1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
| //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal. Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OrderedBasicBlock.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "dse"
STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther, "Number of other instrs removed");
STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
STATISTIC(NumModifiedStores, "Number of stores modified");
static cl::opt<bool>
EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
cl::init(true), cl::Hidden,
cl::desc("Enable partial-overwrite tracking in DSE"));
static cl::opt<bool>
EnablePartialStoreMerging("enable-dse-partial-store-merging",
cl::init(true), cl::Hidden,
cl::desc("Enable partial store merging in DSE"));
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
using OverlapIntervalsTy = std::map<int64_t, int64_t>;
using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
/// Delete this instruction. Before we do, go through and zero out all the
/// operands of this instruction. If any of them become dead, delete them and
/// the computation tree that feeds them.
/// If ValueSet is non-null, remove any deleted instructions from it as well.
static void
deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
SmallVector<Instruction*, 32> NowDeadInsts;
NowDeadInsts.push_back(I);
--NumFastOther;
// Keeping the iterator straight is a pain, so we let this routine tell the
// caller what the next instruction is after we're done mucking about.
BasicBlock::iterator NewIter = *BBI;
// Before we touch this instruction, remove it from memdep!
do {
Instruction *DeadInst = NowDeadInsts.pop_back_val();
++NumFastOther;
// Try to preserve debug information attached to the dead instruction.
salvageDebugInfo(*DeadInst);
// This instruction is dead, zap it, in stages. Start by removing it from
// MemDep, which needs to know the operands and needs it to be in the
// function.
MD.removeInstruction(DeadInst);
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
Value *Op = DeadInst->getOperand(op);
DeadInst->setOperand(op, nullptr);
// If this operand just became dead, add it to the NowDeadInsts list.
if (!Op->use_empty()) continue;
if (Instruction *OpI = dyn_cast<Instruction>(Op))
if (isInstructionTriviallyDead(OpI, &TLI))
NowDeadInsts.push_back(OpI);
}
if (ValueSet) ValueSet->remove(DeadInst);
IOL.erase(DeadInst);
OBB.eraseInstruction(DeadInst);
if (NewIter == DeadInst->getIterator())
NewIter = DeadInst->eraseFromParent();
else
DeadInst->eraseFromParent();
} while (!NowDeadInsts.empty());
*BBI = NewIter;
}
/// Does this instruction write some memory? This only returns true for things
/// that we can analyze with other helpers below.
static bool hasAnalyzableMemoryWrite(Instruction *I,
const TargetLibraryInfo &TLI) {
if (isa<StoreInst>(I))
return true;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default:
return false;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
case Intrinsic::init_trampoline:
case Intrinsic::lifetime_end:
return true;
}
}
if (auto CS = CallSite(I)) {
if (Function *F = CS.getCalledFunction()) {
StringRef FnName = F->getName();
if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
return true;
if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
return true;
if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
return true;
if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
return true;
}
}
return false;
}
/// Return a Location stored to by the specified instruction. If isRemovable
/// returns true, this function and getLocForRead completely describe the memory
/// operations for this instruction.
static MemoryLocation getLocForWrite(Instruction *Inst) {
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
return MemoryLocation::get(SI);
if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
// memcpy/memmove/memset.
MemoryLocation Loc = MemoryLocation::getForDest(MI);
return Loc;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
default:
return MemoryLocation(); // Unhandled intrinsic.
case Intrinsic::init_trampoline:
return MemoryLocation(II->getArgOperand(0));
case Intrinsic::lifetime_end: {
uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
return MemoryLocation(II->getArgOperand(1), Len);
}
}
}
if (auto CS = CallSite(Inst))
// All the supported TLI functions so far happen to have dest as their
// first argument.
return MemoryLocation(CS.getArgument(0));
return MemoryLocation();
}
/// Return the location read by the specified "hasAnalyzableMemoryWrite"
/// instruction if any.
static MemoryLocation getLocForRead(Instruction *Inst,
const TargetLibraryInfo &TLI) {
assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
// The only instructions that both read and write are the mem transfer
// instructions (memcpy/memmove).
if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
return MemoryLocation::getForSource(MTI);
return MemoryLocation();
}
/// If the value of this instruction and the memory it writes to is unused, may
/// we delete this instruction?
static bool isRemovable(Instruction *I) {
// Don't remove volatile/atomic stores.
