reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG.  This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
//    %Y = add i32 %X, 1
//    %Z = add i32 %Y, 1
// into:
//    %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All cmp instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//   ... etc.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/InstCombine.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "instcombine"

STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
STATISTIC(NumExpand,    "Number of expansions");
STATISTIC(NumFactor   , "Number of factorizations");
STATISTIC(NumReassoc  , "Number of reassociations");
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
              "Controls which instructions are visited");

static cl::opt<bool>
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
                                              cl::init(true));

static cl::opt<bool>
EnableExpensiveCombines("expensive-combines",
                        cl::desc("Enable expensive instruction combines"));

static cl::opt<unsigned>
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
             cl::desc("Maximum array size considered when doing a combine"));

// FIXME: Remove this flag when it is no longer necessary to convert
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
// increases variable availability at the cost of accuracy. Variables that
// cannot be promoted by mem2reg or SROA will be described as living in memory
// for their entire lifetime. However, passes like DSE and instcombine can
// delete stores to the alloca, leading to misleading and inaccurate debug
// information. This flag can be removed when those passes are fixed.
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
                                               cl::Hidden, cl::init(true));

Value *InstCombiner::EmitGEPOffset(User *GEP) {
  return llvm::EmitGEPOffset(&Builder, DL, GEP);
}

/// Return true if it is desirable to convert an integer computation from a
/// given bit width to a new bit width.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. A width of '1' is always treated as a legal type
/// because i1 is a fundamental type in IR, and there are many specialized
/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
/// legal to convert to, in order to open up more combining opportunities.
/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
/// from frontend languages.
bool InstCombiner::shouldChangeType(unsigned FromWidth,
                                    unsigned ToWidth) const {
  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);

  // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
  // shrink types, to prevent infinite loops.
  if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
    return true;

  // If this is a legal integer from type, and the result would be an illegal
  // type, don't do the transformation.
  if (FromLegal && !ToLegal)
    return false;

  // Otherwise, if both are illegal, do not increase the size of the result. We
  // do allow things like i160 -> i64, but not i64 -> i160.
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    return false;

  return true;
}

/// Return true if it is desirable to convert a computation from 'From' to 'To'.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. i1 is always treated as a legal type because it is
/// a fundamental type in IR, and there are many specialized optimizations for
/// i1 types.
bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
  // TODO: This could be extended to allow vectors. Datalayout changes might be
  // needed to properly support that.
  if (!From->isIntegerTy() || !To->isIntegerTy())
    return false;

  unsigned FromWidth = From->getPrimitiveSizeInBits();
  unsigned ToWidth = To->getPrimitiveSizeInBits();
  return shouldChangeType(FromWidth, ToWidth);
}

// Return true, if No Signed Wrap should be maintained for I.
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
// where both B and C should be ConstantInts, results in a constant that does
// not overflow. This function only handles the Add and Sub opcodes. For
// all other opcodes, the function conservatively returns false.
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  if (!OBO || !OBO->hasNoSignedWrap())
    return false;

  // We reason about Add and Sub Only.
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
    return false;

  const APInt *BVal, *CVal;
  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
    return false;

  bool Overflow = false;
  if (Opcode == Instruction::Add)
    (void)BVal->sadd_ov(*CVal, Overflow);
  else
    (void)BVal->ssub_ov(*CVal, Overflow);

  return !Overflow;
}

static bool hasNoUnsignedWrap(BinaryOperator &I) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  return OBO && OBO->hasNoUnsignedWrap();
}

static bool hasNoSignedWrap(BinaryOperator &I) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  return OBO && OBO->hasNoSignedWrap();
}

/// Conservatively clears subclassOptionalData after a reassociation or
/// commutation. We preserve fast-math flags when applicable as they can be
/// preserved.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
  if (!FPMO) {
    I.clearSubclassOptionalData();
    return;
  }

  FastMathFlags FMF = I.getFastMathFlags();
  I.clearSubclassOptionalData();
  I.setFastMathFlags(FMF);
}

/// Combine constant operands of associative operations either before or after a
/// cast to eliminate one of the associative operations:
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
  if (!Cast || !Cast->hasOneUse())
    return false;

  // TODO: Enhance logic for other casts and remove this check.
  auto CastOpcode = Cast->getOpcode();
  if (CastOpcode != Instruction::ZExt)
    return false;

  // TODO: Enhance logic for other BinOps and remove this check.
  if (!BinOp1->isBitwiseLogicOp())
    return false;

  auto AssocOpcode = BinOp1->getOpcode();
  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
    return false;

  Constant *C1, *C2;
  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
      !match(BinOp2->getOperand(1), m_Constant(C2)))
    return false;

  // TODO: This assumes a zext cast.
  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
  // to the destination type might lose bits.

  // Fold the constants together in the destination type:
  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
  Type *DestTy = C1->getType();
  Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
  Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
  Cast->setOperand(0, BinOp2->getOperand(0));
  BinOp1->setOperand(1, FoldedC);
  return true;
}

/// This performs a few simplifications for operators that are associative or
/// commutative:
///
///  Commutative operators:
///
///  1. Order operands such that they are listed from right (least complex) to
///     left (most complex).  This puts constants before unary operators before
///     binary operators.
///
///  Associative operators:
///
///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
///
///  Associative and commutative operators:
///
///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
///     if C1 and C2 are constants.
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
  Instruction::BinaryOps Opcode = I.getOpcode();
  bool Changed = false;

  do {
    // Order operands such that they are listed from right (least complex) to
    // left (most complex).  This puts constants before unary operators before
    // binary operators.
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
        getComplexity(I.getOperand(1)))
      Changed = !I.swapOperands();

    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));

    if (I.isAssociative()) {
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "B op C" simplify?
        if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "A op V".
          I.setOperand(0, A);
          I.setOperand(1, V);
          bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
          bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);

          // Conservatively clear all optional flags since they may not be
          // preserved by the reassociation. Reset nsw/nuw based on the above
          // analysis.
          ClearSubclassDataAfterReassociation(I);

