->getParent()->getParent()->hasFnAttribute(
          Attribute::SanitizeAddress) ||
      LI->getParent()->getParent()->hasFnAttribute(
          Attribute::SanitizeHWAddress))
    return false;

  // Step 1: Find the non-local dependencies of the load.
  LoadDepVect Deps;
  MD->getNonLocalPointerDependency(LI, Deps);

  // If we had to process more than one hundred blocks to find the
  // dependencies, this load isn't worth worrying about.  Optimizing
  // it will be too expensive.
  unsigned NumDeps = Deps.size();
  if (NumDeps > MaxNumDeps)
    return false;

  // If we had a phi translation failure, we'll have a single entry which is a
  // clobber in the current block.  Reject this early.
  if (NumDeps == 1 &&
      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
    LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
               dbgs() << " has unknown dependencies\n";);
    return false;
  }

  // If this load follows a GEP, see if we can PRE the indices before analyzing.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
    for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
                                        OE = GEP->idx_end();
         OI != OE; ++OI)
      if (Instruction *I = dyn_cast<Instruction>(OI->get()))
        performScalarPRE(I);
  }

  // Step 2: Analyze the availability of the load
  AvailValInBlkVect ValuesPerBlock;
  UnavailBlkVect UnavailableBlocks;
  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);

  // If we have no predecessors that produce a known value for this load, exit
  // early.
  if (ValuesPerBlock.empty())
    return false;

  // Step 3: Eliminate fully redundancy.
  //
  // If all of the instructions we depend on produce a known value for this
  // load, then it is fully redundant and we can use PHI insertion to compute
  // its value.  Insert PHIs and remove the fully redundant value now.
  if (UnavailableBlocks.empty()) {
    LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');

    // Perform PHI construction.
    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
    LI->replaceAllUsesWith(V);

    if (isa<PHINode>(V))
      V->takeName(LI);
    if (Instruction *I = dyn_cast<Instruction>(V))
      // If instruction I has debug info, then we should not update it.
      // Also, if I has a null DebugLoc, then it is still potentially incorrect
      // to propagate LI's DebugLoc because LI may not post-dominate I.
      if (LI->getDebugLoc() && LI->getParent() == I->getParent())
        I->setDebugLoc(LI->getDebugLoc());
    if (V->getType()->isPtrOrPtrVectorTy())
      MD->invalidateCachedPointerInfo(V);
    markInstructionForDeletion(LI);
    ++NumGVNLoad;
    reportLoadElim(LI, V, ORE);
    return true;
  }

  // Step 4: Eliminate partial redundancy.
  if (!EnablePRE || !EnableLoadPRE)
    return false;

  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
}

static bool hasUsersIn(Value *V, BasicBlock *BB) {
  for (User *U : V->users())
    if (isa<Instruction>(U) &&
        cast<Instruction>(U)->getParent() == BB)
      return true;
  return false;
}

bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
  assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
         "This function can only be called with llvm.assume intrinsic");
  Value *V = IntrinsicI->getArgOperand(0);

  if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
    if (Cond->isZero()) {
      Type *Int8Ty = Type::getInt8Ty(V->getContext());
      // Insert a new store to null instruction before the load to indicate that
      // this code is not reachable.  FIXME: We could insert unreachable
      // instruction directly because we can modify the CFG.
      new StoreInst(UndefValue::get(Int8Ty),
                    Constant::getNullValue(Int8Ty->getPointerTo()),
                    IntrinsicI);
    }
    markInstructionForDeletion(IntrinsicI);
    return false;
  } else if (isa<Constant>(V)) {
    // If it's not false, and constant, it must evaluate to true. This means our
    // assume is assume(true), and thus, pointless, and we don't want to do
    // anything more here.
    return false;
  }

  Constant *True = ConstantInt::getTrue(V->getContext());
  bool Changed = false;

  for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
    BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);

    // This property is only true in dominated successors, propagateEquality
    // will check dominance for us.
    Changed |= propagateEquality(V, True, Edge, false);
  }

  // We can replace assume value with true, which covers cases like this:
  // call void @llvm.assume(i1 %cmp)
  // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
  ReplaceOperandsWithMap[V] = True;

  // If we find an equality fact, canonicalize all dominated uses in this block
  // to one of the two values.  We heuristically choice the "oldest" of the
  // two where age is determined by value number. (Note that propagateEquality
  // above handles the cross block case.) 
  // 
  // Key case to cover are:
  // 1) 
  // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
  // call void @llvm.assume(i1 %cmp)
  // ret float %0 ; will change it to ret float 3.000000e+00
  // 2)
  // %load = load float, float* %addr
  // %cmp = fcmp oeq float %load, %0
  // call void @llvm.assume(i1 %cmp)
  // ret float %load ; will change it to ret float %0
  if (auto *CmpI = dyn_cast<CmpInst>(V)) {
    if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
        CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
        (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
         CmpI->getFastMathFlags().noNaNs())) {
      Value *CmpLHS = CmpI->getOperand(0);
      Value *CmpRHS = CmpI->getOperand(1);
      // Heuristically pick the better replacement -- the choice of heuristic
      // isn't terribly important here, but the fact we canonicalize on some
      // replacement is for exposing other simplifications.
      // TODO: pull this out as a helper function and reuse w/existing
      // (slightly different) logic.
      if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
        std::swap(CmpLHS, CmpRHS);
      if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
        std::swap(CmpLHS, CmpRHS);
      if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
          (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
        // Move the 'oldest' value to the right-hand side, using the value
        // number as a proxy for age.
        uint32_t LVN = VN.lookupOrAdd(CmpLHS);
        uint32_t RVN = VN.lookupOrAdd(CmpRHS);
        if (LVN < RVN)
          std::swap(CmpLHS, CmpRHS);
      }