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isUnordered();
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
case Intrinsic::lifetime_end:
// Never remove dead lifetime_end's, e.g. because it is followed by a
// free.
return false;
case Intrinsic::init_trampoline:
// Always safe to remove init_trampoline.
return true;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
// Don't remove volatile memory intrinsics.
return !cast<MemIntrinsic>(II)->isVolatile();
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
return true;
}
}
// note: only get here for calls with analyzable writes - i.e. libcalls
if (auto CS = CallSite(I))
return CS.getInstruction()->use_empty();
return false;
}
/// Returns true if the end of this instruction can be safely shortened in
/// length.
static bool isShortenableAtTheEnd(Instruction *I) {
// Don't shorten stores for now
if (isa<StoreInst>(I))
return false;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
// Do shorten memory intrinsics.
// FIXME: Add memmove if it's also safe to transform.
return true;
}
}
// Don't shorten libcalls calls for now.
return false;
}
/// Returns true if the beginning of this instruction can be safely shortened
/// in length.
static bool isShortenableAtTheBeginning(Instruction *I) {
// FIXME: Handle only memset for now. Supporting memcpy/memmove should be
// easily done by offsetting the source address.
return isa<AnyMemSetInst>(I);
}
/// Return the pointer that is being written to.
static Value *getStoredPointerOperand(Instruction *I) {
//TODO: factor this to reuse getLocForWrite
MemoryLocation Loc = getLocForWrite(I);
assert(Loc.Ptr &&
"unable to find pointer written for analyzable instruction?");
// TODO: most APIs don't expect const Value *
return const_cast<Value*>(Loc.Ptr);
}
static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
const TargetLibraryInfo &TLI,
const Function *F) {
uint64_t Size;
ObjectSizeOpts Opts;
Opts.NullIsUnknownSize = NullPointerIsDefined(F);
if (getObjectSize(V, Size, DL, &TLI, Opts))
return Size;
return MemoryLocation::UnknownSize;
}
namespace {
enum OverwriteResult {
OW_Begin,
OW_Complete,
OW_End,
OW_PartialEarlierWithFullLater,
OW_Unknown
};
} // end anonymous namespace
/// Return 'OW_Complete' if a store to the 'Later' location completely
/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
/// beginning of the 'Earlier' location is overwritten by 'Later'.
/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
/// overwritten by a latter (smaller) store which doesn't write outside the big
/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
static OverwriteResult isOverwrite(const MemoryLocation &Later,
const MemoryLocation &Earlier,
const DataLayout &DL,
const TargetLibraryInfo &TLI,
int64_t &EarlierOff, int64_t &LaterOff,
Instruction *DepWrite,
InstOverlapIntervalsTy &IOL,
AliasAnalysis &AA,
const Function *F) {
// FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
// get imprecise values here, though (except for unknown sizes).
if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
return OW_Unknown;
const uint64_t LaterSize = Later.Size.getValue();
const uint64_t EarlierSize = Earlier.Size.getValue();
const Value *P1 = Earlier.Ptr->stripPointerCasts();
const Value *P2 = Later.Ptr->stripPointerCasts();
// If the start pointers are the same, we just have to compare sizes to see if
// the later store was larger than the earlier store.
if (P1 == P2 || AA.isMustAlias(P1, P2)) {
// Make sure that the Later size is >= the Earlier size.
if (LaterSize >= EarlierSize)
return OW_Complete;
}
// Check to see if the later store is to the entire object (either a global,
// an alloca, or a byval/inalloca argument). If so, then it clearly
// overwrites any other store to the same object.
const Value *UO1 = GetUnderlyingObject(P1, DL),
*UO2 = GetUnderlyingObject(P2, DL);
// If we can't resolve the same pointers to the same object, then we can't
// analyze them at all.
if (UO1 != UO2)
return OW_Unknown;
// If the "Later" store is to a recognizable object, get its size.
uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
if (ObjectSize != MemoryLocation::UnknownSize)
if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
return OW_Complete;
// Okay, we have stores to two completely different pointers. Try to
// decompose the pointer into a "base + constant_offset" form. If the base
// pointers are equal, then we can reason about the two stores.
EarlierOff = 0;
LaterOff = 0;
const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
// If the base pointers still differ, we have two completely different stores.
if (BP1 != BP2)
return OW_Unknown;
// The later store completely overlaps the earlier store if:
//
// 1. Both start at the same offset and the later one's size is greater than
// or equal to the earlier one's, or
//
// |--earlier--|
// |-- later --|
//
// 2. The earlier store has an offset greater than the later offset, but which
// still lies completely within the later store.