          // Note: this is only valid because SimplifyBinOp doesn't look at
          // the operands to Op0.
          if (IsNUW)
            I.setHasNoUnsignedWrap(true);

          if (IsNSW)
            I.setHasNoSignedWrap(true);

          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "A op B" simplify?
        if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "V op C".
          I.setOperand(0, V);
          I.setOperand(1, C);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }
    }

    if (I.isAssociative() && I.isCommutative()) {
      if (simplifyAssocCastAssoc(&I)) {
        Changed = true;
        ++NumReassoc;
        continue;
      }

      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "V op B".
          I.setOperand(0, V);
          I.setOperand(1, B);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "B op V".
          I.setOperand(0, B);
          I.setOperand(1, V);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
      // if C1 and C2 are constants.
      Value *A, *B;
      Constant *C1, *C2;
      if (Op0 && Op1 &&
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
          match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
          match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
        bool IsNUW = hasNoUnsignedWrap(I) &&
           hasNoUnsignedWrap(*Op0) &&
           hasNoUnsignedWrap(*Op1);
         BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
           BinaryOperator::CreateNUW(Opcode, A, B) :
           BinaryOperator::Create(Opcode, A, B);

         if (isa<FPMathOperator>(NewBO)) {
          FastMathFlags Flags = I.getFastMathFlags();
          Flags &= Op0->getFastMathFlags();
          Flags &= Op1->getFastMathFlags();
          NewBO->setFastMathFlags(Flags);
        }
        InsertNewInstWith(NewBO, I);
        NewBO->takeName(Op1);
        I.setOperand(0, NewBO);
        I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
        // Conservatively clear the optional flags, since they may not be
        // preserved by the reassociation.
        ClearSubclassDataAfterReassociation(I);
        if (IsNUW)
          I.setHasNoUnsignedWrap(true);

        Changed = true;
        continue;
      }
    }

    // No further simplifications.
    return Changed;
  } while (true);
}

/// Return whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (X LOp Z)".
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  // X & (Y | Z) <--> (X & Y) | (X & Z)
  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
  if (LOp == Instruction::And)
    return ROp == Instruction::Or || ROp == Instruction::Xor;

  // X | (Y & Z) <--> (X | Y) & (X | Z)
  if (LOp == Instruction::Or)
    return ROp == Instruction::And;

  // X * (Y + Z) <--> (X * Y) + (X * Z)
  // X * (Y - Z) <--> (X * Y) - (X * Z)
  if (LOp == Instruction::Mul)
    return ROp == Instruction::Add || ROp == Instruction::Sub;

  return false;
}

/// Return whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  if (Instruction::isCommutative(ROp))
    return leftDistributesOverRight(ROp, LOp);

  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
  return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);

  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
  // but this requires knowing that the addition does not overflow and other
  // such subtleties.
}

/// This function returns identity value for given opcode, which can be used to
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
  if (isa<Constant>(V))
    return nullptr;

  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
}

/// This function predicates factorization using distributive laws. By default,
/// it just returns the 'Op' inputs. But for special-cases like
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
/// allow more factorization opportunities.
static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
                          Value *&LHS, Value *&RHS) {
  assert(Op && "Expected a binary operator");
  LHS = Op->getOperand(0);
  RHS = Op->getOperand(1);
  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
    Constant *C;
    if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
      // X << C --> X * (1 << C)
      RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
      return Instruction::Mul;
    }
    // TODO: We can add other conversions e.g. shr => div etc.
  }
  return Op->getOpcode();
}

/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
Value *InstCombiner::tryFactorization(BinaryOperator &I,
                                      Instruction::BinaryOps InnerOpcode,
                                      Value *A, Value *B, Value *C, Value *D) {
  assert(A && B && C && D && "All values must be provided");

  Value *V = nullptr;
  Value *SimplifiedInst = nullptr;
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();

  // Does "X op' Y" always equal "Y op' X"?
  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);

  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    // commutative case, "(A op' B) op (C op' A)"?
    if (A == C || (InnerCommutative && A == D)) {
      if (A != C)
        std::swap(C, D);
      // Consider forming "A op' (B op D)".
      // If "B op D" simplifies then it can be formed with no cost.
      V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
      // If "B op D" doesn't simplify then only go on if both of the existing
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
        V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
      if (V) {
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
      }
    }

  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
  if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    // commutative case, "(A op' B) op (B op' D)"?
    if (B == D || (InnerCommutative && B == C)) {
      if (B != D)
        std::swap(C, D);
      // Consider forming "(A op C) op' B".
      // If "A op C" simplifies then it can be formed with no cost.
      V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));

      // If "A op C" doesn't simplify then only go on if both of the existing
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
        V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
      if (V) {
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
      }
    }

  if (SimplifiedInst) {
    ++NumFactor;
    SimplifiedInst->takeName(&I);

    // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
      if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
        bool HasNSW = false;
        bool HasNUW = false;
        if (isa<OverflowingBinaryOperator>(&I)) {
          HasNSW = I.hasNoSignedWrap();
          HasNUW = I.hasNoUnsignedWrap();
        }

        if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
          HasNSW &= LOBO->hasNoSignedWrap();
          HasNUW &= LOBO->hasNoUnsignedWrap();
        }

        if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
          HasNSW &= ROBO->hasNoSignedWrap();
          HasNUW &= ROBO->hasNoUnsignedWrap();
        }

        if (TopLevelOpcode == Instruction::Add &&
            InnerOpcode == Instruction::Mul) {
          // We can propagate 'nsw' if we know that
          //  %Y = mul nsw i16 %X, C
          //  %Z = add nsw i16 %Y, %X
          // =>
          //  %Z = mul nsw i16 %X, C+1
          //
          // iff C+1 isn't INT_MIN
          const APInt *CInt;
          if (match(V, m_APInt(CInt))) {
            if (!CInt->isMinSignedValue())
              BO->setHasNoSignedWrap(HasNSW);
          }

