reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help determine which pointers are captured.
// A pointer value is captured if the function makes a copy of any part of the
// pointer that outlives the call.  Not being captured means, more or less, that
// the pointer is only dereferenced and not stored in a global.  Returning part
// of the pointer as the function return value may or may not count as capturing
// the pointer, depending on the context.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/OrderedBasicBlock.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"

using namespace llvm;

CaptureTracker::~CaptureTracker() {}

bool CaptureTracker::shouldExplore(const Use *U) { return true; }

bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) {
  // An inbounds GEP can either be a valid pointer (pointing into
  // or to the end of an allocation), or be null in the default
  // address space. So for an inbounds GEP there is no way to let
  // the pointer escape using clever GEP hacking because doing so
  // would make the pointer point outside of the allocated object
  // and thus make the GEP result a poison value. Similarly, other
  // dereferenceable pointers cannot be manipulated without producing
  // poison.
  if (auto *GEP = dyn_cast<GetElementPtrInst>(O))
    if (GEP->isInBounds())
      return true;
  bool CanBeNull;
  return O->getPointerDereferenceableBytes(DL, CanBeNull);
}

namespace {
  struct SimpleCaptureTracker : public CaptureTracker {
    explicit SimpleCaptureTracker(bool ReturnCaptures)
      : ReturnCaptures(ReturnCaptures), Captured(false) {}

    void tooManyUses() override { Captured = true; }

    bool captured(const Use *U) override {
      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
        return false;

      Captured = true;
      return true;
    }

    bool ReturnCaptures;

    bool Captured;
  };

  /// Only find pointer captures which happen before the given instruction. Uses
  /// the dominator tree to determine whether one instruction is before another.
  /// Only support the case where the Value is defined in the same basic block
  /// as the given instruction and the use.
  struct CapturesBefore : public CaptureTracker {

    CapturesBefore(bool ReturnCaptures, const Instruction *I, const DominatorTree *DT,
                   bool IncludeI, OrderedBasicBlock *IC)
      : OrderedBB(IC), BeforeHere(I), DT(DT),
        ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {}

    void tooManyUses() override { Captured = true; }

    bool isSafeToPrune(Instruction *I) {
      BasicBlock *BB = I->getParent();
      // We explore this usage only if the usage can reach "BeforeHere".
      // If use is not reachable from entry, there is no need to explore.
      if (BeforeHere != I && !DT->isReachableFromEntry(BB))
        return true;

      // Compute the case where both instructions are inside the same basic
      // block. Since instructions in the same BB as BeforeHere are numbered in
      // 'OrderedBB', avoid using 'dominates' and 'isPotentiallyReachable'
      // which are very expensive for large basic blocks.
      if (BB == BeforeHere->getParent()) {
        // 'I' dominates 'BeforeHere' => not safe to prune.
        //
        // The value defined by an invoke dominates an instruction only
        // if it dominates every instruction in UseBB. A PHI is dominated only
        // if the instruction dominates every possible use in the UseBB. Since
        // UseBB == BB, avoid pruning.
        if (isa<InvokeInst>(BeforeHere) || isa<PHINode>(I) || I == BeforeHere)
          return false;
        if (!OrderedBB->dominates(BeforeHere, I))
          return false;

        // 'BeforeHere' comes before 'I', it's safe to prune if we also
        // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or
        // by its successors, i.e, prune if:
        //
        //  (1) BB is an entry block or have no successors.
        //  (2) There's no path coming back through BB successors.
        if (BB == &BB->getParent()->getEntryBlock() ||
            !BB->getTerminator()->getNumSuccessors())
          return true;

        SmallVector<BasicBlock*, 32> Worklist;
        Worklist.append(succ_begin(BB), succ_end(BB));
        return !isPotentiallyReachableFromMany(Worklist, BB, nullptr, DT);
      }

      // If the value is defined in the same basic block as use and BeforeHere,
      // there is no need to explore the use if BeforeHere dominates use.
      // Check whether there is a path from I to BeforeHere.
      if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
          !isPotentiallyReachable(I, BeforeHere, nullptr, DT))
        return true;

      return false;
    }

    bool shouldExplore(const Use *U) override {
      Instruction *I = cast<Instruction>(U->getUser());

      if (BeforeHere == I && !IncludeI)
        return false;

      if (isSafeToPrune(I))
        return false;

      return true;
    }

    bool captured(const Use *U) override {
      if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
        return false;

      if (!shouldExplore(U))
        return false;