//
// |--earlier--|
// |----- later ------|
//
// We have to be careful here as *Off is signed while *.Size is unsigned.
if (EarlierOff >= LaterOff &&
LaterSize >= EarlierSize &&
uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
return OW_Complete;
// We may now overlap, although the overlap is not complete. There might also
// be other incomplete overlaps, and together, they might cover the complete
// earlier write.
// Note: The correctness of this logic depends on the fact that this function
// is not even called providing DepWrite when there are any intervening reads.
if (EnablePartialOverwriteTracking &&
LaterOff < int64_t(EarlierOff + EarlierSize) &&
int64_t(LaterOff + LaterSize) >= EarlierOff) {
// Insert our part of the overlap into the map.
auto &IM = IOL[DepWrite];
LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
<< ", " << int64_t(EarlierOff + EarlierSize)
<< ") Later [" << LaterOff << ", "
<< int64_t(LaterOff + LaterSize) << ")\n");
// Make sure that we only insert non-overlapping intervals and combine
// adjacent intervals. The intervals are stored in the map with the ending
// offset as the key (in the half-open sense) and the starting offset as
// the value.
int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
// Find any intervals ending at, or after, LaterIntStart which start
// before LaterIntEnd.
auto ILI = IM.lower_bound(LaterIntStart);
if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
// This existing interval is overlapped with the current store somewhere
// in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
// intervals and adjusting our start and end.
LaterIntStart = std::min(LaterIntStart, ILI->second);
LaterIntEnd = std::max(LaterIntEnd, ILI->first);
ILI = IM.erase(ILI);
// Continue erasing and adjusting our end in case other previous
// intervals are also overlapped with the current store.
//
// |--- ealier 1 ---| |--- ealier 2 ---|
// |------- later---------|
//
while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
assert(ILI->second > LaterIntStart && "Unexpected interval");
LaterIntEnd = std::max(LaterIntEnd, ILI->first);
ILI = IM.erase(ILI);
}
}
IM[LaterIntEnd] = LaterIntStart;
ILI = IM.begin();
if (ILI->second <= EarlierOff &&
ILI->first >= int64_t(EarlierOff + EarlierSize)) {
LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
<< EarlierOff << ", "
<< int64_t(EarlierOff + EarlierSize)
<< ") Composite Later [" << ILI->second << ", "
<< ILI->first << ")\n");
++NumCompletePartials;
return OW_Complete;
}
}
// Check for an earlier store which writes to all the memory locations that
// the later store writes to.
if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
int64_t(EarlierOff + EarlierSize) > LaterOff &&
uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
<< EarlierOff << ", "
<< int64_t(EarlierOff + EarlierSize)
<< ") by a later store [" << LaterOff << ", "
<< int64_t(LaterOff + LaterSize) << ")\n");
// TODO: Maybe come up with a better name?
return OW_PartialEarlierWithFullLater;
}
// Another interesting case is if the later store overwrites the end of the
// earlier store.
//
// |--earlier--|
// |-- later --|
//
// In this case we may want to trim the size of earlier to avoid generating
// writes to addresses which will definitely be overwritten later
if (!EnablePartialOverwriteTracking &&
(LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
return OW_End;
// Finally, we also need to check if the later store overwrites the beginning
// of the earlier store.
//
// |--earlier--|
// |-- later --|
//
// In this case we may want to move the destination address and trim the size
// of earlier to avoid generating writes to addresses which will definitely
// be overwritten later.
if (!EnablePartialOverwriteTracking &&
(LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
"Expect to be handled as OW_Complete");
return OW_Begin;
}
// Otherwise, they don't completely overlap.
return OW_Unknown;
}
/// If 'Inst' might be a self read (i.e. a noop copy of a
/// memory region into an identical pointer) then it doesn't actually make its
/// input dead in the traditional sense. Consider this case:
///
/// memmove(A <- B)
/// memmove(A <- A)
///
/// In this case, the second store to A does not make the first store to A dead.
/// The usual situation isn't an explicit A<-A store like this (which can be
/// trivially removed) but a case where two pointers may alias.
///
/// This function detects when it is unsafe to remove a dependent instruction
/// because the DSE inducing instruction may be a self-read.
static bool isPossibleSelfRead(Instruction *Inst,
const MemoryLocation &InstStoreLoc,
Instruction *DepWrite,
const TargetLibraryInfo &TLI,
AliasAnalysis &AA) {
// Self reads can only happen for instructions that read memory. Get the
// location read.
MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
if (!InstReadLoc.Ptr)
return false; // Not a reading instruction.