      // Handle degenerate case where we either haven't pruned a dead path or a
      // removed a trivial assume yet.
      if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
        return Changed;

      // +0.0 and -0.0 compare equal, but do not imply equivalence.  Unless we
      // can prove equivalence, bail.
      if (CmpRHS->getType()->isFloatTy() &&
          (!isa<ConstantFP>(CmpRHS) || cast<ConstantFP>(CmpRHS)->isZero()))
        return Changed;

      LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
                 << *CmpLHS << " with "
                 << *CmpRHS << " in block "
                 << IntrinsicI->getParent()->getName() << "\n");
      

      // Setup the replacement map - this handles uses within the same block
      if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
        ReplaceOperandsWithMap[CmpLHS] = CmpRHS;

      // NOTE: The non-block local cases are handled by the call to
      // propagateEquality above; this block is just about handling the block
      // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
      // isn't duplicated for the block local case, can we share it somehow?
    }
  }
  return Changed;
}

static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
  patchReplacementInstruction(I, Repl);
  I->replaceAllUsesWith(Repl);
}

/// Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L) {
  if (!MD)
    return false;

  // This code hasn't been audited for ordered or volatile memory access
  if (!L->isUnordered())
    return false;

  if (L->use_empty()) {
    markInstructionForDeletion(L);
    return true;
  }

  // ... to a pointer that has been loaded from before...
  MemDepResult Dep = MD->getDependency(L);

  // If it is defined in another block, try harder.
  if (Dep.isNonLocal())
    return processNonLocalLoad(L);

  // Only handle the local case below
  if (!Dep.isDef() && !Dep.isClobber()) {
    // This might be a NonFuncLocal or an Unknown
    LLVM_DEBUG(
        // fast print dep, using operator<< on instruction is too slow.
        dbgs() << "GVN: load "; L->printAsOperand(dbgs());
        dbgs() << " has unknown dependence\n";);
    return false;
  }

  AvailableValue AV;
  if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
    Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);

    // Replace the load!
    patchAndReplaceAllUsesWith(L, AvailableValue);
    markInstructionForDeletion(L);
    ++NumGVNLoad;
    reportLoadElim(L, AvailableValue, ORE);
    // Tell MDA to rexamine the reused pointer since we might have more
    // information after forwarding it.
    if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
      MD->invalidateCachedPointerInfo(AvailableValue);
    return true;
  }

  return false;
}

/// Return a pair the first field showing the value number of \p Exp and the
/// second field showing whether it is a value number newly created.
std::pair<uint32_t, bool>
GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
  uint32_t &e = expressionNumbering[Exp];
  bool CreateNewValNum = !e;
  if (CreateNewValNum) {
    Expressions.push_back(Exp);
    if (ExprIdx.size() < nextValueNumber + 1)
      ExprIdx.resize(nextValueNumber * 2);
    e = nextValueNumber;
    ExprIdx[nextValueNumber++] = nextExprNumber++;
  }
  return {e, CreateNewValNum};
}

/// Return whether all the values related with the same \p num are
/// defined in \p BB.
bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
                                     GVN &Gvn) {
  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
  while (Vals && Vals->BB == BB)
    Vals = Vals->Next;
  return !Vals;
}

/// Wrap phiTranslateImpl to provide caching functionality.
uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
                                       const BasicBlock *PhiBlock, uint32_t Num,
                                       GVN &Gvn) {
  auto FindRes = PhiTranslateTable.find({Num, Pred});
  if (FindRes != PhiTranslateTable.end())
    return FindRes->second;
  uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
  PhiTranslateTable.insert({{Num, Pred}, NewNum});
  return NewNum;
}

// Return true if the value number \p Num and NewNum have equal value.
// Return false if the result is unknown.
bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
                                       const BasicBlock *Pred,
                                       const BasicBlock *PhiBlock, GVN &Gvn) {
  CallInst *Call = nullptr;
  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
  while (Vals) {
    Call = dyn_cast<CallInst>(Vals->Val);
    if (Call && Call->getParent() == PhiBlock)
      break;
    Vals = Vals->Next;
  }

  if (AA->doesNotAccessMemory(Call))
    return true;

  if (!MD || !AA->onlyReadsMemory(Call))
    return false;

  MemDepResult local_dep = MD->getDependency(Call);
  if (!local_dep.isNonLocal())
    return false;

  const MemoryDependenceResults::NonLocalDepInfo &deps =
      MD->getNonLocalCallDependency(Call);

  // Check to see if the Call has no function local clobber.
  for (unsigned i = 0; i < deps.size(); i++) {
    if (deps[i].getResult().isNonFuncLocal())
      return true;
  }
  return false;
}