      Captured = true;
      return true;
    }

    OrderedBasicBlock *OrderedBB;
    const Instruction *BeforeHere;
    const DominatorTree *DT;

    bool ReturnCaptures;
    bool IncludeI;

    bool Captured;
  };
}

/// PointerMayBeCaptured - Return true if this pointer value may be captured
/// by the enclosing function (which is required to exist).  This routine can
/// be expensive, so consider caching the results.  The boolean ReturnCaptures
/// specifies whether returning the value (or part of it) from the function
/// counts as capturing it or not.  The boolean StoreCaptures specified whether
/// storing the value (or part of it) into memory anywhere automatically
/// counts as capturing it or not.
bool llvm::PointerMayBeCaptured(const Value *V,
                                bool ReturnCaptures, bool StoreCaptures,
                                unsigned MaxUsesToExplore) {
  assert(!isa<GlobalValue>(V) &&
         "It doesn't make sense to ask whether a global is captured.");

  // TODO: If StoreCaptures is not true, we could do Fancy analysis
  // to determine whether this store is not actually an escape point.
  // In that case, BasicAliasAnalysis should be updated as well to
  // take advantage of this.
  (void)StoreCaptures;

  SimpleCaptureTracker SCT(ReturnCaptures);
  PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
  return SCT.Captured;
}

/// PointerMayBeCapturedBefore - Return true if this pointer value may be
/// captured by the enclosing function (which is required to exist). If a
/// DominatorTree is provided, only captures which happen before the given
/// instruction are considered. This routine can be expensive, so consider
/// caching the results.  The boolean ReturnCaptures specifies whether
/// returning the value (or part of it) from the function counts as capturing
/// it or not.  The boolean StoreCaptures specified whether storing the value
/// (or part of it) into memory anywhere automatically counts as capturing it
/// or not. A ordered basic block \p OBB can be used in order to speed up
/// queries about relative order among instructions in the same basic block.
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
                                      bool StoreCaptures, const Instruction *I,
                                      const DominatorTree *DT, bool IncludeI,
                                      OrderedBasicBlock *OBB,
                                      unsigned MaxUsesToExplore) {
  assert(!isa<GlobalValue>(V) &&
         "It doesn't make sense to ask whether a global is captured.");
  bool UseNewOBB = OBB == nullptr;

  if (!DT)
    return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures,
                                MaxUsesToExplore);
  if (UseNewOBB)
    OBB = new OrderedBasicBlock(I->getParent());

  // TODO: See comment in PointerMayBeCaptured regarding what could be done
  // with StoreCaptures.

  CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, OBB);
  PointerMayBeCaptured(V, &CB, MaxUsesToExplore);

  if (UseNewOBB)
    delete OBB;
  return CB.Captured;
}

void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
                                unsigned MaxUsesToExplore) {
  assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
  SmallVector<const Use *, DefaultMaxUsesToExplore> Worklist;
  SmallSet<const Use *, DefaultMaxUsesToExplore> Visited;

  auto AddUses = [&](const Value *V) {
    unsigned Count = 0;
    for (const Use &U : V->uses()) {
      // If there are lots of uses, conservatively say that the value
      // is captured to avoid taking too much compile time.
      if (Count++ >= MaxUsesToExplore)
        return Tracker->tooManyUses();
      if (!Visited.insert(&U).second)
        continue;
      if (!Tracker->shouldExplore(&U))
        continue;
      Worklist.push_back(&U);
    }
  };
  AddUses(V);

  while (!Worklist.empty()) {
    const Use *U = Worklist.pop_back_val();
    Instruction *I = cast<Instruction>(U->getUser());
    V = U->get();

    switch (I->getOpcode()) {
    case Instruction::Call:
    case Instruction::Invoke: {
      auto *Call = cast<CallBase>(I);
      // Not captured if the callee is readonly, doesn't return a copy through
      // its return value and doesn't unwind (a readonly function can leak bits
      // by throwing an exception or not depending on the input value).
      if (Call->onlyReadsMemory() && Call->doesNotThrow() &&
          Call->getType()->isVoidTy())
        break;