// If the read and written loc obviously don't alias, it isn't a read.
if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
return false;
if (isa<AnyMemCpyInst>(Inst)) {
// LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
// but in practice memcpy(A <- B) either means that A and B are disjoint or
// are equal (i.e. there are not partial overlaps). Given that, if we have:
//
// memcpy/memmove(A <- B) // DepWrite
// memcpy(A <- B) // Inst
//
// with Inst reading/writing a >= size than DepWrite, we can reason as
// follows:
//
// - If A == B then both the copies are no-ops, so the DepWrite can be
// removed.
// - If A != B then A and B are disjoint locations in Inst. Since
// Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
// Therefore DepWrite can be removed.
MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
return false;
}
// If DepWrite doesn't read memory or if we can't prove it is a must alias,
// then it can't be considered dead.
return true;
}
/// Returns true if the memory which is accessed by the second instruction is not
/// modified between the first and the second instruction.
/// Precondition: Second instruction must be dominated by the first
/// instruction.
static bool memoryIsNotModifiedBetween(Instruction *FirstI,
Instruction *SecondI,
AliasAnalysis *AA) {
SmallVector<BasicBlock *, 16> WorkList;
SmallPtrSet<BasicBlock *, 8> Visited;
BasicBlock::iterator FirstBBI(FirstI);
++FirstBBI;
BasicBlock::iterator SecondBBI(SecondI);
BasicBlock *FirstBB = FirstI->getParent();
BasicBlock *SecondBB = SecondI->getParent();
MemoryLocation MemLoc = MemoryLocation::get(SecondI);
// Start checking the store-block.
WorkList.push_back(SecondBB);
bool isFirstBlock = true;
// Check all blocks going backward until we reach the load-block.
while (!WorkList.empty()) {
BasicBlock *B = WorkList.pop_back_val();
// Ignore instructions before LI if this is the FirstBB.
BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
BasicBlock::iterator EI;
if (isFirstBlock) {
// Ignore instructions after SI if this is the first visit of SecondBB.
assert(B == SecondBB && "first block is not the store block");
EI = SecondBBI;
isFirstBlock = false;
} else {
// It's not SecondBB or (in case of a loop) the second visit of SecondBB.
// In this case we also have to look at instructions after SI.
EI = B->end();
}
for (; BI != EI; ++BI) {
Instruction *I = &*BI;
if (I->mayWriteToMemory() && I != SecondI)
if (isModSet(AA->getModRefInfo(I, MemLoc)))
return false;
}
if (B != FirstBB) {
assert(B != &FirstBB->getParent()->getEntryBlock() &&
"Should not hit the entry block because SI must be dominated by LI");
for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
if (!Visited.insert(*PredI).second)
continue;
WorkList.push_back(*PredI);
}
}
}
return true;
}
/// Find all blocks that will unconditionally lead to the block BB and append
/// them to F.
static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
BasicBlock *BB, DominatorTree *DT) {
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
BasicBlock *Pred = *I;
if (Pred == BB) continue;
Instruction *PredTI = Pred->getTerminator();
if (PredTI->getNumSuccessors() != 1)
continue;
if (DT->isReachableFromEntry(Pred))
Blocks.push_back(Pred);
}
}
/// Handle frees of entire structures whose dependency is a store
/// to a field of that structure.
static bool handleFree(CallInst *F, AliasAnalysis *AA,
MemoryDependenceResults *MD, DominatorTree *DT,
const TargetLibraryInfo *TLI,
InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB) {
bool MadeChange = false;
MemoryLocation Loc = MemoryLocation(F->getOperand(0));
SmallVector<BasicBlock *, 16> Blocks;
Blocks.push_back(F->getParent());
const DataLayout &DL = F->getModule()->getDataLayout();
while (!Blocks.empty()) {
BasicBlock *BB = Blocks.pop_back_val();
Instruction *InstPt = BB->getTerminator();
if (BB == F->getParent()) InstPt = F;
MemDepResult Dep =
MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
while (Dep.isDef() || Dep.isClobber()) {
Instruction *Dependency = Dep.getInst();
if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
!isRemovable(Dependency))
break;
Value *DepPointer =
GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
// Check for aliasing.
if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
break;
LLVM_DEBUG(
dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
<< *Dependency << '\n');
// DCE instructions only used to calculate that store.
BasicBlock::iterator BBI(Dependency);
deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB);
++NumFastStores;
MadeChange = true;
// Inst's old Dependency is now deleted. Compute the next dependency,
// which may also be dead, as in
// s[0] = 0;
// s[1] = 0; // This has just been deleted.