/// Translate value number \p Num using phis, so that it has the values of
/// the phis in BB.
uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
                                           const BasicBlock *PhiBlock,
                                           uint32_t Num, GVN &Gvn) {
  if (PHINode *PN = NumberingPhi[Num]) {
    for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
      if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
        if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
          return TransVal;
    }
    return Num;
  }

  // If there is any value related with Num is defined in a BB other than
  // PhiBlock, it cannot depend on a phi in PhiBlock without going through
  // a backedge. We can do an early exit in that case to save compile time.
  if (!areAllValsInBB(Num, PhiBlock, Gvn))
    return Num;

  if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
    return Num;
  Expression Exp = Expressions[ExprIdx[Num]];

  for (unsigned i = 0; i < Exp.varargs.size(); i++) {
    // For InsertValue and ExtractValue, some varargs are index numbers
    // instead of value numbers. Those index numbers should not be
    // translated.
    if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
        (i > 0 && Exp.opcode == Instruction::ExtractValue))
      continue;
    Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
  }

  if (Exp.commutative) {
    assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
    if (Exp.varargs[0] > Exp.varargs[1]) {
      std::swap(Exp.varargs[0], Exp.varargs[1]);
      uint32_t Opcode = Exp.opcode >> 8;
      if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
        Exp.opcode = (Opcode << 8) |
                     CmpInst::getSwappedPredicate(
                         static_cast<CmpInst::Predicate>(Exp.opcode & 255));
    }
  }

  if (uint32_t NewNum = expressionNumbering[Exp]) {
    if (Exp.opcode == Instruction::Call && NewNum != Num)
      return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
    return NewNum;
  }
  return Num;
}

/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
/// again.
void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
                                               const BasicBlock &CurrBlock) {
  for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
    auto FindRes = PhiTranslateTable.find({Num, Pred});
    if (FindRes != PhiTranslateTable.end())
      PhiTranslateTable.erase(FindRes);
  }
}

// In order to find a leader for a given value number at a
// specific basic block, we first obtain the list of all Values for that number,
// and then scan the list to find one whose block dominates the block in
// question.  This is fast because dominator tree queries consist of only
// a few comparisons of DFS numbers.
Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
  LeaderTableEntry Vals = LeaderTable[num];
  if (!Vals.Val) return nullptr;

  Value *Val = nullptr;
  if (DT->dominates(Vals.BB, BB)) {
    Val = Vals.Val;
    if (isa<Constant>(Val)) return Val;
  }

  LeaderTableEntry* Next = Vals.Next;
  while (Next) {
    if (DT->dominates(Next->BB, BB)) {
      if (isa<Constant>(Next->Val)) return Next->Val;
      if (!Val) Val = Next->Val;
    }

    Next = Next->Next;
  }

  return Val;
}

/// There is an edge from 'Src' to 'Dst'.  Return
/// true if every path from the entry block to 'Dst' passes via this edge.  In
/// particular 'Dst' must not be reachable via another edge from 'Src'.
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
                                       DominatorTree *DT) {
  // While in theory it is interesting to consider the case in which Dst has
  // more than one predecessor, because Dst might be part of a loop which is
  // only reachable from Src, in practice it is pointless since at the time
  // GVN runs all such loops have preheaders, which means that Dst will have
  // been changed to have only one predecessor, namely Src.
  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
  assert((!Pred || Pred == E.getStart()) &&
         "No edge between these basic blocks!");
  return Pred != nullptr;
}

void GVN::assignBlockRPONumber(Function &F) {
  BlockRPONumber.clear();
  uint32_t NextBlockNumber = 1;
  ReversePostOrderTraversal<Function *> RPOT(&F);
  for (BasicBlock *BB : RPOT)
    BlockRPONumber[BB] = NextBlockNumber++;
  InvalidBlockRPONumbers = false;
}

bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
  bool Changed = false;
  for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
    Value *Operand = Instr->getOperand(OpNum); 
    auto it = ReplaceOperandsWithMap.find(Operand);
    if (it != ReplaceOperandsWithMap.end()) {
      LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
                        << *it->second << " in instruction " << *Instr << '\n');
      Instr->setOperand(OpNum, it->second);
      Changed = true;
    }
  }
  return Changed;
}

/// The given values are known to be equal in every block
/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
/// 'RHS' everywhere in the scope.  Returns whether a change was made.
/// If DominatesByEdge is false, then it means that we will propagate the RHS
/// value starting from the end of Root.Start.
bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
                            bool DominatesByEdge) {
  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
  Worklist.push_back(std::make_pair(LHS, RHS));
  bool Changed = false;
  // For speed, compute a conservative fast approximation to
  // DT->dominates(Root, Root.getEnd());
  const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);

  while (!Worklist.empty()) {
    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
    LHS = Item.first; RHS = Item.second;

    if (LHS == RHS)
      continue;
    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");

    // Don't try to propagate equalities between constants.
    if (isa<Constant>(LHS) && isa<Constant>(RHS))
      continue;

    // Prefer a constant on the right-hand side, or an Argument if no constants.
    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
      std::swap(LHS, RHS);
    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");

