reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
//===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
#define LLVM_TRANSFORMS_UTILS_LOCAL_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cstdint>
#include <limits>

namespace llvm {

class AllocaInst;
class AssumptionCache;
class BasicBlock;
class BranchInst;
class CallInst;
class DbgVariableIntrinsic;
class DbgValueInst;
class DIBuilder;
class Function;
class Instruction;
class LazyValueInfo;
class LoadInst;
class MDNode;
class MemorySSAUpdater;
class PHINode;
class StoreInst;
class TargetLibraryInfo;
class TargetTransformInfo;

/// A set of parameters used to control the transforms in the SimplifyCFG pass.
/// Options may change depending on the position in the optimization pipeline.
/// For example, canonical form that includes switches and branches may later be
/// replaced by lookup tables and selects.
struct SimplifyCFGOptions {
  int BonusInstThreshold;
  bool ForwardSwitchCondToPhi;
  bool ConvertSwitchToLookupTable;
  bool NeedCanonicalLoop;
  bool SinkCommonInsts;
  AssumptionCache *AC;

  SimplifyCFGOptions(unsigned BonusThreshold = 1,
                     bool ForwardSwitchCond = false,
                     bool SwitchToLookup = false, bool CanonicalLoops = true,
                     bool SinkCommon = false,
                     AssumptionCache *AssumpCache = nullptr)
      : BonusInstThreshold(BonusThreshold),
        ForwardSwitchCondToPhi(ForwardSwitchCond),
        ConvertSwitchToLookupTable(SwitchToLookup),
        NeedCanonicalLoop(CanonicalLoops),
        SinkCommonInsts(SinkCommon),
        AC(AssumpCache) {}

  // Support 'builder' pattern to set members by name at construction time.
  SimplifyCFGOptions &bonusInstThreshold(int I) {
    BonusInstThreshold = I;
    return *this;
  }
  SimplifyCFGOptions &forwardSwitchCondToPhi(bool B) {
    ForwardSwitchCondToPhi = B;
    return *this;
  }
  SimplifyCFGOptions &convertSwitchToLookupTable(bool B) {
    ConvertSwitchToLookupTable = B;
    return *this;
  }
  SimplifyCFGOptions &needCanonicalLoops(bool B) {
    NeedCanonicalLoop = B;
    return *this;
  }
  SimplifyCFGOptions &sinkCommonInsts(bool B) {
    SinkCommonInsts = B;
    return *this;
  }
  SimplifyCFGOptions &setAssumptionCache(AssumptionCache *Cache) {
    AC = Cache;
    return *this;
  }
};

//===----------------------------------------------------------------------===//
//  Local constant propagation.
//

/// If a terminator instruction is predicated on a constant value, convert it
/// into an unconditional branch to the constant destination.
/// This is a nontrivial operation because the successors of this basic block
/// must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
                            const TargetLibraryInfo *TLI = nullptr,
                            DomTreeUpdater *DTU = nullptr);

//===----------------------------------------------------------------------===//
//  Local dead code elimination.
//

/// Return true if the result produced by the instruction is not used, and the
/// instruction has no side effects.
bool isInstructionTriviallyDead(Instruction *I,
                                const TargetLibraryInfo *TLI = nullptr);

/// Return true if the result produced by the instruction would have no side
/// effects if it was not used. This is equivalent to checking whether
/// isInstructionTriviallyDead would be true if the use count was 0.
bool wouldInstructionBeTriviallyDead(Instruction *I,
                                     const TargetLibraryInfo *TLI = nullptr);

/// If the specified value is a trivially dead instruction, delete it.
/// If that makes any of its operands trivially dead, delete them too,
/// recursively. Return true if any instructions were deleted.
bool RecursivelyDeleteTriviallyDeadInstructions(
    Value *V, const TargetLibraryInfo *TLI = nullptr,
    MemorySSAUpdater *MSSAU = nullptr);

/// Delete all of the instructions in `DeadInsts`, and all other instructions
/// that deleting these in turn causes to be trivially dead.
///
/// The initial instructions in the provided vector must all have empty use
/// lists and satisfy `isInstructionTriviallyDead`.
///
/// `DeadInsts` will be used as scratch storage for this routine and will be
/// empty afterward.
void RecursivelyDeleteTriviallyDeadInstructions(
    SmallVectorImpl<Instruction *> &DeadInsts,
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr);