// free(s);
Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
}
if (Dep.isNonLocal())
findUnconditionalPreds(Blocks, BB, DT);
}
return MadeChange;
}
/// Check to see if the specified location may alias any of the stack objects in
/// the DeadStackObjects set. If so, they become live because the location is
/// being loaded.
static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
SmallSetVector<const Value *, 16> &DeadStackObjects,
const DataLayout &DL, AliasAnalysis *AA,
const TargetLibraryInfo *TLI,
const Function *F) {
const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
// A constant can't be in the dead pointer set.
if (isa<Constant>(UnderlyingPointer))
return;
// If the kill pointer can be easily reduced to an alloca, don't bother doing
// extraneous AA queries.
if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
DeadStackObjects.remove(UnderlyingPointer);
return;
}
// Remove objects that could alias LoadedLoc.
DeadStackObjects.remove_if([&](const Value *I) {
// See if the loaded location could alias the stack location.
MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
return !AA->isNoAlias(StackLoc, LoadedLoc);
});
}
/// Remove dead stores to stack-allocated locations in the function end block.
/// Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
MemoryDependenceResults *MD,
const TargetLibraryInfo *TLI,
InstOverlapIntervalsTy &IOL,
OrderedBasicBlock &OBB) {
bool MadeChange = false;
// Keep track of all of the stack objects that are dead at the end of the
// function.
SmallSetVector<const Value*, 16> DeadStackObjects;
// Find all of the alloca'd pointers in the entry block.
BasicBlock &Entry = BB.getParent()->front();
for (Instruction &I : Entry) {
if (isa<AllocaInst>(&I))
DeadStackObjects.insert(&I);
// Okay, so these are dead heap objects, but if the pointer never escapes
// then it's leaked by this function anyways.
else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
DeadStackObjects.insert(&I);
}
// Treat byval or inalloca arguments the same, stores to them are dead at the
// end of the function.
for (Argument &AI : BB.getParent()->args())
if (AI.hasByValOrInAllocaAttr())
DeadStackObjects.insert(&AI);
const DataLayout &DL = BB.getModule()->getDataLayout();
// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
--BBI;
// If we find a store, check to see if it points into a dead stack value.
if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
// See through pointer-to-pointer bitcasts
SmallVector<const Value *, 4> Pointers;
GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
// Stores to stack values are valid candidates for removal.
bool AllDead = true;
for (const Value *Pointer : Pointers)
if (!DeadStackObjects.count(Pointer)) {
AllDead = false;
break;
}
if (AllDead) {
Instruction *Dead = &*BBI;
LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
<< *Dead << "\n Objects: ";
for (SmallVectorImpl<const Value *>::iterator I =
Pointers.begin(),
E = Pointers.end();
I != E; ++I) {
dbgs() << **I;
if (std::next(I) != E)
dbgs() << ", ";
} dbgs()
<< '\n');
// DCE instructions only used to calculate that store.
deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB,
&DeadStackObjects);
++NumFastStores;
MadeChange = true;
continue;
}
}
// Remove any dead non-memory-mutating instructions.
if (isInstructionTriviallyDead(&*BBI, TLI)) {
LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
<< *&*BBI << '\n');
deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB,
&DeadStackObjects);
++NumFastOther;
MadeChange = true;
continue;
}
if (isa<AllocaInst>(BBI)) {
// Remove allocas from the list of dead stack objects; there can't be
// any references before the definition.
DeadStackObjects.remove(&*BBI);
continue;
}
if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
// Remove allocation function calls from the list of dead stack objects;
// there can't be any references before the definition.
if (isAllocLikeFn(&*BBI, TLI))
DeadStackObjects.remove(&*BBI);
// If this call does not access memory, it can't be loading any of our
// pointers.
if (AA->doesNotAccessMemory(Call))
continue;
// If the call might load from any of our allocas, then any store above
// the call is live.
DeadStackObjects.remove_if([&](const Value *I) {
// See if the call site touches the value.
return isRefSet(AA->getModRefInfo(
Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
});
// If all of the allocas were clobbered by the call then we're not going
// to find anything else to process.
if (DeadStackObjects.empty())
break;
continue;
}
// We can remove the dead stores, irrespective of the fence and its ordering
// (release/acquire/seq_cst). Fences only constraints the ordering of
// already visible stores, it does not make a store visible to other
// threads. So, skipping over a fence does not change a store from being
// dead.