    // If there is no obvious reason to prefer the left-hand side over the
    // right-hand side, ensure the longest lived term is on the right-hand side,
    // so the shortest lived term will be replaced by the longest lived.
    // This tends to expose more simplifications.
    uint32_t LVN = VN.lookupOrAdd(LHS);
    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
      // Move the 'oldest' value to the right-hand side, using the value number
      // as a proxy for age.
      uint32_t RVN = VN.lookupOrAdd(RHS);
      if (LVN < RVN) {
        std::swap(LHS, RHS);
        LVN = RVN;
      }
    }

    // If value numbering later sees that an instruction in the scope is equal
    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
    // the invariant that instructions only occur in the leader table for their
    // own value number (this is used by removeFromLeaderTable), do not do this
    // if RHS is an instruction (if an instruction in the scope is morphed into
    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
    // using the leader table is about compiling faster, not optimizing better).
    // The leader table only tracks basic blocks, not edges. Only add to if we
    // have the simple case where the edge dominates the end.
    if (RootDominatesEnd && !isa<Instruction>(RHS))
      addToLeaderTable(LVN, RHS, Root.getEnd());

    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
    // LHS always has at least one use that is not dominated by Root, this will
    // never do anything if LHS has only one use.
    if (!LHS->hasOneUse()) {
      unsigned NumReplacements =
          DominatesByEdge
              ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
              : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());

      Changed |= NumReplacements > 0;
      NumGVNEqProp += NumReplacements;
      // Cached information for anything that uses LHS will be invalid.
      if (MD)
        MD->invalidateCachedPointerInfo(LHS);
    }

    // Now try to deduce additional equalities from this one. For example, if
    // the known equality was "(A != B)" == "false" then it follows that A and B
    // are equal in the scope. Only boolean equalities with an explicit true or
    // false RHS are currently supported.
    if (!RHS->getType()->isIntegerTy(1))
      // Not a boolean equality - bail out.
      continue;
    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
    if (!CI)
      // RHS neither 'true' nor 'false' - bail out.
      continue;
    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
    bool isKnownTrue = CI->isMinusOne();
    bool isKnownFalse = !isKnownTrue;

    // If "A && B" is known true then both A and B are known true.  If "A || B"
    // is known false then both A and B are known false.
    Value *A, *B;
    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
      Worklist.push_back(std::make_pair(A, RHS));
      Worklist.push_back(std::make_pair(B, RHS));
      continue;
    }

    // If we are propagating an equality like "(A == B)" == "true" then also
    // propagate the equality A == B.  When propagating a comparison such as
    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
    if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);

      // If "A == B" is known true, or "A != B" is known false, then replace
      // A with B everywhere in the scope.
      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
        Worklist.push_back(std::make_pair(Op0, Op1));

      // Handle the floating point versions of equality comparisons too.
      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
          (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {

        // Floating point -0.0 and 0.0 compare equal, so we can only
        // propagate values if we know that we have a constant and that
        // its value is non-zero.

        // FIXME: We should do this optimization if 'no signed zeros' is
        // applicable via an instruction-level fast-math-flag or some other
        // indicator that relaxed FP semantics are being used.

        if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
          Worklist.push_back(std::make_pair(Op0, Op1));
      }

      // If "A >= B" is known true, replace "A < B" with false everywhere.
      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
      // Since we don't have the instruction "A < B" immediately to hand, work
      // out the value number that it would have and use that to find an
      // appropriate instruction (if any).
      uint32_t NextNum = VN.getNextUnusedValueNumber();
      uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
      // If the number we were assigned was brand new then there is no point in
      // looking for an instruction realizing it: there cannot be one!
      if (Num < NextNum) {
        Value *NotCmp = findLeader(Root.getEnd(), Num);
        if (NotCmp && isa<Instruction>(NotCmp)) {
          unsigned NumReplacements =
              DominatesByEdge
                  ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
                  : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
                                             Root.getStart());
          Changed |= NumReplacements > 0;
          NumGVNEqProp += NumReplacements;
          // Cached information for anything that uses NotCmp will be invalid.
          if (MD)
            MD->invalidateCachedPointerInfo(NotCmp);
        }
      }
      // Ensure that any instruction in scope that gets the "A < B" value number
      // is replaced with false.
      // The leader table only tracks basic blocks, not edges. Only add to if we
      // have the simple case where the edge dominates the end.
      if (RootDominatesEnd)
        addToLeaderTable(Num, NotVal, Root.getEnd());

      continue;
    }
  }

  return Changed;
}

/// When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I) {
  // Ignore dbg info intrinsics.
  if (isa<DbgInfoIntrinsic>(I))
    return false;

  // If the instruction can be easily simplified then do so now in preference
  // to value numbering it.  Value numbering often exposes redundancies, for
  // example if it determines that %y is equal to %x then the instruction
  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
  const DataLayout &DL = I->getModule()->getDataLayout();
  if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
    bool Changed = false;
    if (!I->use_empty()) {
      I->replaceAllUsesWith(V);
      Changed = true;
    }
    if (isInstructionTriviallyDead(I, TLI)) {
      markInstructionForDeletion(I);
      Changed = true;
    }
    if (Changed) {
      if (MD && V->getType()->isPtrOrPtrVectorTy())
        MD->invalidateCachedPointerInfo(V);
      ++NumGVNSimpl;
      return true;
    }
  }

  if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
    if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
      return processAssumeIntrinsic(IntrinsicI);

