reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the newly proposed standard C++ interfaces for hashing
// arbitrary data and building hash functions for user-defined types. This
// interface was originally proposed in N3333[1] and is currently under review
// for inclusion in a future TR and/or standard.
//
// The primary interfaces provide are comprised of one type and three functions:
//
//  -- 'hash_code' class is an opaque type representing the hash code for some
//     data. It is the intended product of hashing, and can be used to implement
//     hash tables, checksumming, and other common uses of hashes. It is not an
//     integer type (although it can be converted to one) because it is risky
//     to assume much about the internals of a hash_code. In particular, each
//     execution of the program has a high probability of producing a different
//     hash_code for a given input. Thus their values are not stable to save or
//     persist, and should only be used during the execution for the
//     construction of hashing datastructures.
//
//  -- 'hash_value' is a function designed to be overloaded for each
//     user-defined type which wishes to be used within a hashing context. It
//     should be overloaded within the user-defined type's namespace and found
//     via ADL. Overloads for primitive types are provided by this library.
//
//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
//      programmers in easily and intuitively combining a set of data into
//      a single hash_code for their object. They should only logically be used
//      within the implementation of a 'hash_value' routine or similar context.
//
// Note that 'hash_combine_range' contains very special logic for hashing
// a contiguous array of integers or pointers. This logic is *extremely* fast,
// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
// under 32-bytes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_HASHING_H
#define LLVM_ADT_HASHING_H

#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <string>
#include <utility>

namespace llvm {

/// An opaque object representing a hash code.
///
/// This object represents the result of hashing some entity. It is intended to
/// be used to implement hashtables or other hashing-based data structures.
/// While it wraps and exposes a numeric value, this value should not be
/// trusted to be stable or predictable across processes or executions.
///
/// In order to obtain the hash_code for an object 'x':
/// \code
///   using llvm::hash_value;
///   llvm::hash_code code = hash_value(x);
/// \endcode
class hash_code {
  size_t value;

public:
  /// Default construct a hash_code.
  /// Note that this leaves the value uninitialized.
  hash_code() = default;

  /// Form a hash code directly from a numerical value.
  hash_code(size_t value) : value(value) {}

  /// Convert the hash code to its numerical value for use.
  /*explicit*/ operator size_t() const { return value; }

  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
    return lhs.value == rhs.value;
  }
  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
    return lhs.value != rhs.value;
  }

  /// Allow a hash_code to be directly run through hash_value.
  friend size_t hash_value(const hash_code &code) { return code.value; }
};

/// Compute a hash_code for any integer value.
///
/// Note that this function is intended to compute the same hash_code for
/// a particular value without regard to the pre-promotion type. This is in
/// contrast to hash_combine which may produce different hash_codes for
/// differing argument types even if they would implicit promote to a common
/// type without changing the value.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value);

/// Compute a hash_code for a pointer's address.
///
/// N.B.: This hashes the *address*. Not the value and not the type.
template <typename T> hash_code hash_value(const T *ptr);

/// Compute a hash_code for a pair of objects.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg);

/// Compute a hash_code for a standard string.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg);


/// Override the execution seed with a fixed value.
///
/// This hashing library uses a per-execution seed designed to change on each
/// run with high probability in order to ensure that the hash codes are not
/// attackable and to ensure that output which is intended to be stable does
/// not rely on the particulars of the hash codes produced.
///
/// That said, there are use cases where it is important to be able to
/// reproduce *exactly* a specific behavior. To that end, we provide a function
/// which will forcibly set the seed to a fixed value. This must be done at the
/// start of the program, before any hashes are computed. Also, it cannot be
/// undone. This makes it thread-hostile and very hard to use outside of
/// immediately on start of a simple program designed for reproducible
/// behavior.
void set_fixed_execution_hash_seed(uint64_t fixed_value);


