reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
//===- llvm/Analysis/DDG.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Data-Dependence Graph (DDG).
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DDG_H
#define LLVM_ANALYSIS_DDG_H

#include "llvm/ADT/DirectedGraph.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DependenceGraphBuilder.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/IR/Instructions.h"
#include <unordered_map>

namespace llvm {
class DDGNode;
class DDGEdge;
using DDGNodeBase = DGNode<DDGNode, DDGEdge>;
using DDGEdgeBase = DGEdge<DDGNode, DDGEdge>;
using DDGBase = DirectedGraph<DDGNode, DDGEdge>;
class LPMUpdater;

/// Data Dependence Graph Node
/// The graph can represent the following types of nodes:
/// 1. Single instruction node containing just one instruction.
/// 2. Multiple instruction node where two or more instructions from
///    the same basic block are merged into one node.
/// 3. Root node is a special node that connects to all components such that
///    there is always a path from it to any node in the graph.
class DDGNode : public DDGNodeBase {
public:
  using InstructionListType = SmallVectorImpl<Instruction *>;

  enum class NodeKind {
    Unknown,
    SingleInstruction,
    MultiInstruction,
    Root,
  };

  DDGNode() = delete;
  DDGNode(const NodeKind K) : DDGNodeBase(), Kind(K) {}
  DDGNode(const DDGNode &N) : DDGNodeBase(N), Kind(N.Kind) {}
  DDGNode(DDGNode &&N) : DDGNodeBase(std::move(N)), Kind(N.Kind) {}
  virtual ~DDGNode() = 0;

  DDGNode &operator=(const DDGNode &N) {
    DGNode::operator=(N);
    Kind = N.Kind;
    return *this;
  }

  DDGNode &operator=(DDGNode &&N) {
    DGNode::operator=(std::move(N));
    Kind = N.Kind;
    return *this;
  }

  /// Getter for the kind of this node.
  NodeKind getKind() const { return Kind; }

  /// Collect a list of instructions, in \p IList, for which predicate \p Pred
  /// evaluates to true when iterating over instructions of this node. Return
  /// true if at least one instruction was collected, and false otherwise.
  bool collectInstructions(llvm::function_ref<bool(Instruction *)> const &Pred,
                           InstructionListType &IList) const;

protected:
  /// Setter for the kind of this node.
  void setKind(NodeKind K) { Kind = K; }

private:
  NodeKind Kind;
};

/// Subclass of DDGNode representing the root node of the graph.
/// There should only be one such node in a given graph.
class RootDDGNode : public DDGNode {
public:
  RootDDGNode() : DDGNode(NodeKind::Root) {}
  RootDDGNode(const RootDDGNode &N) = delete;
  RootDDGNode(RootDDGNode &&N) : DDGNode(std::move(N)) {}
  ~RootDDGNode() {}

  /// Define classof to be able to use isa<>, cast<>, dyn_cast<>, etc.
  static bool classof(const DDGNode *N) {
    return N->getKind() == NodeKind::Root;
  }
  static bool classof(const RootDDGNode *N) { return true; }
};

/// Subclass of DDGNode representing single or multi-instruction nodes.
class SimpleDDGNode : public DDGNode {
public:
  SimpleDDGNode() = delete;
  SimpleDDGNode(Instruction &I);
  SimpleDDGNode(const SimpleDDGNode &N);
  SimpleDDGNode(SimpleDDGNode &&N);
  ~SimpleDDGNode();

  SimpleDDGNode &operator=(const SimpleDDGNode &N) {
    DDGNode::operator=(N);
    InstList = N.InstList;
    return *this;
  }

  SimpleDDGNode &operator=(SimpleDDGNode &&N) {
    DDGNode::operator=(std::move(N));
    InstList = std::move(N.InstList);
    return *this;
  }

  /// Get the list of instructions in this node.
  const InstructionListType &getInstructions() const {
    assert(!InstList.empty() && "Instruction List is empty.");
    return InstList;
  }
  InstructionListType &getInstructions() {
    return const_cast<InstructionListType &>(
        static_cast<const SimpleDDGNode *>(this)->getInstructions());
  }

  /// Get the first/last instruction in the node.
  Instruction *getFirstInstruction() const { return getInstructions().front(); }
  Instruction *getLastInstruction() const { return getInstructions().back(); }

  /// Define classof to be able to use isa<>, cast<>, dyn_cast<>, etc.
  static bool classof(const DDGNode *N) {
    return N->getKind() == NodeKind::SingleInstruction ||
           N->getKind() == NodeKind::MultiInstruction;
  }
  static bool classof(const SimpleDDGNode *N) { return true; }

private:
  /// Append the list of instructions in \p Input to this node.
  void appendInstructions(const InstructionListType &Input) {
    setKind((InstList.size() == 0 && Input.size() == 1)
                ? NodeKind::SingleInstruction
                : NodeKind::MultiInstruction);
    InstList.insert(InstList.end(), Input.begin(), Input.end());
  }
  void appendInstructions(const SimpleDDGNode &Input) {
    appendInstructions(Input.getInstructions());
  }