  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (processLoad(LI))
      return true;

    unsigned Num = VN.lookupOrAdd(LI);
    addToLeaderTable(Num, LI, LI->getParent());
    return false;
  }

  // For conditional branches, we can perform simple conditional propagation on
  // the condition value itself.
  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
    if (!BI->isConditional())
      return false;

    if (isa<Constant>(BI->getCondition()))
      return processFoldableCondBr(BI);

    Value *BranchCond = BI->getCondition();
    BasicBlock *TrueSucc = BI->getSuccessor(0);
    BasicBlock *FalseSucc = BI->getSuccessor(1);
    // Avoid multiple edges early.
    if (TrueSucc == FalseSucc)
      return false;

    BasicBlock *Parent = BI->getParent();
    bool Changed = false;

    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
    BasicBlockEdge TrueE(Parent, TrueSucc);
    Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);

    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
    BasicBlockEdge FalseE(Parent, FalseSucc);
    Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);

    return Changed;
  }

  // For switches, propagate the case values into the case destinations.
  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
    Value *SwitchCond = SI->getCondition();
    BasicBlock *Parent = SI->getParent();
    bool Changed = false;

    // Remember how many outgoing edges there are to every successor.
    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
      ++SwitchEdges[SI->getSuccessor(i)];

    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
         i != e; ++i) {
      BasicBlock *Dst = i->getCaseSuccessor();
      // If there is only a single edge, propagate the case value into it.
      if (SwitchEdges.lookup(Dst) == 1) {
        BasicBlockEdge E(Parent, Dst);
        Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
      }
    }
    return Changed;
  }

  // Instructions with void type don't return a value, so there's
  // no point in trying to find redundancies in them.
  if (I->getType()->isVoidTy())
    return false;

  uint32_t NextNum = VN.getNextUnusedValueNumber();
  unsigned Num = VN.lookupOrAdd(I);

  // Allocations are always uniquely numbered, so we can save time and memory
  // by fast failing them.
  if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
    addToLeaderTable(Num, I, I->getParent());
    return false;
  }

  // If the number we were assigned was a brand new VN, then we don't
  // need to do a lookup to see if the number already exists
  // somewhere in the domtree: it can't!
  if (Num >= NextNum) {
    addToLeaderTable(Num, I, I->getParent());
    return false;
  }

  // Perform fast-path value-number based elimination of values inherited from
  // dominators.
  Value *Repl = findLeader(I->getParent(), Num);
  if (!Repl) {
    // Failure, just remember this instance for future use.
    addToLeaderTable(Num, I, I->getParent());
    return false;
  } else if (Repl == I) {
    // If I was the result of a shortcut PRE, it might already be in the table
    // and the best replacement for itself. Nothing to do.
    return false;
  }

  // Remove it!
  patchAndReplaceAllUsesWith(I, Repl);
  if (MD && Repl->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(Repl);
  markInstructionForDeletion(I);
  return true;
}

/// runOnFunction - This is the main transformation entry point for a function.
bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
                  const TargetLibraryInfo &RunTLI, AAResults &RunAA,
                  MemoryDependenceResults *RunMD, LoopInfo *LI,
                  OptimizationRemarkEmitter *RunORE) {
  AC = &RunAC;
  DT = &RunDT;
  VN.setDomTree(DT);
  TLI = &RunTLI;
  VN.setAliasAnalysis(&RunAA);
  MD = RunMD;
  ImplicitControlFlowTracking ImplicitCFT(DT);
  ICF = &ImplicitCFT;
  this->LI = LI;
  VN.setMemDep(MD);
  ORE = RunORE;
  InvalidBlockRPONumbers = true;

  bool Changed = false;
  bool ShouldContinue = true;

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  // Merge unconditional branches, allowing PRE to catch more
  // optimization opportunities.
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
    BasicBlock *BB = &*FI++;

    bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
    if (removedBlock)
      ++NumGVNBlocks;

    Changed |= removedBlock;
  }

  unsigned Iteration = 0;
  while (ShouldContinue) {
    LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
    ShouldContinue = iterateOnFunction(F);
    Changed |= ShouldContinue;
    ++Iteration;
  }

  if (EnablePRE) {
    // Fabricate val-num for dead-code in order to suppress assertion in
    // performPRE().
    assignValNumForDeadCode();
    bool PREChanged = true;
    while (PREChanged) {
      PREChanged = performPRE(F);
      Changed |= PREChanged;
    }
  }

  // FIXME: Should perform GVN again after PRE does something.  PRE can move
  // computations into blocks where they become fully redundant.  Note that
  // we can't do this until PRE's critical edge splitting updates memdep.
  // Actually, when this happens, we should just fully integrate PRE into GVN.

  cleanupGlobalSets();
  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
  // iteration.
  DeadBlocks.clear();

  return Changed;
}

bool GVN::processBlock(BasicBlock *BB) {
  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
  // (and incrementing BI before processing an instruction).
  assert(InstrsToErase.empty() &&
         "We expect InstrsToErase to be empty across iterations");
  if (DeadBlocks.count(BB))
    return false;

  // Clearing map before every BB because it can be used only for single BB.
  ReplaceOperandsWithMap.clear();
  bool ChangedFunction = false;