// All of the implementation details of actually computing the various hash
// code values are held within this namespace. These routines are included in
// the header file mainly to allow inlining and constant propagation.
namespace hashing {
namespace detail {

inline uint64_t fetch64(const char *p) {
  uint64_t result;
  memcpy(&result, p, sizeof(result));
  if (sys::IsBigEndianHost)
    sys::swapByteOrder(result);
  return result;
}

inline uint32_t fetch32(const char *p) {
  uint32_t result;
  memcpy(&result, p, sizeof(result));
  if (sys::IsBigEndianHost)
    sys::swapByteOrder(result);
  return result;
}

/// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
static const uint64_t k3 = 0xc949d7c7509e6557ULL;

/// Bitwise right rotate.
/// Normally this will compile to a single instruction, especially if the
/// shift is a manifest constant.
inline uint64_t rotate(uint64_t val, size_t shift) {
  // Avoid shifting by 64: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}

inline uint64_t shift_mix(uint64_t val) {
  return val ^ (val >> 47);
}

inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
  // Murmur-inspired hashing.
  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
  uint64_t a = (low ^ high) * kMul;
  a ^= (a >> 47);
  uint64_t b = (high ^ a) * kMul;
  b ^= (b >> 47);
  b *= kMul;
  return b;
}

inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
  uint8_t a = s[0];
  uint8_t b = s[len >> 1];
  uint8_t c = s[len - 1];
  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
  uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
}

inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch32(s);
  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
}

inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch64(s);
  uint64_t b = fetch64(s + len - 8);
  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
}

inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch64(s) * k1;
  uint64_t b = fetch64(s + 8);
  uint64_t c = fetch64(s + len - 8) * k2;
  uint64_t d = fetch64(s + len - 16) * k0;
  return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
                       a + rotate(b ^ k3, 20) - c + len + seed);
}

inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t z = fetch64(s + 24);
  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
  uint64_t b = rotate(a + z, 52);
  uint64_t c = rotate(a, 37);
  a += fetch64(s + 8);
  c += rotate(a, 7);
  a += fetch64(s + 16);
  uint64_t vf = a + z;
  uint64_t vs = b + rotate(a, 31) + c;
  a = fetch64(s + 16) + fetch64(s + len - 32);
  z = fetch64(s + len - 8);
  b = rotate(a + z, 52);
  c = rotate(a, 37);
  a += fetch64(s + len - 24);
  c += rotate(a, 7);
  a += fetch64(s + len - 16);
  uint64_t wf = a + z;
  uint64_t ws = b + rotate(a, 31) + c;
  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
  return shift_mix((seed ^ (r * k0)) + vs) * k2;
}

inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
  if (length >= 4 && length <= 8)
    return hash_4to8_bytes(s, length, seed);
  if (length > 8 && length <= 16)
    return hash_9to16_bytes(s, length, seed);
  if (length > 16 && length <= 32)
    return hash_17to32_bytes(s, length, seed);
  if (length > 32)
    return hash_33to64_bytes(s, length, seed);
  if (length != 0)
    return hash_1to3_bytes(s, length, seed);

  return k2 ^ seed;
}

/// The intermediate state used during hashing.
/// Currently, the algorithm for computing hash codes is based on CityHash and
/// keeps 56 bytes of arbitrary state.
struct hash_state {
  uint64_t h0, h1, h2, h3, h4, h5, h6;

  /// Create a new hash_state structure and initialize it based on the
  /// seed and the first 64-byte chunk.
  /// This effectively performs the initial mix.
  static hash_state create(const char *s, uint64_t seed) {
    hash_state state = {
      0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
      seed * k1, shift_mix(seed), 0 };
    state.h6 = hash_16_bytes(state.h4, state.h5);
    state.mix(s);
    return state;
  }

  /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
  /// and 'b', including whatever is already in 'a' and 'b'.
  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
    a += fetch64(s);
    uint64_t c = fetch64(s + 24);
    b = rotate(b + a + c, 21);
    uint64_t d = a;
    a += fetch64(s + 8) + fetch64(s + 16);
    b += rotate(a, 44) + d;
    a += c;
  }