          // nuw can be propagated with any constant or nuw value.
          BO->setHasNoUnsignedWrap(HasNUW);
        }
      }
    }
  }
  return SimplifiedInst;
}

/// This tries to simplify binary operations which some other binary operation
/// distributes over either by factorizing out common terms
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
/// Returns the simplified value, or null if it didn't simplify.
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();

  {
    // Factorization.
    Value *A, *B, *C, *D;
    Instruction::BinaryOps LHSOpcode, RHSOpcode;
    if (Op0)
      LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
    if (Op1)
      RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);

    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    // a common term.
    if (Op0 && Op1 && LHSOpcode == RHSOpcode)
      if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
        return V;

    // The instruction has the form "(A op' B) op (C)".  Try to factorize common
    // term.
    if (Op0)
      if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
        if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
          return V;

    // The instruction has the form "(B) op (C op' D)".  Try to factorize common
    // term.
    if (Op1)
      if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
        if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
          return V;
  }

  // Expansion.
  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    // The instruction has the form "(A op' B) op C".  See if expanding it out
    // to "(A op C) op' (B op C)" results in simplifications.
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'

    Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
    Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));

    // Do "A op C" and "B op C" both simplify?
    if (L && R) {
      // They do! Return "L op' R".
      ++NumExpand;
      C = Builder.CreateBinOp(InnerOpcode, L, R);
      C->takeName(&I);
      return C;
    }

    // Does "A op C" simplify to the identity value for the inner opcode?
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
      // They do! Return "B op C".
      ++NumExpand;
      C = Builder.CreateBinOp(TopLevelOpcode, B, C);
      C->takeName(&I);
      return C;
    }

    // Does "B op C" simplify to the identity value for the inner opcode?
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
      // They do! Return "A op C".
      ++NumExpand;
      C = Builder.CreateBinOp(TopLevelOpcode, A, C);
      C->takeName(&I);
      return C;
    }
  }

  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    // The instruction has the form "A op (B op' C)".  See if expanding it out
    // to "(A op B) op' (A op C)" results in simplifications.
    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'

    Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
    Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));

    // Do "A op B" and "A op C" both simplify?
    if (L && R) {
      // They do! Return "L op' R".
      ++NumExpand;
      A = Builder.CreateBinOp(InnerOpcode, L, R);
      A->takeName(&I);
      return A;
    }

    // Does "A op B" simplify to the identity value for the inner opcode?
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
      // They do! Return "A op C".
      ++NumExpand;
      A = Builder.CreateBinOp(TopLevelOpcode, A, C);
      A->takeName(&I);
      return A;
    }

    // Does "A op C" simplify to the identity value for the inner opcode?
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
      // They do! Return "A op B".
      ++NumExpand;
      A = Builder.CreateBinOp(TopLevelOpcode, A, B);
      A->takeName(&I);
      return A;
    }
  }

  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
}

Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
                                                    Value *LHS, Value *RHS) {
  Instruction::BinaryOps Opcode = I.getOpcode();
  // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
  // c, e)))
  Value *A, *B, *C, *D, *E;
  Value *SI = nullptr;
  if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
      match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
    bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();

    FastMathFlags FMF;
    BuilderTy::FastMathFlagGuard Guard(Builder);
    if (isa<FPMathOperator>(&I)) {
      FMF = I.getFastMathFlags();
      Builder.setFastMathFlags(FMF);
    }

    Value *V1 = SimplifyBinOp(Opcode, C, E, FMF, SQ.getWithInstruction(&I));
    Value *V2 = SimplifyBinOp(Opcode, B, D, FMF, SQ.getWithInstruction(&I));
    if (V1 && V2)
      SI = Builder.CreateSelect(A, V2, V1);
    else if (V2 && SelectsHaveOneUse)
      SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
    else if (V1 && SelectsHaveOneUse)
      SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);

    if (SI)
      SI->takeName(&I);
  }

  return SI;
}

/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
/// constant zero (which is the 'negate' form).
Value *InstCombiner::dyn_castNegVal(Value *V) const {
  Value *NegV;
  if (match(V, m_Neg(m_Value(NegV))))
    return NegV;

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantExpr::getNeg(C);

  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    if (C->getType()->getElementType()->isIntegerTy())
      return ConstantExpr::getNeg(C);

  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
      Constant *Elt = CV->getAggregateElement(i);
      if (!Elt)
        return nullptr;

      if (isa<UndefValue>(Elt))
        continue;

      if (!isa<ConstantInt>(Elt))
        return nullptr;
    }
    return ConstantExpr::getNeg(CV);
  }

  return nullptr;
}

static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                             InstCombiner::BuilderTy &Builder) {
  if (auto *Cast = dyn_cast<CastInst>(&I))
    return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());

  assert(I.isBinaryOp() && "Unexpected opcode for select folding");

  // Figure out if the constant is the left or the right argument.
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));

  if (auto *SOC = dyn_cast<Constant>(SO)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
  }

  Value *Op0 = SO, *Op1 = ConstOperand;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);

  auto *BO = cast<BinaryOperator>(&I);
  Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
                                  SO->getName() + ".op");
  auto *FPInst = dyn_cast<Instruction>(RI);
  if (FPInst && isa<FPMathOperator>(FPInst))
    FPInst->copyFastMathFlags(BO);
  return RI;
}

Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
  // Don't modify shared select instructions.
  if (!SI->hasOneUse())
    return nullptr;

  Value *TV = SI->getTrueValue();
  Value *FV = SI->getFalseValue();
  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
    return nullptr;

  // Bool selects with constant operands can be folded to logical ops.
  if (SI->getType()->isIntOrIntVectorTy(1))
    return nullptr;

  // If it's a bitcast involving vectors, make sure it has the same number of
  // elements on both sides.
  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
    VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());

    // Verify that either both or neither are vectors.
    if ((SrcTy == nullptr) != (DestTy == nullptr))
      return nullptr;

    // If vectors, verify that they have the same number of elements.
    if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
      return nullptr;
  }