  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
       BI != BE;) {
    if (!ReplaceOperandsWithMap.empty())
      ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
    ChangedFunction |= processInstruction(&*BI);

    if (InstrsToErase.empty()) {
      ++BI;
      continue;
    }

    // If we need some instructions deleted, do it now.
    NumGVNInstr += InstrsToErase.size();

    // Avoid iterator invalidation.
    bool AtStart = BI == BB->begin();
    if (!AtStart)
      --BI;

    for (auto *I : InstrsToErase) {
      assert(I->getParent() == BB && "Removing instruction from wrong block?");
      LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
      salvageDebugInfo(*I);
      if (MD) MD->removeInstruction(I);
      LLVM_DEBUG(verifyRemoved(I));
      ICF->removeInstruction(I);
      I->eraseFromParent();
    }
    InstrsToErase.clear();

    if (AtStart)
      BI = BB->begin();
    else
      ++BI;
  }

  return ChangedFunction;
}

// Instantiate an expression in a predecessor that lacked it.
bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
                                    BasicBlock *Curr, unsigned int ValNo) {
  // Because we are going top-down through the block, all value numbers
  // will be available in the predecessor by the time we need them.  Any
  // that weren't originally present will have been instantiated earlier
  // in this loop.
  bool success = true;
  for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
    Value *Op = Instr->getOperand(i);
    if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
      continue;
    // This could be a newly inserted instruction, in which case, we won't
    // find a value number, and should give up before we hurt ourselves.
    // FIXME: Rewrite the infrastructure to let it easier to value number
    // and process newly inserted instructions.
    if (!VN.exists(Op)) {
      success = false;
      break;
    }
    uint32_t TValNo =
        VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
    if (Value *V = findLeader(Pred, TValNo)) {
      Instr->setOperand(i, V);
    } else {
      success = false;
      break;
    }
  }

  // Fail out if we encounter an operand that is not available in
  // the PRE predecessor.  This is typically because of loads which
  // are not value numbered precisely.
  if (!success)
    return false;

  Instr->insertBefore(Pred->getTerminator());
  Instr->setName(Instr->getName() + ".pre");
  Instr->setDebugLoc(Instr->getDebugLoc());

  unsigned Num = VN.lookupOrAdd(Instr);
  VN.add(Instr, Num);

  // Update the availability map to include the new instruction.
  addToLeaderTable(Num, Instr, Pred);
  return true;
}

bool GVN::performScalarPRE(Instruction *CurInst) {
  if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
      isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
      CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
      isa<DbgInfoIntrinsic>(CurInst))
    return false;

  // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
  // sinking the compare again, and it would force the code generator to
  // move the i1 from processor flags or predicate registers into a general
  // purpose register.
  if (isa<CmpInst>(CurInst))
    return false;

  // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
  // sinking the addressing mode computation back to its uses. Extending the
  // GEP's live range increases the register pressure, and therefore it can
  // introduce unnecessary spills.
  //
  // This doesn't prevent Load PRE. PHI translation will make the GEP available
  // to the load by moving it to the predecessor block if necessary.
  if (isa<GetElementPtrInst>(CurInst))
    return false;

  // We don't currently value number ANY inline asm calls.
  if (auto *CallB = dyn_cast<CallBase>(CurInst))
    if (CallB->isInlineAsm())
      return false;

  uint32_t ValNo = VN.lookup(CurInst);

  // Look for the predecessors for PRE opportunities.  We're
  // only trying to solve the basic diamond case, where
  // a value is computed in the successor and one predecessor,
  // but not the other.  We also explicitly disallow cases
  // where the successor is its own predecessor, because they're
  // more complicated to get right.
  unsigned NumWith = 0;
  unsigned NumWithout = 0;
  BasicBlock *PREPred = nullptr;
  BasicBlock *CurrentBlock = CurInst->getParent();

  // Update the RPO numbers for this function.
  if (InvalidBlockRPONumbers)
    assignBlockRPONumber(*CurrentBlock->getParent());

  SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
  for (BasicBlock *P : predecessors(CurrentBlock)) {
    // We're not interested in PRE where blocks with predecessors that are
    // not reachable.
    if (!DT->isReachableFromEntry(P)) {
      NumWithout = 2;
      break;
    }
    // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
    // when CurInst has operand defined in CurrentBlock (so it may be defined
    // by phi in the loop header).
    assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
           "Invalid BlockRPONumber map.");
    if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
        llvm::any_of(CurInst->operands(), [&](const Use &U) {
          if (auto *Inst = dyn_cast<Instruction>(U.get()))
            return Inst->getParent() == CurrentBlock;
          return false;
        })) {
      NumWithout = 2;
      break;
    }

    uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
    Value *predV = findLeader(P, TValNo);
    if (!predV) {
      predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
      PREPred = P;
      ++NumWithout;
    } else if (predV == CurInst) {
      /* CurInst dominates this predecessor. */
      NumWithout = 2;
      break;
    } else {
      predMap.push_back(std::make_pair(predV, P));
      ++NumWith;
    }
  }

  // Don't do PRE when it might increase code size, i.e. when
  // we would need to insert instructions in more than one pred.
  if (NumWithout > 1 || NumWith == 0)
    return false;