      // The pointer is not captured if returned pointer is not captured.
      // NOTE: CaptureTracking users should not assume that only functions
      // marked with nocapture do not capture. This means that places like
      // GetUnderlyingObject in ValueTracking or DecomposeGEPExpression
      // in BasicAA also need to know about this property.
      if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call,
                                                                      true)) {
        AddUses(Call);
        break;
      }

      // Volatile operations effectively capture the memory location that they
      // load and store to.
      if (auto *MI = dyn_cast<MemIntrinsic>(Call))
        if (MI->isVolatile())
          if (Tracker->captured(U))
            return;

      // Not captured if only passed via 'nocapture' arguments.  Note that
      // calling a function pointer does not in itself cause the pointer to
      // be captured.  This is a subtle point considering that (for example)
      // the callee might return its own address.  It is analogous to saying
      // that loading a value from a pointer does not cause the pointer to be
      // captured, even though the loaded value might be the pointer itself
      // (think of self-referential objects).
      for (auto IdxOpPair : enumerate(Call->data_ops())) {
        int Idx = IdxOpPair.index();
        Value *A = IdxOpPair.value();
        if (A == V && !Call->doesNotCapture(Idx))
          // The parameter is not marked 'nocapture' - captured.
          if (Tracker->captured(U))
            return;
      }
      break;
    }
    case Instruction::Load:
      // Volatile loads make the address observable.
      if (cast<LoadInst>(I)->isVolatile())
        if (Tracker->captured(U))
          return;
      break;
    case Instruction::VAArg:
      // "va-arg" from a pointer does not cause it to be captured.
      break;
    case Instruction::Store:
        // Stored the pointer - conservatively assume it may be captured.
        // Volatile stores make the address observable.
      if (V == I->getOperand(0) || cast<StoreInst>(I)->isVolatile())
        if (Tracker->captured(U))
          return;
      break;
    case Instruction::AtomicRMW: {
      // atomicrmw conceptually includes both a load and store from
      // the same location.
      // As with a store, the location being accessed is not captured,
      // but the value being stored is.
      // Volatile stores make the address observable.
      auto *ARMWI = cast<AtomicRMWInst>(I);
      if (ARMWI->getValOperand() == V || ARMWI->isVolatile())
        if (Tracker->captured(U))
          return;
      break;
    }
    case Instruction::AtomicCmpXchg: {
      // cmpxchg conceptually includes both a load and store from
      // the same location.
      // As with a store, the location being accessed is not captured,
      // but the value being stored is.
      // Volatile stores make the address observable.
      auto *ACXI = cast<AtomicCmpXchgInst>(I);
      if (ACXI->getCompareOperand() == V || ACXI->getNewValOperand() == V ||
          ACXI->isVolatile())
        if (Tracker->captured(U))
          return;
      break;
    }
    case Instruction::BitCast:
    case Instruction::GetElementPtr:
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::AddrSpaceCast:
      // The original value is not captured via this if the new value isn't.
      AddUses(I);
      break;
    case Instruction::ICmp: {
      unsigned Idx = (I->getOperand(0) == V) ? 0 : 1;
      unsigned OtherIdx = 1 - Idx;
      if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) {
        // Don't count comparisons of a no-alias return value against null as
        // captures. This allows us to ignore comparisons of malloc results
        // with null, for example.
        if (CPN->getType()->getAddressSpace() == 0)
          if (isNoAliasCall(V->stripPointerCasts()))
            break;
        if (!I->getFunction()->nullPointerIsDefined()) {
          auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation();
          // Comparing a dereferenceable_or_null pointer against null cannot
          // lead to pointer escapes, because if it is not null it must be a
          // valid (in-bounds) pointer.
          if (Tracker->isDereferenceableOrNull(O, I->getModule()->getDataLayout()))
            break;
        }
      }
      // Comparison against value stored in global variable. Given the pointer
      // does not escape, its value cannot be guessed and stored separately in a
      // global variable.
      auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIdx));
      if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
        break;
      // Otherwise, be conservative. There are crazy ways to capture pointers
      // using comparisons.
      if (Tracker->captured(U))
        return;
      break;
    }
    default:
      // Something else - be conservative and say it is captured.
      if (Tracker->captured(U))
        return;
      break;
    }
  }

  // All uses examined.
}