/// If the specified value is an effectively dead PHI node, due to being a
/// def-use chain of single-use nodes that either forms a cycle or is terminated
/// by a trivially dead instruction, delete it. If that makes any of its
/// operands trivially dead, delete them too, recursively. Return true if a
/// change was made.
bool RecursivelyDeleteDeadPHINode(PHINode *PN,
                                  const TargetLibraryInfo *TLI = nullptr);

/// Scan the specified basic block and try to simplify any instructions in it
/// and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool SimplifyInstructionsInBlock(BasicBlock *BB,
                                 const TargetLibraryInfo *TLI = nullptr);

/// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
/// undef. This is useful for signaling that a variable, e.g. has been
/// found dead and hence it's unavailable at a given program point.
/// Returns true if the dbg values have been changed.
bool replaceDbgUsesWithUndef(Instruction *I);

//===----------------------------------------------------------------------===//
//  Control Flow Graph Restructuring.
//

/// Like BasicBlock::removePredecessor, this method is called when we're about
/// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
/// drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values.  For example, if we have:
///   x = phi(1, 0, 0, 0)
///   y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the 'and' to 0.
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
                                  DomTreeUpdater *DTU = nullptr);

/// BB is a block with one predecessor and its predecessor is known to have one
/// successor (BB!). Eliminate the edge between them, moving the instructions in
/// the predecessor into BB. This deletes the predecessor block.
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);

/// BB is known to contain an unconditional branch, and contains no instructions
/// other than PHI nodes, potential debug intrinsics and the branch. If
/// possible, eliminate BB by rewriting all the predecessors to branch to the
/// successor block and return true. If we can't transform, return false.
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
                                             DomTreeUpdater *DTU = nullptr);

/// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
/// to be clever about PHI nodes which differ only in the order of the incoming
/// values, but instcombine orders them so it usually won't matter.
bool EliminateDuplicatePHINodes(BasicBlock *BB);

/// This function is used to do simplification of a CFG.  For example, it
/// adjusts branches to branches to eliminate the extra hop, it eliminates
/// unreachable basic blocks, and does other peephole optimization of the CFG.
/// It returns true if a modification was made, possibly deleting the basic
/// block that was pointed to. LoopHeaders is an optional input parameter
/// providing the set of loop headers that SimplifyCFG should not eliminate.
bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
                 const SimplifyCFGOptions &Options = {},
                 SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);

/// This function is used to flatten a CFG. For example, it uses parallel-and
/// and parallel-or mode to collapse if-conditions and merge if-regions with
/// identical statements.
bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);

/// If this basic block is ONLY a setcc and a branch, and if a predecessor
/// branches to us and one of our successors, fold the setcc into the
/// predecessor and use logical operations to pick the right destination.
bool FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU = nullptr,
                            unsigned BonusInstThreshold = 1);

/// This function takes a virtual register computed by an Instruction and
/// replaces it with a slot in the stack frame, allocated via alloca.
/// This allows the CFG to be changed around without fear of invalidating the
/// SSA information for the value. It returns the pointer to the alloca inserted
/// to create a stack slot for X.
AllocaInst *DemoteRegToStack(Instruction &X,
                             bool VolatileLoads = false,
                             Instruction *AllocaPoint = nullptr);

/// This function takes a virtual register computed by a phi node and replaces
/// it with a slot in the stack frame, allocated via alloca. The phi node is
/// deleted and it returns the pointer to the alloca inserted.
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);

/// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
/// the owning object can be modified and has an alignment less than \p
/// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
/// cannot be increased, the known alignment of the value is returned.
///
/// It is not always possible to modify the alignment of the underlying object,
/// so if alignment is important, a more reliable approach is to simply align
/// all global variables and allocation instructions to their preferred
/// alignment from the beginning.
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
                                    const DataLayout &DL,
                                    const Instruction *CxtI = nullptr,
                                    AssumptionCache *AC = nullptr,
                                    const DominatorTree *DT = nullptr);

/// Try to infer an alignment for the specified pointer.
inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
                                  const Instruction *CxtI = nullptr,
                                  AssumptionCache *AC = nullptr,
                                  const DominatorTree *DT = nullptr) {
  return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
}

/// Create a call that matches the invoke \p II in terms of arguments,
/// attributes, debug information, etc. The call is not placed in a block and it
/// will not have a name. The invoke instruction is not removed, nor are the
/// uses replaced by the new call.
CallInst *createCallMatchingInvoke(InvokeInst *II);