  // We may have a case where all predecessors have the instruction,
  // and we just need to insert a phi node. Otherwise, perform
  // insertion.
  Instruction *PREInstr = nullptr;

  if (NumWithout != 0) {
    if (!isSafeToSpeculativelyExecute(CurInst)) {
      // It is only valid to insert a new instruction if the current instruction
      // is always executed. An instruction with implicit control flow could
      // prevent us from doing it. If we cannot speculate the execution, then
      // PRE should be prohibited.
      if (ICF->isDominatedByICFIFromSameBlock(CurInst))
        return false;
    }

    // Don't do PRE across indirect branch.
    if (isa<IndirectBrInst>(PREPred->getTerminator()))
      return false;

    // Don't do PRE across callbr.
    // FIXME: Can we do this across the fallthrough edge?
    if (isa<CallBrInst>(PREPred->getTerminator()))
      return false;

    // We can't do PRE safely on a critical edge, so instead we schedule
    // the edge to be split and perform the PRE the next time we iterate
    // on the function.
    unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
    if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
      toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
      return false;
    }
    // We need to insert somewhere, so let's give it a shot
    PREInstr = CurInst->clone();
    if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
      // If we failed insertion, make sure we remove the instruction.
      LLVM_DEBUG(verifyRemoved(PREInstr));
      PREInstr->deleteValue();
      return false;
    }
  }

  // Either we should have filled in the PRE instruction, or we should
  // not have needed insertions.
  assert(PREInstr != nullptr || NumWithout == 0);

  ++NumGVNPRE;

  // Create a PHI to make the value available in this block.
  PHINode *Phi =
      PHINode::Create(CurInst->getType(), predMap.size(),
                      CurInst->getName() + ".pre-phi", &CurrentBlock->front());
  for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
    if (Value *V = predMap[i].first) {
      // If we use an existing value in this phi, we have to patch the original
      // value because the phi will be used to replace a later value.
      patchReplacementInstruction(CurInst, V);
      Phi->addIncoming(V, predMap[i].second);
    } else
      Phi->addIncoming(PREInstr, PREPred);
  }

  VN.add(Phi, ValNo);
  // After creating a new PHI for ValNo, the phi translate result for ValNo will
  // be changed, so erase the related stale entries in phi translate cache.
  VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
  addToLeaderTable(ValNo, Phi, CurrentBlock);
  Phi->setDebugLoc(CurInst->getDebugLoc());
  CurInst->replaceAllUsesWith(Phi);
  if (MD && Phi->getType()->isPtrOrPtrVectorTy())
    MD->invalidateCachedPointerInfo(Phi);
  VN.erase(CurInst);
  removeFromLeaderTable(ValNo, CurInst, CurrentBlock);

  LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
  if (MD)
    MD->removeInstruction(CurInst);
  LLVM_DEBUG(verifyRemoved(CurInst));
  // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
  // some assertion failures.
  ICF->removeInstruction(CurInst);
  CurInst->eraseFromParent();
  ++NumGVNInstr;

  return true;
}

/// Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function &F) {
  bool Changed = false;
  for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
    // Nothing to PRE in the entry block.
    if (CurrentBlock == &F.getEntryBlock())
      continue;

    // Don't perform PRE on an EH pad.
    if (CurrentBlock->isEHPad())
      continue;

    for (BasicBlock::iterator BI = CurrentBlock->begin(),
                              BE = CurrentBlock->end();
         BI != BE;) {
      Instruction *CurInst = &*BI++;
      Changed |= performScalarPRE(CurInst);
    }
  }

  if (splitCriticalEdges())
    Changed = true;

  return Changed;
}

/// Split the critical edge connecting the given two blocks, and return
/// the block inserted to the critical edge.
BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
  BasicBlock *BB =
      SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI));
  if (MD)
    MD->invalidateCachedPredecessors();
  InvalidBlockRPONumbers = true;
  return BB;
}

/// Split critical edges found during the previous
/// iteration that may enable further optimization.
bool GVN::splitCriticalEdges() {
  if (toSplit.empty())
    return false;
  do {
    std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
    SplitCriticalEdge(Edge.first, Edge.second,
                      CriticalEdgeSplittingOptions(DT, LI));
  } while (!toSplit.empty());
  if (MD) MD->invalidateCachedPredecessors();
  InvalidBlockRPONumbers = true;
  return true;
}

/// Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
  cleanupGlobalSets();

  // Top-down walk of the dominator tree
  bool Changed = false;
  // Needed for value numbering with phi construction to work.
  // RPOT walks the graph in its constructor and will not be invalidated during
  // processBlock.
  ReversePostOrderTraversal<Function *> RPOT(&F);

  for (BasicBlock *BB : RPOT)
    Changed |= processBlock(BB);

  return Changed;
}

void GVN::cleanupGlobalSets() {
  VN.clear();
  LeaderTable.clear();
  BlockRPONumber.clear();
  TableAllocator.Reset();
  ICF->clear();
  InvalidBlockRPONumbers = true;
}

/// Verify that the specified instruction does not occur in our
/// internal data structures.
void GVN::verifyRemoved(const Instruction *Inst) const {
  VN.verifyRemoved(Inst);