if (isa<FenceInst>(*BBI))
continue;
MemoryLocation LoadedLoc;
// If we encounter a use of the pointer, it is no longer considered dead
if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
if (!L->isUnordered()) // Be conservative with atomic/volatile load
break;
LoadedLoc = MemoryLocation::get(L);
} else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
LoadedLoc = MemoryLocation::get(V);
} else if (!BBI->mayReadFromMemory()) {
// Instruction doesn't read memory. Note that stores that weren't removed
// above will hit this case.
continue;
} else {
// Unknown inst; assume it clobbers everything.
break;
}
// Remove any allocas from the DeadPointer set that are loaded, as this
// makes any stores above the access live.
removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
// If all of the allocas were clobbered by the access then we're not going
// to find anything else to process.
if (DeadStackObjects.empty())
break;
}
return MadeChange;
}
static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
int64_t &EarlierSize, int64_t LaterOffset,
int64_t LaterSize, bool IsOverwriteEnd) {
// TODO: base this on the target vector size so that if the earlier
// store was too small to get vector writes anyway then its likely
// a good idea to shorten it
// Power of 2 vector writes are probably always a bad idea to optimize
// as any store/memset/memcpy is likely using vector instructions so
// shortening it to not vector size is likely to be slower
auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
if (!IsOverwriteEnd)
LaterOffset = int64_t(LaterOffset + LaterSize);
if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
!((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
return false;
int64_t NewLength = IsOverwriteEnd
? LaterOffset - EarlierOffset
: EarlierSize - (LaterOffset - EarlierOffset);
if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
// When shortening an atomic memory intrinsic, the newly shortened
// length must remain an integer multiple of the element size.
const uint32_t ElementSize = AMI->getElementSizeInBytes();
if (0 != NewLength % ElementSize)
return false;
}
LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
<< (IsOverwriteEnd ? "END" : "BEGIN") << ": "
<< *EarlierWrite << "\n KILLER (offset " << LaterOffset
<< ", " << EarlierSize << ")\n");
Value *EarlierWriteLength = EarlierIntrinsic->getLength();
Value *TrimmedLength =
ConstantInt::get(EarlierWriteLength->getType(), NewLength);
EarlierIntrinsic->setLength(TrimmedLength);
EarlierSize = NewLength;
if (!IsOverwriteEnd) {
int64_t OffsetMoved = (LaterOffset - EarlierOffset);
Value *Indices[1] = {
ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
EarlierIntrinsic->setDest(NewDestGEP);
EarlierOffset = EarlierOffset + OffsetMoved;
}
return true;
}
static bool tryToShortenEnd(Instruction *EarlierWrite,
OverlapIntervalsTy &IntervalMap,
int64_t &EarlierStart, int64_t &EarlierSize) {
if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
return false;
OverlapIntervalsTy::iterator OII = --IntervalMap.end();
int64_t LaterStart = OII->second;
int64_t LaterSize = OII->first - LaterStart;
if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
LaterStart + LaterSize >= EarlierStart + EarlierSize) {
if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
LaterSize, true)) {
IntervalMap.erase(OII);
return true;
}
}
return false;
}
static bool tryToShortenBegin(Instruction *EarlierWrite,
OverlapIntervalsTy &IntervalMap,
int64_t &EarlierStart, int64_t &EarlierSize) {
if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
return false;
OverlapIntervalsTy::iterator OII = IntervalMap.begin();
int64_t LaterStart = OII->second;
int64_t LaterSize = OII->first - LaterStart;
if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
"Should have been handled as OW_Complete");
if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
LaterSize, false)) {
IntervalMap.erase(OII);
return true;
}
}
return false;
}
static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
const DataLayout &DL,
InstOverlapIntervalsTy &IOL) {
bool Changed = false;
for (auto OI : IOL) {
Instruction *EarlierWrite = OI.first;
MemoryLocation Loc = getLocForWrite(EarlierWrite);
assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
const Value *Ptr = Loc.Ptr->stripPointerCasts();
int64_t EarlierStart = 0;
int64_t EarlierSize = int64_t(Loc.Size.getValue());
GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
OverlapIntervalsTy &IntervalMap = OI.second;
Changed |=
tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
if (IntervalMap.empty())
continue;
Changed |=
tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
}
return Changed;
}
static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
AliasAnalysis *AA, MemoryDependenceResults *MD,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
InstOverlapIntervalsTy &IOL,
OrderedBasicBlock &OBB) {
// Must be a store instruction.