  /// Mix in a 64-byte buffer of data.
  /// We mix all 64 bytes even when the chunk length is smaller, but we
  /// record the actual length.
  void mix(const char *s) {
    h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
    h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
    h0 ^= h6;
    h1 += h3 + fetch64(s + 40);
    h2 = rotate(h2 + h5, 33) * k1;
    h3 = h4 * k1;
    h4 = h0 + h5;
    mix_32_bytes(s, h3, h4);
    h5 = h2 + h6;
    h6 = h1 + fetch64(s + 16);
    mix_32_bytes(s + 32, h5, h6);
    std::swap(h2, h0);
  }

  /// Compute the final 64-bit hash code value based on the current
  /// state and the length of bytes hashed.
  uint64_t finalize(size_t length) {
    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
  }
};


/// A global, fixed seed-override variable.
///
/// This variable can be set using the \see llvm::set_fixed_execution_seed
/// function. See that function for details. Do not, under any circumstances,
/// set or read this variable.
extern uint64_t fixed_seed_override;

inline uint64_t get_execution_seed() {
  // FIXME: This needs to be a per-execution seed. This is just a placeholder
  // implementation. Switching to a per-execution seed is likely to flush out
  // instability bugs and so will happen as its own commit.
  //
  // However, if there is a fixed seed override set the first time this is
  // called, return that instead of the per-execution seed.
  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
  static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
  return seed;
}


/// Trait to indicate whether a type's bits can be hashed directly.
///
/// A type trait which is true if we want to combine values for hashing by
/// reading the underlying data. It is false if values of this type must
/// first be passed to hash_value, and the resulting hash_codes combined.
//
// FIXME: We want to replace is_integral_or_enum and is_pointer here with
// a predicate which asserts that comparing the underlying storage of two
// values of the type for equality is equivalent to comparing the two values
// for equality. For all the platforms we care about, this holds for integers
// and pointers, but there are platforms where it doesn't and we would like to
// support user-defined types which happen to satisfy this property.
template <typename T> struct is_hashable_data
  : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
                                   std::is_pointer<T>::value) &&
                                  64 % sizeof(T) == 0)> {};

// Special case std::pair to detect when both types are viable and when there
// is no alignment-derived padding in the pair. This is a bit of a lie because
// std::pair isn't truly POD, but it's close enough in all reasonable
// implementations for our use case of hashing the underlying data.
template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
  : std::integral_constant<bool, (is_hashable_data<T>::value &&
                                  is_hashable_data<U>::value &&
                                  (sizeof(T) + sizeof(U)) ==
                                   sizeof(std::pair<T, U>))> {};

/// Helper to get the hashable data representation for a type.
/// This variant is enabled when the type itself can be used.
template <typename T>
typename std::enable_if<is_hashable_data<T>::value, T>::type
get_hashable_data(const T &value) {
  return value;
}
/// Helper to get the hashable data representation for a type.
/// This variant is enabled when we must first call hash_value and use the
/// result as our data.
template <typename T>
typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
get_hashable_data(const T &value) {
  using ::llvm::hash_value;
  return hash_value(value);
}

/// Helper to store data from a value into a buffer and advance the
/// pointer into that buffer.
///
/// This routine first checks whether there is enough space in the provided
/// buffer, and if not immediately returns false. If there is space, it
/// copies the underlying bytes of value into the buffer, advances the
/// buffer_ptr past the copied bytes, and returns true.
template <typename T>
bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
                       size_t offset = 0) {
  size_t store_size = sizeof(value) - offset;
  if (buffer_ptr + store_size > buffer_end)
    return false;
  const char *value_data = reinterpret_cast<const char *>(&value);
  memcpy(buffer_ptr, value_data + offset, store_size);
  buffer_ptr += store_size;
  return true;
}

/// Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is
/// integral. Rather than computing a hash_code for each object and then
/// combining them, this (as an optimization) directly combines the integers.
template <typename InputIteratorT>
hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
  const uint64_t seed = get_execution_seed();
  char buffer[64], *buffer_ptr = buffer;
  char *const buffer_end = std::end(buffer);
  while (first != last && store_and_advance(buffer_ptr, buffer_end,
                                            get_hashable_data(*first)))
    ++first;
  if (first == last)
    return hash_short(buffer, buffer_ptr - buffer, seed);
  assert(buffer_ptr == buffer_end);

  hash_state state = state.create(buffer, seed);
  size_t length = 64;
  while (first != last) {
    // Fill up the buffer. We don't clear it, which re-mixes the last round
    // when only a partial 64-byte chunk is left.
    buffer_ptr = buffer;
    while (first != last && store_and_advance(buffer_ptr, buffer_end,
                                              get_hashable_data(*first)))
      ++first;

    // Rotate the buffer if we did a partial fill in order to simulate doing
    // a mix of the last 64-bytes. That is how the algorithm works when we
    // have a contiguous byte sequence, and we want to emulate that here.
    std::rotate(buffer, buffer_ptr, buffer_end);

    // Mix this chunk into the current state.
    state.mix(buffer);
    length += buffer_ptr - buffer;
  };

  return state.finalize(length);
}

/// Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is integral
/// and when the input iterator is actually a pointer. Rather than computing
/// a hash_code for each object and then combining them, this (as an
/// optimization) directly combines the integers. Also, because the integers
/// are stored in contiguous memory, this routine avoids copying each value
/// and directly reads from the underlying memory.
template <typename ValueT>
typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
hash_combine_range_impl(ValueT *first, ValueT *last) {
  const uint64_t seed = get_execution_seed();
  const char *s_begin = reinterpret_cast<const char *>(first);
  const char *s_end = reinterpret_cast<const char *>(last);
  const size_t length = std::distance(s_begin, s_end);
  if (length <= 64)
    return hash_short(s_begin, length, seed);

  const char *s_aligned_end = s_begin + (length & ~63);
  hash_state state = state.create(s_begin, seed);
  s_begin += 64;
  while (s_begin != s_aligned_end) {
    state.mix(s_begin);
    s_begin += 64;
  }
  if (length & 63)
    state.mix(s_end - 64);

  return state.finalize(length);
}

} // namespace detail
} // namespace hashing


/// Compute a hash_code for a sequence of values.
///
/// This hashes a sequence of values. It produces the same hash_code as
/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
/// and is significantly faster given pointers and types which can be hashed as
/// a sequence of bytes.
template <typename InputIteratorT>
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
}


// Implementation details for hash_combine.
namespace hashing {
namespace detail {

/// Helper class to manage the recursive combining of hash_combine
/// arguments.
///
/// This class exists to manage the state and various calls involved in the
/// recursive combining of arguments used in hash_combine. It is particularly
/// useful at minimizing the code in the recursive calls to ease the pain
/// caused by a lack of variadic functions.
struct hash_combine_recursive_helper {
  char buffer[64];
  hash_state state;
  const uint64_t seed;

public:
  /// Construct a recursive hash combining helper.
  ///
  /// This sets up the state for a recursive hash combine, including getting
  /// the seed and buffer setup.
  hash_combine_recursive_helper()
    : seed(get_execution_seed()) {}

  /// Combine one chunk of data into the current in-flight hash.
  ///
  /// This merges one chunk of data into the hash. First it tries to buffer
  /// the data. If the buffer is full, it hashes the buffer into its
  /// hash_state, empties it, and then merges the new chunk in. This also
  /// handles cases where the data straddles the end of the buffer.
  template <typename T>
  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
      // Check for skew which prevents the buffer from being packed, and do
      // a partial store into the buffer to fill it. This is only a concern
      // with the variadic combine because that formation can have varying
      // argument types.
      size_t partial_store_size = buffer_end - buffer_ptr;
      memcpy(buffer_ptr, &data, partial_store_size);