/// This function converts the specified invoek into a normall call.
void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);

///===---------------------------------------------------------------------===//
///  Dbg Intrinsic utilities
///

/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     StoreInst *SI, DIBuilder &Builder);

/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     LoadInst *LI, DIBuilder &Builder);

/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
                                     PHINode *LI, DIBuilder &Builder);

/// Lowers llvm.dbg.declare intrinsics into appropriate set of
/// llvm.dbg.value intrinsics.
bool LowerDbgDeclare(Function &F);

/// Propagate dbg.value intrinsics through the newly inserted PHIs.
void insertDebugValuesForPHIs(BasicBlock *BB,
                              SmallVectorImpl<PHINode *> &InsertedPHIs);

/// Finds all intrinsics declaring local variables as living in the memory that
/// 'V' points to. This may include a mix of dbg.declare and
/// dbg.addr intrinsics.
TinyPtrVector<DbgVariableIntrinsic *> FindDbgAddrUses(Value *V);

/// Finds the llvm.dbg.value intrinsics describing a value.
void findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V);

/// Finds the debug info intrinsics describing a value.
void findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgInsts, Value *V);

/// Replaces llvm.dbg.declare instruction when the address it
/// describes is replaced with a new value. If Deref is true, an
/// additional DW_OP_deref is prepended to the expression. If Offset
/// is non-zero, a constant displacement is added to the expression
/// (between the optional Deref operations). Offset can be negative.
bool replaceDbgDeclare(Value *Address, Value *NewAddress,
                       Instruction *InsertBefore, DIBuilder &Builder,
                       uint8_t DIExprFlags, int Offset);

/// Replaces llvm.dbg.declare instruction when the alloca it describes
/// is replaced with a new value. If Deref is true, an additional
/// DW_OP_deref is prepended to the expression. If Offset is non-zero,
/// a constant displacement is added to the expression (between the
/// optional Deref operations). Offset can be negative. The new
/// llvm.dbg.declare is inserted immediately after AI.
bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                                DIBuilder &Builder, uint8_t DIExprFlags,
                                int Offset);

/// Replaces multiple llvm.dbg.value instructions when the alloca it describes
/// is replaced with a new value. If Offset is non-zero, a constant displacement
/// is added to the expression (after the mandatory Deref). Offset can be
/// negative. New llvm.dbg.value instructions are inserted at the locations of
/// the instructions they replace.
void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                              DIBuilder &Builder, int Offset = 0);

/// Finds alloca where the value comes from.
AllocaInst *findAllocaForValue(Value *V,
                               DenseMap<Value *, AllocaInst *> &AllocaForValue);

/// Assuming the instruction \p I is going to be deleted, attempt to salvage
/// debug users of \p I by writing the effect of \p I in a DIExpression.
/// Returns true if any debug users were updated.
bool salvageDebugInfo(Instruction &I);

/// Implementation of salvageDebugInfo, applying only to instructions in
/// \p Insns, rather than all debug users of \p I.
bool salvageDebugInfoForDbgValues(Instruction &I,
                                  ArrayRef<DbgVariableIntrinsic *> Insns);

/// Given an instruction \p I and DIExpression \p DIExpr operating on it, write
/// the effects of \p I into the returned DIExpression, or return nullptr if
/// it cannot be salvaged. \p StackVal: whether DW_OP_stack_value should be
/// appended to the expression.
DIExpression *salvageDebugInfoImpl(Instruction &I, DIExpression *DIExpr,
                                   bool StackVal);

/// Point debug users of \p From to \p To or salvage them. Use this function
/// only when replacing all uses of \p From with \p To, with a guarantee that
/// \p From is going to be deleted.
///
/// Follow these rules to prevent use-before-def of \p To:
///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
///     \p To will be inserted after.
///   . If \p To is not an Instruction (e.g a Constant), the choice of
///     \p DomPoint is arbitrary. Pick \p From for simplicity.
///
/// If a debug user cannot be preserved without reordering variable updates or
/// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
/// or deleted. Returns true if any debug users were updated.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
                           DominatorTree &DT);

/// Remove all instructions from a basic block other than it's terminator
/// and any present EH pad instructions.
unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);

/// Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap,
                             bool PreserveLCSSA = false,
                             DomTreeUpdater *DTU = nullptr,
                             MemorySSAUpdater *MSSAU = nullptr);

/// Convert the CallInst to InvokeInst with the specified unwind edge basic
/// block.  This also splits the basic block where CI is located, because
/// InvokeInst is a terminator instruction.  Returns the newly split basic
/// block.
BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
                                             BasicBlock *UnwindEdge);

/// Replace 'BB's terminator with one that does not have an unwind successor
/// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
/// successor.
///
/// \param BB  Block whose terminator will be replaced.  Its terminator must
///            have an unwind successor.
void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);

/// Remove all blocks that can not be reached from the function's entry.
///
/// Returns true if any basic block was removed.
bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
                             MemorySSAUpdater *MSSAU = nullptr);

/// Combine the metadata of two instructions so that K can replace J. Some
/// metadata kinds can only be kept if K does not move, meaning it dominated
/// J in the original IR.
///
/// Metadata not listed as known via KnownIDs is removed
void combineMetadata(Instruction *K, const Instruction *J,
                     ArrayRef<unsigned> KnownIDs, bool DoesKMove);

/// Combine the metadata of two instructions so that K can replace J. This
/// specifically handles the case of CSE-like transformations. Some
/// metadata can only be kept if K dominates J. For this to be correct,
/// K cannot be hoisted.
///
/// Unknown metadata is removed.
void combineMetadataForCSE(Instruction *K, const Instruction *J,
                           bool DoesKMove);

/// Copy the metadata from the source instruction to the destination (the
/// replacement for the source instruction).
void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);

/// Patch the replacement so that it is not more restrictive than the value
/// being replaced. It assumes that the replacement does not get moved from
/// its original position.
void patchReplacementInstruction(Instruction *I, Value *Repl);

// Replace each use of 'From' with 'To', if that use does not belong to basic
// block where 'From' is defined. Returns the number of replacements made.
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);

/// Replace each use of 'From' with 'To' if that use is dominated by
/// the given edge.  Returns the number of replacements made.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
                                  const BasicBlockEdge &Edge);
/// Replace each use of 'From' with 'To' if that use is dominated by
/// the end of the given BasicBlock. Returns the number of replacements made.
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
                                  const BasicBlock *BB);

/// Return true if this call calls a gc leaf function.
///
/// A leaf function is a function that does not safepoint the thread during its
/// execution.  During a call or invoke to such a function, the callers stack
/// does not have to be made parseable.
///
/// Most passes can and should ignore this information, and it is only used
/// during lowering by the GC infrastructure.
bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);

/// Copy a nonnull metadata node to a new load instruction.
///
/// This handles mapping it to range metadata if the new load is an integer
/// load instead of a pointer load.
void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);

/// Copy a range metadata node to a new load instruction.
///
/// This handles mapping it to nonnull metadata if the new load is a pointer
/// load instead of an integer load and the range doesn't cover null.
void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
                       LoadInst &NewLI);

/// Remove the debug intrinsic instructions for the given instruction.
void dropDebugUsers(Instruction &I);

/// Hoist all of the instructions in the \p IfBlock to the dominant block
/// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
///
/// The moved instructions receive the insertion point debug location values
/// (DILocations) and their debug intrinsic instructions are removed.
void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
                              BasicBlock *BB);

//===----------------------------------------------------------------------===//
//  Intrinsic pattern matching
//

/// Try to match a bswap or bitreverse idiom.
///
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
/// instructions are returned in \c InsertedInsts. They will all have been added
/// to a basic block.
///
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
/// to BW / 4 nodes to be searched, so is significantly faster.
///
/// This function returns true on a successful match or false otherwise.
bool recognizeBSwapOrBitReverseIdiom(
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
    SmallVectorImpl<Instruction *> &InsertedInsts);

//===----------------------------------------------------------------------===//
//  Sanitizer utilities
//

/// Given a CallInst, check if it calls a string function known to CodeGen,
/// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
/// to intercept string functions and want to avoid converting them to target
/// specific instructions.
void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
                                            const TargetLibraryInfo *TLI);

//===----------------------------------------------------------------------===//
//  Transform predicates
//

/// Given an instruction, is it legal to set operand OpIdx to a non-constant
/// value?
bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);

} // end namespace llvm

#endif // LLVM_TRANSFORMS_UTILS_LOCAL_H