  // Test if a CmpInst instruction is used exclusively by a select as
  // part of a minimum or maximum operation. If so, refrain from doing
  // any other folding. This helps out other analyses which understand
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
  // and CodeGen. And in this case, at least one of the comparison
  // operands has at least one user besides the compare (the select),
  // which would often largely negate the benefit of folding anyway.
  if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
    if (CI->hasOneUse()) {
      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
        return nullptr;
    }
  }

  Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
  Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
}

static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
                                        InstCombiner::BuilderTy &Builder) {
  bool ConstIsRHS = isa<Constant>(I->getOperand(1));
  Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));

  if (auto *InC = dyn_cast<Constant>(InV)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I->getOpcode(), InC, C);
    return ConstantExpr::get(I->getOpcode(), C, InC);
  }

  Value *Op0 = InV, *Op1 = C;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);

  Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
  auto *FPInst = dyn_cast<Instruction>(RI);
  if (FPInst && isa<FPMathOperator>(FPInst))
    FPInst->copyFastMathFlags(I);
  return RI;
}

Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
  unsigned NumPHIValues = PN->getNumIncomingValues();
  if (NumPHIValues == 0)
    return nullptr;

  // We normally only transform phis with a single use.  However, if a PHI has
  // multiple uses and they are all the same operation, we can fold *all* of the
  // uses into the PHI.
  if (!PN->hasOneUse()) {
    // Walk the use list for the instruction, comparing them to I.
    for (User *U : PN->users()) {
      Instruction *UI = cast<Instruction>(U);
      if (UI != &I && !I.isIdenticalTo(UI))
        return nullptr;
    }
    // Otherwise, we can replace *all* users with the new PHI we form.
  }

  // Check to see if all of the operands of the PHI are simple constants
  // (constantint/constantfp/undef).  If there is one non-constant value,
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
  // bail out.  We don't do arbitrary constant expressions here because moving
  // their computation can be expensive without a cost model.
  BasicBlock *NonConstBB = nullptr;
  for (unsigned i = 0; i != NumPHIValues; ++i) {
    Value *InVal = PN->getIncomingValue(i);
    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
      continue;

    if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
    if (NonConstBB) return nullptr;  // More than one non-const value.

    NonConstBB = PN->getIncomingBlock(i);

    // If the InVal is an invoke at the end of the pred block, then we can't
    // insert a computation after it without breaking the edge.
    if (isa<InvokeInst>(InVal))
      if (cast<Instruction>(InVal)->getParent() == NonConstBB)
        return nullptr;

    // If the incoming non-constant value is in I's block, we will remove one
    // instruction, but insert another equivalent one, leading to infinite
    // instcombine.
    if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
      return nullptr;
  }

  // If there is exactly one non-constant value, we can insert a copy of the
  // operation in that block.  However, if this is a critical edge, we would be
  // inserting the computation on some other paths (e.g. inside a loop).  Only
  // do this if the pred block is unconditionally branching into the phi block.
  if (NonConstBB != nullptr) {
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    if (!BI || !BI->isUnconditional()) return nullptr;
  }

  // Okay, we can do the transformation: create the new PHI node.
  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
  InsertNewInstBefore(NewPN, *PN);
  NewPN->takeName(PN);

  // If we are going to have to insert a new computation, do so right before the
  // predecessor's terminator.
  if (NonConstBB)
    Builder.SetInsertPoint(NonConstBB->getTerminator());

  // Next, add all of the operands to the PHI.
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    // We only currently try to fold the condition of a select when it is a phi,
    // not the true/false values.
    Value *TrueV = SI->getTrueValue();
    Value *FalseV = SI->getFalseValue();
    BasicBlock *PhiTransBB = PN->getParent();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *InV = nullptr;
      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
      // even if currently isNullValue gives false.
      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
      // For vector constants, we cannot use isNullValue to fold into
      // FalseVInPred versus TrueVInPred. When we have individual nonzero
      // elements in the vector, we will incorrectly fold InC to
      // `TrueVInPred`.
      if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
      else {
        // Generate the select in the same block as PN's current incoming block.
        // Note: ThisBB need not be the NonConstBB because vector constants
        // which are constants by definition are handled here.
        // FIXME: This can lead to an increase in IR generation because we might
        // generate selects for vector constant phi operand, that could not be
        // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
        // non-vector phis, this transformation was always profitable because
        // the select would be generated exactly once in the NonConstBB.
        Builder.SetInsertPoint(ThisBB->getTerminator());
        InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
                                   FalseVInPred, "phitmp");
      }
      NewPN->addIncoming(InV, ThisBB);
    }
  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = nullptr;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
      else if (isa<ICmpInst>(CI))
        InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
                                 C, "phitmp");
      else
        InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
                                 C, "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
                                             Builder);
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else {
    CastInst *CI = cast<CastInst>(&I);
    Type *RetTy = CI->getType();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
      else
        InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
                                 I.getType(), "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  }

  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    if (User == &I) continue;
    replaceInstUsesWith(*User, NewPN);
    eraseInstFromFunction(*User);
  }
  return replaceInstUsesWith(I, NewPN);
}

Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
  if (!isa<Constant>(I.getOperand(1)))
    return nullptr;

  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
    if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
      return NewSel;
  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
    if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
      return NewPhi;
  }
  return nullptr;
}

/// Given a pointer type and a constant offset, determine whether or not there
/// is a sequence of GEP indices into the pointed type that will land us at the
/// specified offset. If so, fill them into NewIndices and return the resultant
/// element type, otherwise return null.
Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
                                        SmallVectorImpl<Value *> &NewIndices) {
  Type *Ty = PtrTy->getElementType();
  if (!Ty->isSized())
    return nullptr;

  // Start with the index over the outer type.  Note that the type size
  // might be zero (even if the offset isn't zero) if the indexed type
  // is something like [0 x {int, int}]
  Type *IndexTy = DL.getIndexType(PtrTy);
  int64_t FirstIdx = 0;
  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
    FirstIdx = Offset/TySize;
    Offset -= FirstIdx*TySize;