      // If the store fails, our buffer is full and ready to hash. We have to
      // either initialize the hash state (on the first full buffer) or mix
      // this buffer into the existing hash state. Length tracks the *hashed*
      // length, not the buffered length.
      if (length == 0) {
        state = state.create(buffer, seed);
        length = 64;
      } else {
        // Mix this chunk into the current state and bump length up by 64.
        state.mix(buffer);
        length += 64;
      }
      // Reset the buffer_ptr to the head of the buffer for the next chunk of
      // data.
      buffer_ptr = buffer;

      // Try again to store into the buffer -- this cannot fail as we only
      // store types smaller than the buffer.
      if (!store_and_advance(buffer_ptr, buffer_end, data,
                             partial_store_size))
        llvm_unreachable("buffer smaller than stored type");
    }
    return buffer_ptr;
  }

  /// Recursive, variadic combining method.
  ///
  /// This function recurses through each argument, combining that argument
  /// into a single hash.
  template <typename T, typename ...Ts>
  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
                    const T &arg, const Ts &...args) {
    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));

    // Recurse to the next argument.
    return combine(length, buffer_ptr, buffer_end, args...);
  }

  /// Base case for recursive, variadic combining.
  ///
  /// The base case when combining arguments recursively is reached when all
  /// arguments have been handled. It flushes the remaining buffer and
  /// constructs a hash_code.
  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
    // Check whether the entire set of values fit in the buffer. If so, we'll
    // use the optimized short hashing routine and skip state entirely.
    if (length == 0)
      return hash_short(buffer, buffer_ptr - buffer, seed);

    // Mix the final buffer, rotating it if we did a partial fill in order to
    // simulate doing a mix of the last 64-bytes. That is how the algorithm
    // works when we have a contiguous byte sequence, and we want to emulate
    // that here.
    std::rotate(buffer, buffer_ptr, buffer_end);

    // Mix this chunk into the current state.
    state.mix(buffer);
    length += buffer_ptr - buffer;

    return state.finalize(length);
  }
};

} // namespace detail
} // namespace hashing

/// Combine values into a single hash_code.
///
/// This routine accepts a varying number of arguments of any type. It will
/// attempt to combine them into a single hash_code. For user-defined types it
/// attempts to call a \see hash_value overload (via ADL) for the type. For
/// integer and pointer types it directly combines their data into the
/// resulting hash_code.
///
/// The result is suitable for returning from a user's hash_value
/// *implementation* for their user-defined type. Consumers of a type should
/// *not* call this routine, they should instead call 'hash_value'.
template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
  // Recursively hash each argument using a helper class.
  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
}

// Implementation details for implementations of hash_value overloads provided
// here.
namespace hashing {
namespace detail {

/// Helper to hash the value of a single integer.
///
/// Overloads for smaller integer types are not provided to ensure consistent
/// behavior in the presence of integral promotions. Essentially,
/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
inline hash_code hash_integer_value(uint64_t value) {
  // Similar to hash_4to8_bytes but using a seed instead of length.
  const uint64_t seed = get_execution_seed();
  const char *s = reinterpret_cast<const char *>(&value);
  const uint64_t a = fetch32(s);
  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
}

} // namespace detail
} // namespace hashing

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value) {
  return ::llvm::hashing::detail::hash_integer_value(
      static_cast<uint64_t>(value));
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T> hash_code hash_value(const T *ptr) {
  return ::llvm::hashing::detail::hash_integer_value(
    reinterpret_cast<uintptr_t>(ptr));
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg) {
  return hash_combine(arg.first, arg.second);
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg) {
  return hash_combine_range(arg.begin(), arg.end());
}

} // namespace llvm

#endif