  /// List of instructions associated with a single or multi-instruction node.
  SmallVector<Instruction *, 2> InstList;
};

/// Data Dependency Graph Edge.
/// An edge in the DDG can represent a def-use relationship or
/// a memory dependence based on the result of DependenceAnalysis.
/// A rooted edge connects the root node to one of the components
/// of the graph.
class DDGEdge : public DDGEdgeBase {
public:
  /// The kind of edge in the DDG
  enum class EdgeKind { Unknown, RegisterDefUse, MemoryDependence, Rooted };

  explicit DDGEdge(DDGNode &N) = delete;
  DDGEdge(DDGNode &N, EdgeKind K) : DDGEdgeBase(N), Kind(K) {}
  DDGEdge(const DDGEdge &E) : DDGEdgeBase(E), Kind(E.getKind()) {}
  DDGEdge(DDGEdge &&E) : DDGEdgeBase(std::move(E)), Kind(E.Kind) {}
  DDGEdge &operator=(const DDGEdge &E) {
    DDGEdgeBase::operator=(E);
    Kind = E.Kind;
    return *this;
  }

  DDGEdge &operator=(DDGEdge &&E) {
    DDGEdgeBase::operator=(std::move(E));
    Kind = E.Kind;
    return *this;
  }

  /// Get the edge kind
  EdgeKind getKind() const { return Kind; };

  /// Return true if this is a def-use edge, and false otherwise.
  bool isDefUse() const { return Kind == EdgeKind::RegisterDefUse; }

  /// Return true if this is a memory dependence edge, and false otherwise.
  bool isMemoryDependence() const { return Kind == EdgeKind::MemoryDependence; }

  /// Return true if this is an edge stemming from the root node, and false
  /// otherwise.
  bool isRooted() const { return Kind == EdgeKind::Rooted; }

private:
  EdgeKind Kind;
};

/// Encapsulate some common data and functionality needed for different
/// variations of data dependence graphs.
template <typename NodeType> class DependenceGraphInfo {
public:
  using DependenceList = SmallVector<std::unique_ptr<Dependence>, 1>;

  DependenceGraphInfo() = delete;
  DependenceGraphInfo(const DependenceGraphInfo &G) = delete;
  DependenceGraphInfo(const std::string &N, const DependenceInfo &DepInfo)
      : Name(N), DI(DepInfo), Root(nullptr) {}
  DependenceGraphInfo(DependenceGraphInfo &&G)
      : Name(std::move(G.Name)), DI(std::move(G.DI)), Root(G.Root) {}
  virtual ~DependenceGraphInfo() {}

  /// Return the label that is used to name this graph.
  const StringRef getName() const { return Name; }

  /// Return the root node of the graph.
  NodeType &getRoot() const {
    assert(Root && "Root node is not available yet. Graph construction may "
                   "still be in progress\n");
    return *Root;
  }

protected:
  // Name of the graph.
  std::string Name;

  // Store a copy of DependenceInfo in the graph, so that individual memory
  // dependencies don't need to be stored. Instead when the dependence is
  // queried it is recomputed using @DI.
  const DependenceInfo DI;

  // A special node in the graph that has an edge to every connected component of
  // the graph, to ensure all nodes are reachable in a graph walk.
  NodeType *Root = nullptr;
};

using DDGInfo = DependenceGraphInfo<DDGNode>;

/// Data Dependency Graph
class DataDependenceGraph : public DDGBase, public DDGInfo {
  friend class DDGBuilder;

public:
  using NodeType = DDGNode;
  using EdgeType = DDGEdge;

  DataDependenceGraph() = delete;
  DataDependenceGraph(const DataDependenceGraph &G) = delete;
  DataDependenceGraph(DataDependenceGraph &&G)
      : DDGBase(std::move(G)), DDGInfo(std::move(G)) {}
  DataDependenceGraph(Function &F, DependenceInfo &DI);
  DataDependenceGraph(const Loop &L, DependenceInfo &DI);
  ~DataDependenceGraph();

protected:
  /// Add node \p N to the graph, if it's not added yet, and keep track of
  /// the root node. Return true if node is successfully added.
  bool addNode(NodeType &N);

};