    // Handle hosts where % returns negative instead of values [0..TySize).
    if (Offset < 0) {
      --FirstIdx;
      Offset += TySize;
      assert(Offset >= 0);
    }
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
  }

  NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));

  // Index into the types.  If we fail, set OrigBase to null.
  while (Offset) {
    // Indexing into tail padding between struct/array elements.
    if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
      return nullptr;

    if (StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout *SL = DL.getStructLayout(STy);
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
             "Offset must stay within the indexed type");

      unsigned Elt = SL->getElementContainingOffset(Offset);
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                            Elt));

      Offset -= SL->getElementOffset(Elt);
      Ty = STy->getElementType(Elt);
    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
      uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
      assert(EltSize && "Cannot index into a zero-sized array");
      NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
      Offset %= EltSize;
      Ty = AT->getElementType();
    } else {
      // Otherwise, we can't index into the middle of this atomic type, bail.
      return nullptr;
    }
  }

  return Ty;
}

static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
  // If this GEP has only 0 indices, it is the same pointer as
  // Src. If Src is not a trivial GEP too, don't combine
  // the indices.
  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
      !Src.hasOneUse())
    return false;
  return true;
}

/// Return a value X such that Val = X * Scale, or null if none.
/// If the multiplication is known not to overflow, then NoSignedWrap is set.
Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
         Scale.getBitWidth() && "Scale not compatible with value!");

  // If Val is zero or Scale is one then Val = Val * Scale.
  if (match(Val, m_Zero()) || Scale == 1) {
    NoSignedWrap = true;
    return Val;
  }

  // If Scale is zero then it does not divide Val.
  if (Scale.isMinValue())
    return nullptr;

  // Look through chains of multiplications, searching for a constant that is
  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
  // down from Val:
  //
  //     Val = M1 * X          ||   Analysis starts here and works down
  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
  //      M2 =  Z * 4          \/   than one use
  //
  // Then to modify a term at the bottom:
  //
  //     Val = M1 * X
  //      M1 =  Z * Y          ||   Replaced M2 with Z
  //
  // Then to work back up correcting nsw flags.

  // Op - the term we are currently analyzing.  Starts at Val then drills down.
  // Replaced with its descaled value before exiting from the drill down loop.
  Value *Op = Val;

  // Parent - initially null, but after drilling down notes where Op came from.
  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
  // 0'th operand of Val.
  std::pair<Instruction *, unsigned> Parent;

  // Set if the transform requires a descaling at deeper levels that doesn't
  // overflow.
  bool RequireNoSignedWrap = false;

  // Log base 2 of the scale. Negative if not a power of 2.
  int32_t logScale = Scale.exactLogBase2();

  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
      // If Op is a constant divisible by Scale then descale to the quotient.
      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
      if (!Remainder.isMinValue())
        // Not divisible by Scale.
        return nullptr;
      // Replace with the quotient in the parent.
      Op = ConstantInt::get(CI->getType(), Quotient);
      NoSignedWrap = true;
      break;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
      if (BO->getOpcode() == Instruction::Mul) {
        // Multiplication.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return nullptr;

        // There are three cases for multiplication: multiplication by exactly
        // the scale, multiplication by a constant different to the scale, and
        // multiplication by something else.
        Value *LHS = BO->getOperand(0);
        Value *RHS = BO->getOperand(1);

        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
          // Multiplication by a constant.
          if (CI->getValue() == Scale) {
            // Multiplication by exactly the scale, replace the multiplication
            // by its left-hand side in the parent.
            Op = LHS;
            break;
          }

          // Otherwise drill down into the constant.
          if (!Op->hasOneUse())
            return nullptr;

          Parent = std::make_pair(BO, 1);
          continue;
        }

        // Multiplication by something else. Drill down into the left-hand side
        // since that's where the reassociate pass puts the good stuff.
        if (!Op->hasOneUse())
          return nullptr;

        Parent = std::make_pair(BO, 0);
        continue;
      }

      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
          isa<ConstantInt>(BO->getOperand(1))) {
        // Multiplication by a power of 2.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return nullptr;

        Value *LHS = BO->getOperand(0);
        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
          getLimitedValue(Scale.getBitWidth());
        // Op = LHS << Amt.

        if (Amt == logScale) {
          // Multiplication by exactly the scale, replace the multiplication
          // by its left-hand side in the parent.
          Op = LHS;
          break;
        }
        if (Amt < logScale || !Op->hasOneUse())
          return nullptr;

        // Multiplication by more than the scale.  Reduce the multiplying amount
        // by the scale in the parent.
        Parent = std::make_pair(BO, 1);
        Op = ConstantInt::get(BO->getType(), Amt - logScale);
        break;
      }
    }

    if (!Op->hasOneUse())
      return nullptr;

    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
      if (Cast->getOpcode() == Instruction::SExt) {
        // Op is sign-extended from a smaller type, descale in the smaller type.
        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        APInt SmallScale = Scale.trunc(SmallSize);
        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
        // descale Op as (sext Y) * Scale.  In order to have
        //   sext (Y * SmallScale) = (sext Y) * Scale
        // some conditions need to hold however: SmallScale must sign-extend to
        // Scale and the multiplication Y * SmallScale should not overflow.
        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
          // SmallScale does not sign-extend to Scale.
          return nullptr;
        assert(SmallScale.exactLogBase2() == logScale);
        // Require that Y * SmallScale must not overflow.
        RequireNoSignedWrap = true;

        // Drill down through the cast.
        Parent = std::make_pair(Cast, 0);
        Scale = SmallScale;
        continue;
      }

      if (Cast->getOpcode() == Instruction::Trunc) {
        // Op is truncated from a larger type, descale in the larger type.
        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
        //   trunc (Y * sext Scale) = (trunc Y) * Scale
        // always holds.  However (trunc Y) * Scale may overflow even if
        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
        // from this point up in the expression (see later).
        if (RequireNoSignedWrap)
          return nullptr;