  // Walk through the value number scope to make sure the instruction isn't
  // ferreted away in it.
  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
    const LeaderTableEntry *Node = &I->second;
    assert(Node->Val != Inst && "Inst still in value numbering scope!");

    while (Node->Next) {
      Node = Node->Next;
      assert(Node->Val != Inst && "Inst still in value numbering scope!");
    }
  }
}

/// BB is declared dead, which implied other blocks become dead as well. This
/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
/// live successors, update their phi nodes by replacing the operands
/// corresponding to dead blocks with UndefVal.
void GVN::addDeadBlock(BasicBlock *BB) {
  SmallVector<BasicBlock *, 4> NewDead;
  SmallSetVector<BasicBlock *, 4> DF;

  NewDead.push_back(BB);
  while (!NewDead.empty()) {
    BasicBlock *D = NewDead.pop_back_val();
    if (DeadBlocks.count(D))
      continue;

    // All blocks dominated by D are dead.
    SmallVector<BasicBlock *, 8> Dom;
    DT->getDescendants(D, Dom);
    DeadBlocks.insert(Dom.begin(), Dom.end());

    // Figure out the dominance-frontier(D).
    for (BasicBlock *B : Dom) {
      for (BasicBlock *S : successors(B)) {
        if (DeadBlocks.count(S))
          continue;

        bool AllPredDead = true;
        for (BasicBlock *P : predecessors(S))
          if (!DeadBlocks.count(P)) {
            AllPredDead = false;
            break;
          }

        if (!AllPredDead) {
          // S could be proved dead later on. That is why we don't update phi
          // operands at this moment.
          DF.insert(S);
        } else {
          // While S is not dominated by D, it is dead by now. This could take
          // place if S already have a dead predecessor before D is declared
          // dead.
          NewDead.push_back(S);
        }
      }
    }
  }

  // For the dead blocks' live successors, update their phi nodes by replacing
  // the operands corresponding to dead blocks with UndefVal.
  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
        I != E; I++) {
    BasicBlock *B = *I;
    if (DeadBlocks.count(B))
      continue;

    // First, split the critical edges. This might also create additional blocks
    // to preserve LoopSimplify form and adjust edges accordingly.
    SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
    for (BasicBlock *P : Preds) {
      if (!DeadBlocks.count(P))
        continue;

      if (llvm::any_of(successors(P),
                       [B](BasicBlock *Succ) { return Succ == B; }) &&
          isCriticalEdge(P->getTerminator(), B)) {
        if (BasicBlock *S = splitCriticalEdges(P, B))
          DeadBlocks.insert(P = S);
      }
    }

    // Now undef the incoming values from the dead predecessors.
    for (BasicBlock *P : predecessors(B)) {
      if (!DeadBlocks.count(P))
        continue;
      for (PHINode &Phi : B->phis()) {
        Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
        if (MD)
          MD->invalidateCachedPointerInfo(&Phi);
      }
    }
  }
}

// If the given branch is recognized as a foldable branch (i.e. conditional
// branch with constant condition), it will perform following analyses and
// transformation.
//  1) If the dead out-coming edge is a critical-edge, split it. Let
//     R be the target of the dead out-coming edge.
//  1) Identify the set of dead blocks implied by the branch's dead outcoming
//     edge. The result of this step will be {X| X is dominated by R}
//  2) Identify those blocks which haves at least one dead predecessor. The
//     result of this step will be dominance-frontier(R).
//  3) Update the PHIs in DF(R) by replacing the operands corresponding to
//     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
//
// Return true iff *NEW* dead code are found.
bool GVN::processFoldableCondBr(BranchInst *BI) {
  if (!BI || BI->isUnconditional())
    return false;

  // If a branch has two identical successors, we cannot declare either dead.
  if (BI->getSuccessor(0) == BI->getSuccessor(1))
    return false;

  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
  if (!Cond)
    return false;

  BasicBlock *DeadRoot =
      Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
  if (DeadBlocks.count(DeadRoot))
    return false;

  if (!DeadRoot->getSinglePredecessor())
    DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);

  addDeadBlock(DeadRoot);
  return true;
}

// performPRE() will trigger assert if it comes across an instruction without
// associated val-num. As it normally has far more live instructions than dead
// instructions, it makes more sense just to "fabricate" a val-number for the
// dead code than checking if instruction involved is dead or not.
void GVN::assignValNumForDeadCode() {
  for (BasicBlock *BB : DeadBlocks) {
    for (Instruction &Inst : *BB) {
      unsigned ValNum = VN.lookupOrAdd(&Inst);
      addToLeaderTable(ValNum, &Inst, BB);
    }
  }
}

class llvm::gvn::GVNLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
      : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
    initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();

    return Impl.runImpl(
        F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
        getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
        getAnalysis<AAResultsWrapperPass>().getAAResults(),
        NoMemDepAnalysis
            ? nullptr
            : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
        LIWP ? &LIWP->getLoopInfo() : nullptr,
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    if (!NoMemDepAnalysis)
      AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();

    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreservedID(LoopSimplifyID);
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  }

private:
  bool NoMemDepAnalysis;
  GVN Impl;
};

char GVNLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)

// The public interface to this file...
FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
  return new GVNLegacyPass(NoMemDepAnalysis);
}