/// Concrete implementation of a pure data dependence graph builder. This class
/// provides custom implementation for the pure-virtual functions used in the
/// generic dependence graph build algorithm.
///
/// For information about time complexity of the build algorithm see the
/// comments near the declaration of AbstractDependenceGraphBuilder.
class DDGBuilder : public AbstractDependenceGraphBuilder<DataDependenceGraph> {
public:
  DDGBuilder(DataDependenceGraph &G, DependenceInfo &D,
             const BasicBlockListType &BBs)
      : AbstractDependenceGraphBuilder(G, D, BBs) {}
  DDGNode &createRootNode() final override {
    auto *RN = new RootDDGNode();
    assert(RN && "Failed to allocate memory for DDG root node.");
    Graph.addNode(*RN);
    return *RN;
  }
  DDGNode &createFineGrainedNode(Instruction &I) final override {
    auto *SN = new SimpleDDGNode(I);
    assert(SN && "Failed to allocate memory for simple DDG node.");
    Graph.addNode(*SN);
    return *SN;
  }
  DDGEdge &createDefUseEdge(DDGNode &Src, DDGNode &Tgt) final override {
    auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::RegisterDefUse);
    assert(E && "Failed to allocate memory for edge");
    Graph.connect(Src, Tgt, *E);
    return *E;
  }
  DDGEdge &createMemoryEdge(DDGNode &Src, DDGNode &Tgt) final override {
    auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::MemoryDependence);
    assert(E && "Failed to allocate memory for edge");
    Graph.connect(Src, Tgt, *E);
    return *E;
  }
  DDGEdge &createRootedEdge(DDGNode &Src, DDGNode &Tgt) final override {
    auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::Rooted);
    assert(E && "Failed to allocate memory for edge");
    assert(isa<RootDDGNode>(Src) && "Expected root node");
    Graph.connect(Src, Tgt, *E);
    return *E;
  }

};

raw_ostream &operator<<(raw_ostream &OS, const DDGNode &N);
raw_ostream &operator<<(raw_ostream &OS, const DDGNode::NodeKind K);
raw_ostream &operator<<(raw_ostream &OS, const DDGEdge &E);
raw_ostream &operator<<(raw_ostream &OS, const DDGEdge::EdgeKind K);
raw_ostream &operator<<(raw_ostream &OS, const DataDependenceGraph &G);

//===--------------------------------------------------------------------===//
// DDG Analysis Passes
//===--------------------------------------------------------------------===//

/// Analysis pass that builds the DDG for a loop.
class DDGAnalysis : public AnalysisInfoMixin<DDGAnalysis> {
public:
  using Result = std::unique_ptr<DataDependenceGraph>;
  Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);

private:
  friend AnalysisInfoMixin<DDGAnalysis>;
  static AnalysisKey Key;
};

/// Textual printer pass for the DDG of a loop.
class DDGAnalysisPrinterPass : public PassInfoMixin<DDGAnalysisPrinterPass> {
public:
  explicit DDGAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
  PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM,
                        LoopStandardAnalysisResults &AR, LPMUpdater &U);

private:
  raw_ostream &OS;
};

//===--------------------------------------------------------------------===//
// GraphTraits specializations for the DDG
//===--------------------------------------------------------------------===//

/// non-const versions of the grapth trait specializations for DDG
template <> struct GraphTraits<DDGNode *> {
  using NodeRef = DDGNode *;

  static DDGNode *DDGGetTargetNode(DGEdge<DDGNode, DDGEdge> *P) {
    return &P->getTargetNode();
  }

  // Provide a mapped iterator so that the GraphTrait-based implementations can
  // find the target nodes without having to explicitly go through the edges.
  using ChildIteratorType =
      mapped_iterator<DDGNode::iterator, decltype(&DDGGetTargetNode)>;
  using ChildEdgeIteratorType = DDGNode::iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }
  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(N->begin(), &DDGGetTargetNode);
  }
  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(N->end(), &DDGGetTargetNode);
  }

  static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
    return N->begin();
  }
  static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
};

template <>
struct GraphTraits<DataDependenceGraph *> : public GraphTraits<DDGNode *> {
  using nodes_iterator = DataDependenceGraph::iterator;
  static NodeRef getEntryNode(DataDependenceGraph *DG) {
    return &DG->getRoot();
  }
  static nodes_iterator nodes_begin(DataDependenceGraph *DG) {
    return DG->begin();
  }
  static nodes_iterator nodes_end(DataDependenceGraph *DG) { return DG->end(); }
};

/// const versions of the grapth trait specializations for DDG
template <> struct GraphTraits<const DDGNode *> {
  using NodeRef = const DDGNode *;

  static const DDGNode *DDGGetTargetNode(const DGEdge<DDGNode, DDGEdge> *P) {
    return &P->getTargetNode();
  }

  // Provide a mapped iterator so that the GraphTrait-based implementations can
  // find the target nodes without having to explicitly go through the edges.
  using ChildIteratorType =
      mapped_iterator<DDGNode::const_iterator, decltype(&DDGGetTargetNode)>;
  using ChildEdgeIteratorType = DDGNode::const_iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }
  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(N->begin(), &DDGGetTargetNode);
  }
  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(N->end(), &DDGGetTargetNode);
  }

  static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
    return N->begin();
  }
  static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
};

template <>
struct GraphTraits<const DataDependenceGraph *>
    : public GraphTraits<const DDGNode *> {
  using nodes_iterator = DataDependenceGraph::const_iterator;
  static NodeRef getEntryNode(const DataDependenceGraph *DG) {
    return &DG->getRoot();
  }
  static nodes_iterator nodes_begin(const DataDependenceGraph *DG) {
    return DG->begin();
  }
  static nodes_iterator nodes_end(const DataDependenceGraph *DG) {
    return DG->end();
  }
};

} // namespace llvm

#endif // LLVM_ANALYSIS_DDG_H