        // Drill down through the cast.
        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        Parent = std::make_pair(Cast, 0);
        Scale = Scale.sext(LargeSize);
        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
          logScale = -1;
        assert(Scale.exactLogBase2() == logScale);
        continue;
      }
    }

    // Unsupported expression, bail out.
    return nullptr;
  }

  // If Op is zero then Val = Op * Scale.
  if (match(Op, m_Zero())) {
    NoSignedWrap = true;
    return Op;
  }

  // We know that we can successfully descale, so from here on we can safely
  // modify the IR.  Op holds the descaled version of the deepest term in the
  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
  // not to overflow.

  if (!Parent.first)
    // The expression only had one term.
    return Op;

  // Rewrite the parent using the descaled version of its operand.
  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
  assert(Op != Parent.first->getOperand(Parent.second) &&
         "Descaling was a no-op?");
  Parent.first->setOperand(Parent.second, Op);
  Worklist.Add(Parent.first);

  // Now work back up the expression correcting nsw flags.  The logic is based
  // on the following observation: if X * Y is known not to overflow as a signed
  // multiplication, and Y is replaced by a value Z with smaller absolute value,
  // then X * Z will not overflow as a signed multiplication either.  As we work
  // our way up, having NoSignedWrap 'true' means that the descaled value at the
  // current level has strictly smaller absolute value than the original.
  Instruction *Ancestor = Parent.first;
  do {
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
      // If the multiplication wasn't nsw then we can't say anything about the
      // value of the descaled multiplication, and we have to clear nsw flags
      // from this point on up.
      bool OpNoSignedWrap = BO->hasNoSignedWrap();
      NoSignedWrap &= OpNoSignedWrap;
      if (NoSignedWrap != OpNoSignedWrap) {
        BO->setHasNoSignedWrap(NoSignedWrap);
        Worklist.Add(Ancestor);
      }
    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
      // The fact that the descaled input to the trunc has smaller absolute
      // value than the original input doesn't tell us anything useful about
      // the absolute values of the truncations.
      NoSignedWrap = false;
    }
    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
           "Failed to keep proper track of nsw flags while drilling down?");

    if (Ancestor == Val)
      // Got to the top, all done!
      return Val;

    // Move up one level in the expression.
    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
    Ancestor = Ancestor->user_back();
  } while (true);
}

Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
  if (!Inst.getType()->isVectorTy()) return nullptr;

  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
  unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
  assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
  assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);

  // If both operands of the binop are vector concatenations, then perform the
  // narrow binop on each pair of the source operands followed by concatenation
  // of the results.
  Value *L0, *L1, *R0, *R1;
  Constant *Mask;
  if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
      LHS->hasOneUse() && RHS->hasOneUse() &&
      cast<ShuffleVectorInst>(LHS)->isConcat() &&
      cast<ShuffleVectorInst>(RHS)->isConcat()) {
    // This transform does not have the speculative execution constraint as
    // below because the shuffle is a concatenation. The new binops are
    // operating on exactly the same elements as the existing binop.
    // TODO: We could ease the mask requirement to allow different undef lanes,
    //       but that requires an analysis of the binop-with-undef output value.
    Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
      BO->copyIRFlags(&Inst);
    Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
      BO->copyIRFlags(&Inst);
    return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
  }

  // It may not be safe to reorder shuffles and things like div, urem, etc.
  // because we may trap when executing those ops on unknown vector elements.
  // See PR20059.
  if (!isSafeToSpeculativelyExecute(&Inst))
    return nullptr;

  auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
    if (auto *BO = dyn_cast<BinaryOperator>(XY))
      BO->copyIRFlags(&Inst);
    return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
  };

  // If both arguments of the binary operation are shuffles that use the same
  // mask and shuffle within a single vector, move the shuffle after the binop.
  Value *V1, *V2;
  if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
      V1->getType() == V2->getType() &&
      (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
    // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
    return createBinOpShuffle(V1, V2, Mask);
  }

  // If both arguments of a commutative binop are select-shuffles that use the
  // same mask with commuted operands, the shuffles are unnecessary.
  if (Inst.isCommutative() &&
      match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
                                 m_Specific(Mask)))) {
    auto *LShuf = cast<ShuffleVectorInst>(LHS);
    auto *RShuf = cast<ShuffleVectorInst>(RHS);
    // TODO: Allow shuffles that contain undefs in the mask?
    //       That is legal, but it reduces undef knowledge.
    // TODO: Allow arbitrary shuffles by shuffling after binop?
    //       That might be legal, but we have to deal with poison.
    if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
        RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
      // Example:
      // LHS = shuffle V1, V2, <0, 5, 6, 3>
      // RHS = shuffle V2, V1, <0, 5, 6, 3>
      // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
      Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
      NewBO->copyIRFlags(&Inst);
      return NewBO;
    }
  }

  // If one argument is a shuffle within one vector and the other is a constant,
  // try moving the shuffle after the binary operation. This canonicalization
  // intends to move shuffles closer to other shuffles and binops closer to
  // other binops, so they can be folded. It may also enable demanded elements
  // transforms.
  Constant *C;
  if (match(&Inst, m_c_BinOp(
          m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
          m_Constant(C))) &&
      V1->getType()->getVectorNumElements() <= NumElts) {
    assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
           "Shuffle should not change scalar type");