StoreInst *SI = dyn_cast<StoreInst>(Inst);
if (!SI)
return false;
// If we're storing the same value back to a pointer that we just loaded from,
// then the store can be removed.
if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
LLVM_DEBUG(
dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
<< *DepLoad << "\n STORE: " << *SI << '\n');
deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
++NumRedundantStores;
return true;
}
}
// Remove null stores into the calloc'ed objects
Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
Instruction *UnderlyingPointer =
dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
LLVM_DEBUG(
dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
<< *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
++NumRedundantStores;
return true;
}
}
return false;
}
static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
MemoryDependenceResults *MD, DominatorTree *DT,
const TargetLibraryInfo *TLI) {
const DataLayout &DL = BB.getModule()->getDataLayout();
bool MadeChange = false;
OrderedBasicBlock OBB(&BB);
Instruction *LastThrowing = nullptr;
// A map of interval maps representing partially-overwritten value parts.
InstOverlapIntervalsTy IOL;
// Do a top-down walk on the BB.
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
// Handle 'free' calls specially.
if (CallInst *F = isFreeCall(&*BBI, TLI)) {
MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB);
// Increment BBI after handleFree has potentially deleted instructions.
// This ensures we maintain a valid iterator.
++BBI;
continue;
}
Instruction *Inst = &*BBI++;
if (Inst->mayThrow()) {
LastThrowing = Inst;
continue;
}
// Check to see if Inst writes to memory. If not, continue.
if (!hasAnalyzableMemoryWrite(Inst, *TLI))
continue;
// eliminateNoopStore will update in iterator, if necessary.
if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB)) {
MadeChange = true;
continue;
}
// If we find something that writes memory, get its memory dependence.
MemDepResult InstDep = MD->getDependency(Inst, &OBB);
// Ignore any store where we can't find a local dependence.
// FIXME: cross-block DSE would be fun. :)
if (!InstDep.isDef() && !InstDep.isClobber())
continue;
// Figure out what location is being stored to.
MemoryLocation Loc = getLocForWrite(Inst);
// If we didn't get a useful location, fail.
if (!Loc.Ptr)
continue;
// Loop until we find a store we can eliminate or a load that
// invalidates the analysis. Without an upper bound on the number of
// instructions examined, this analysis can become very time-consuming.
// However, the potential gain diminishes as we process more instructions
// without eliminating any of them. Therefore, we limit the number of
// instructions we look at.
auto Limit = MD->getDefaultBlockScanLimit();
while (InstDep.isDef() || InstDep.isClobber()) {
// Get the memory clobbered by the instruction we depend on. MemDep will
// skip any instructions that 'Loc' clearly doesn't interact with. If we
// end up depending on a may- or must-aliased load, then we can't optimize
// away the store and we bail out. However, if we depend on something
// that overwrites the memory location we *can* potentially optimize it.
//
// Find out what memory location the dependent instruction stores.
Instruction *DepWrite = InstDep.getInst();
if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
break;
MemoryLocation DepLoc = getLocForWrite(DepWrite);
// If we didn't get a useful location, or if it isn't a size, bail out.
if (!DepLoc.Ptr)
break;
// Make sure we don't look past a call which might throw. This is an
// issue because MemoryDependenceAnalysis works in the wrong direction:
// it finds instructions which dominate the current instruction, rather than
// instructions which are post-dominated by the current instruction.
//
// If the underlying object is a non-escaping memory allocation, any store
// to it is dead along the unwind edge. Otherwise, we need to preserve
// the store.
if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) {
const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
if (!IsStoreDeadOnUnwind) {
// We're looking for a call to an allocation function
// where the allocation doesn't escape before the last
// throwing instruction; PointerMayBeCaptured
// reasonably fast approximation.
IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
!PointerMayBeCaptured(Underlying, false, true);
}
if (!IsStoreDeadOnUnwind)
break;
}
// If we find a write that is a) removable (i.e., non-volatile), b) is
// completely obliterated by the store to 'Loc', and c) which we know that
// 'Inst' doesn't load from, then we can remove it.
// Also try to merge two stores if a later one only touches memory written
// to by the earlier one.
if (isRemovable(DepWrite) &&
!isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
int64_t InstWriteOffset, DepWriteOffset;
OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
InstWriteOffset, DepWrite, IOL, *AA,
BB.getParent());
if (OR == OW_Complete) {
LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite
<< "\n KILLER: " << *Inst << '\n');
// Delete the store and now-dead instructions that feed it.
deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
++NumFastStores;
MadeChange = true;
// We erased DepWrite; start over.