    // Find constant NewC that has property:
    //   shuffle(NewC, ShMask) = C
    // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
    // reorder is not possible. A 1-to-1 mapping is not required. Example:
    // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
    bool ConstOp1 = isa<Constant>(RHS);
    SmallVector<int, 16> ShMask;
    ShuffleVectorInst::getShuffleMask(Mask, ShMask);
    unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
    UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
    SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
    bool MayChange = true;
    for (unsigned I = 0; I < NumElts; ++I) {
      Constant *CElt = C->getAggregateElement(I);
      if (ShMask[I] >= 0) {
        assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
        Constant *NewCElt = NewVecC[ShMask[I]];
        // Bail out if:
        // 1. The constant vector contains a constant expression.
        // 2. The shuffle needs an element of the constant vector that can't
        //    be mapped to a new constant vector.
        // 3. This is a widening shuffle that copies elements of V1 into the
        //    extended elements (extending with undef is allowed).
        if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
            I >= SrcVecNumElts) {
          MayChange = false;
          break;
        }
        NewVecC[ShMask[I]] = CElt;
      }
      // If this is a widening shuffle, we must be able to extend with undef
      // elements. If the original binop does not produce an undef in the high
      // lanes, then this transform is not safe.
      // TODO: We could shuffle those non-undef constant values into the
      //       result by using a constant vector (rather than an undef vector)
      //       as operand 1 of the new binop, but that might be too aggressive
      //       for target-independent shuffle creation.
      if (I >= SrcVecNumElts) {
        Constant *MaybeUndef =
            ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
                     : ConstantExpr::get(Opcode, CElt, UndefScalar);
        if (!isa<UndefValue>(MaybeUndef)) {
          MayChange = false;
          break;
        }
      }
    }
    if (MayChange) {
      Constant *NewC = ConstantVector::get(NewVecC);
      // It may not be safe to execute a binop on a vector with undef elements
      // because the entire instruction can be folded to undef or create poison
      // that did not exist in the original code.
      if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
        NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);

      // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
      // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
      Value *NewLHS = ConstOp1 ? V1 : NewC;
      Value *NewRHS = ConstOp1 ? NewC : V1;
      return createBinOpShuffle(NewLHS, NewRHS, Mask);
    }
  }

  return nullptr;
}

/// Try to narrow the width of a binop if at least 1 operand is an extend of
/// of a value. This requires a potentially expensive known bits check to make
/// sure the narrow op does not overflow.
Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
  // We need at least one extended operand.
  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);

  // If this is a sub, we swap the operands since we always want an extension
  // on the RHS. The LHS can be an extension or a constant.
  if (BO.getOpcode() == Instruction::Sub)
    std::swap(Op0, Op1);

  Value *X;
  bool IsSext = match(Op0, m_SExt(m_Value(X)));
  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
    return nullptr;

  // If both operands are the same extension from the same source type and we
  // can eliminate at least one (hasOneUse), this might work.
  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
  Value *Y;
  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
        cast<Operator>(Op1)->getOpcode() == CastOpc &&
        (Op0->hasOneUse() || Op1->hasOneUse()))) {
    // If that did not match, see if we have a suitable constant operand.
    // Truncating and extending must produce the same constant.
    Constant *WideC;
    if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
      return nullptr;
    Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
    if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
      return nullptr;
    Y = NarrowC;
  }

  // Swap back now that we found our operands.
  if (BO.getOpcode() == Instruction::Sub)
    std::swap(X, Y);

  // Both operands have narrow versions. Last step: the math must not overflow
  // in the narrow width.
  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
    return nullptr;

  // bo (ext X), (ext Y) --> ext (bo X, Y)
  // bo (ext X), C       --> ext (bo X, C')
  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
    if (IsSext)
      NewBinOp->setHasNoSignedWrap();
    else
      NewBinOp->setHasNoUnsignedWrap();
  }
  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
}

Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
  Type *GEPType = GEP.getType();
  Type *GEPEltType = GEP.getSourceElementType();
  if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
    return replaceInstUsesWith(GEP, V);

  // For vector geps, use the generic demanded vector support.
  if (GEP.getType()->isVectorTy()) {
    auto VWidth = GEP.getType()->getVectorNumElements();
    APInt UndefElts(VWidth, 0);
    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
                                              UndefElts)) {
      if (V != &GEP)
        return replaceInstUsesWith(GEP, V);
      return &GEP;
    }

    // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
    // possible (decide on canonical form for pointer broadcast), 3) exploit
    // undef elements to decrease demanded bits  
  }

  Value *PtrOp = GEP.getOperand(0);

  // Eliminate unneeded casts for indices, and replace indices which displace
  // by multiples of a zero size type with zero.
  bool MadeChange = false;

  // Index width may not be the same width as pointer width.
  // Data layout chooses the right type based on supported integer types.
  Type *NewScalarIndexTy =
      DL.getIndexType(GEP.getPointerOperandType()->getScalarType());

  gep_type_iterator GTI = gep_type_begin(GEP);
  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
       ++I, ++GTI) {
    // Skip indices into struct types.
    if (GTI.isStruct())
      continue;

    Type *IndexTy = (*I)->getType();
    Type *NewIndexType =
        IndexTy->isVectorTy()
            ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
            : NewScalarIndexTy;

    // If the element type has zero size then any index over it is equivalent
    // to an index of zero, so replace it with zero if it is not zero already.
    Type *EltTy = GTI.getIndexedType();
    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
      if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
        *I = Constant::getNullValue(NewIndexType);
        MadeChange = true;
      }

    if (IndexTy != NewIndexType) {
      // If we are using a wider index than needed for this platform, shrink
      // it to what we need.  If narrower, sign-extend it to what we need.
      // This explicit cast can make subsequent optimizations more obvious.
      *I = Builder.CreateIntCast(*I, NewIndexType, true);
      MadeChange = true;
    }
  }
  if (MadeChange)
    return &GEP;

  // Check to see if the inputs to the PHI node are getelementptr instructions.
  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
    auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
    if (!Op1)
      return nullptr;

    // Don't fold a GEP into itself through a PHI node. This can only happen
    // through the back-edge of a loop. Folding a GEP into itself means that
    // the value of the previous iteration needs to be stored in the meantime,
    // thus requiring an additional register variable to be live, but not
    // actually achieving anything (the GEP still needs to be executed once per
    // loop iteration).
    if (Op1 == &GEP)
      return nullptr;

    int DI = -1;

    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
      auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
        return nullptr;

      // As for Op1 above, don't try to fold a GEP into itself.
      if (Op2 == &GEP)
        return nullptr;

      // Keep track of the type as we walk the GEP.
      Type *CurTy = nullptr;

      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
          return nullptr;

        if (Op1->getOperand(J) != Op2->getOperand(J)) {
          if (DI == -1) {
            // We have not seen any differences yet in the GEPs feeding the
            // PHI yet, so we record this one if it is allowed to be a
            // variable.