InstDep = MD->getDependency(Inst, &OBB);
continue;
} else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
((OR == OW_Begin &&
isShortenableAtTheBeginning(DepWrite)))) {
assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
"when partial-overwrite "
"tracking is enabled");
// The overwrite result is known, so these must be known, too.
int64_t EarlierSize = DepLoc.Size.getValue();
int64_t LaterSize = Loc.Size.getValue();
bool IsOverwriteEnd = (OR == OW_End);
MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
InstWriteOffset, LaterSize, IsOverwriteEnd);
} else if (EnablePartialStoreMerging &&
OR == OW_PartialEarlierWithFullLater) {
auto *Earlier = dyn_cast<StoreInst>(DepWrite);
auto *Later = dyn_cast<StoreInst>(Inst);
if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
DL.typeSizeEqualsStoreSize(
Earlier->getValueOperand()->getType()) &&
Later && isa<ConstantInt>(Later->getValueOperand()) &&
DL.typeSizeEqualsStoreSize(
Later->getValueOperand()->getType()) &&
memoryIsNotModifiedBetween(Earlier, Later, AA)) {
// If the store we find is:
// a) partially overwritten by the store to 'Loc'
// b) the later store is fully contained in the earlier one and
// c) they both have a constant value
// d) none of the two stores need padding
// Merge the two stores, replacing the earlier store's value with a
// merge of both values.
// TODO: Deal with other constant types (vectors, etc), and probably
// some mem intrinsics (if needed)
APInt EarlierValue =
cast<ConstantInt>(Earlier->getValueOperand())->getValue();
APInt LaterValue =
cast<ConstantInt>(Later->getValueOperand())->getValue();
unsigned LaterBits = LaterValue.getBitWidth();
assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
// Offset of the smaller store inside the larger store
unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
unsigned LShiftAmount =
DL.isBigEndian()
? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
: BitOffsetDiff;
APInt Mask =
APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
LShiftAmount + LaterBits);
// Clear the bits we'll be replacing, then OR with the smaller
// store, shifted appropriately.
APInt Merged =
(EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite
<< "\n Later: " << *Inst
<< "\n Merged Value: " << Merged << '\n');
auto *SI = new StoreInst(
ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
Earlier->getPointerOperand(), false,
MaybeAlign(Earlier->getAlignment()), Earlier->getOrdering(),
Earlier->getSyncScopeID(), DepWrite);
unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias,
LLVMContext::MD_nontemporal};
SI->copyMetadata(*DepWrite, MDToKeep);
++NumModifiedStores;
// Remove earlier, wider, store
OBB.replaceInstruction(DepWrite, SI);
// Delete the old stores and now-dead instructions that feed them.
deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB);
deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
MadeChange = true;
// We erased DepWrite and Inst (Loc); start over.
break;
}
}
}
// If this is a may-aliased store that is clobbering the store value, we
// can keep searching past it for another must-aliased pointer that stores
// to the same location. For example, in:
// store -> P
// store -> Q
// store -> P
// we can remove the first store to P even though we don't know if P and Q
// alias.
if (DepWrite == &BB.front()) break;
// Can't look past this instruction if it might read 'Loc'.
if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
break;
InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
DepWrite->getIterator(), &BB,
/*QueryInst=*/ nullptr, &Limit);
}
}
if (EnablePartialOverwriteTracking)
MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
// If this block ends in a return, unwind, or unreachable, all allocas are
// dead at its end, which means stores to them are also dead.
if (BB.getTerminator()->getNumSuccessors() == 0)
MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB);
return MadeChange;
}
static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
MemoryDependenceResults *MD, DominatorTree *DT,
const TargetLibraryInfo *TLI) {
bool MadeChange = false;
for (BasicBlock &BB : F)
// Only check non-dead blocks. Dead blocks may have strange pointer
// cycles that will confuse alias analysis.
if (DT->isReachableFromEntry(&BB))
MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
return MadeChange;
}
//===----------------------------------------------------------------------===//
// DSE Pass
//===----------------------------------------------------------------------===//
PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
AliasAnalysis *AA = &AM.getResult<AAManager>(F);
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
if (!eliminateDeadStores(F, AA, MD, DT, TLI))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
PA.preserve<MemoryDependenceAnalysis>();
return PA;
}
namespace {
/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
class DSELegacyPass : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
DSELegacyPass() : FunctionPass(ID) {
initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
MemoryDependenceResults *MD =
&getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
return eliminateDeadStores(F, AA, MD, DT, TLI);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MemoryDependenceWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<MemoryDependenceWrapperPass>();
}
};
} // end anonymous namespace
char DSELegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
false)
FunctionPass *llvm::createDeadStoreEliminationPass() {
return new DSELegacyPass();
}
|