            // The first two arguments can vary for any GEP, the rest have to be
            // static for struct slots
            if (J > 1 && CurTy->isStructTy())
              return nullptr;

            DI = J;
          } else {
            // The GEP is different by more than one input. While this could be
            // extended to support GEPs that vary by more than one variable it
            // doesn't make sense since it greatly increases the complexity and
            // would result in an R+R+R addressing mode which no backend
            // directly supports and would need to be broken into several
            // simpler instructions anyway.
            return nullptr;
          }
        }

        // Sink down a layer of the type for the next iteration.
        if (J > 0) {
          if (J == 1) {
            CurTy = Op1->getSourceElementType();
          } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
            CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
          } else {
            CurTy = nullptr;
          }
        }
      }
    }

    // If not all GEPs are identical we'll have to create a new PHI node.
    // Check that the old PHI node has only one use so that it will get
    // removed.
    if (DI != -1 && !PN->hasOneUse())
      return nullptr;

    auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
    if (DI == -1) {
      // All the GEPs feeding the PHI are identical. Clone one down into our
      // BB so that it can be merged with the current GEP.
      GEP.getParent()->getInstList().insert(
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
    } else {
      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
      // into the current block so it can be merged, and create a new PHI to
      // set that index.
      PHINode *NewPN;
      {
        IRBuilderBase::InsertPointGuard Guard(Builder);
        Builder.SetInsertPoint(PN);
        NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
                                  PN->getNumOperands());
      }

      for (auto &I : PN->operands())
        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
                           PN->getIncomingBlock(I));

      NewGEP->setOperand(DI, NewPN);
      GEP.getParent()->getInstList().insert(
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
      NewGEP->setOperand(DI, NewPN);
    }

    GEP.setOperand(0, NewGEP);
    PtrOp = NewGEP;
  }

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
      return nullptr;

    // Try to reassociate loop invariant GEP chains to enable LICM.
    if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
        Src->hasOneUse()) {
      if (Loop *L = LI->getLoopFor(GEP.getParent())) {
        Value *GO1 = GEP.getOperand(1);
        Value *SO1 = Src->getOperand(1);
        // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
        // invariant: this breaks the dependence between GEPs and allows LICM
        // to hoist the invariant part out of the loop.
        if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
          // We have to be careful here.
          // We have something like:
          //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
          //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
          // If we just swap idx & idx2 then we could inadvertantly
          // change %src from a vector to a scalar, or vice versa.
          // Cases:
          //  1) %base a scalar & idx a scalar & idx2 a vector
          //      => Swapping idx & idx2 turns %src into a vector type.
          //  2) %base a scalar & idx a vector & idx2 a scalar
          //      => Swapping idx & idx2 turns %src in a scalar type
          //  3) %base, %idx, and %idx2 are scalars
          //      => %src & %gep are scalars
          //      => swapping idx & idx2 is safe
          //  4) %base a vector
          //      => %src is a vector
          //      => swapping idx & idx2 is safe.
          auto *SO0 = Src->getOperand(0);
          auto *SO0Ty = SO0->getType();
          if (!isa<VectorType>(GEPType) || // case 3
              isa<VectorType>(SO0Ty)) {    // case 4
            Src->setOperand(1, GO1);
            GEP.setOperand(1, SO1);
            return &GEP;
          } else {
            // Case 1 or 2
            // -- have to recreate %src & %gep
            // put NewSrc at same location as %src
            Builder.SetInsertPoint(cast<Instruction>(PtrOp));
            auto *NewSrc = cast<GetElementPtrInst>(
                Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
            NewSrc->setIsInBounds(Src->isInBounds());
            auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
            NewGEP->setIsInBounds(GEP.isInBounds());
            return NewGEP;
          }
        }
      }
    }

    // Note that if our source is a gep chain itself then we wait for that
    // chain to be resolved before we perform this transformation.  This
    // avoids us creating a TON of code in some cases.
    if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
        return nullptr;   // Wait until our source is folded to completion.

    SmallVector<Value*, 8> Indices;

    // Find out whether the last index in the source GEP is a sequential idx.
    bool EndsWithSequential = false;
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
         I != E; ++I)
      EndsWithSequential = I.isSequential();

    // Can we combine the two pointer arithmetics offsets?
    if (EndsWithSequential) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
      Value *GO1 = GEP.getOperand(1);

      // If they aren't the same type, then the input hasn't been processed
      // by the loop above yet (which canonicalizes sequential index types to
      // intptr_t).  Just avoid transforming this until the input has been
      // normalized.
      if (SO1->getType() != GO1->getType())
        return nullptr;

      Value *Sum =
          SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
      // Only do the combine when we are sure the cost after the
      // merge is never more than that before the merge.
      if (Sum == nullptr)
        return nullptr;

      // Update the GEP in place if possible.
      if (Src->getNumOperands() == 2) {
        GEP.setOperand(0, Src->getOperand(0));
        GEP.setOperand(1, Sum);
        return &GEP;
      }
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
      Indices.push_back(Sum);
      Indices.append(GEP.op_begin()+2, GEP.op_end());
    } else if (isa<Constant>(*GEP.idx_begin()) &&
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
               Src->getNumOperands() != 1) {
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.append(Src->op_begin()+1, Src->op_end());
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    }

    if (!Indices.empty())
      return GEP.isInBounds() && Src->isInBounds()
                 ? GetElementPtrInst::CreateInBounds(
                       Src->getSourceElementType(), Src->getOperand(0), Indices,
                       GEP.getName())
                 : GetElementPtrInst::Create(Src->getSourceElementType(),
                                             Src->getOperand(0), Indices,
                                             GEP.getName());
  }

  if (GEP.getNumIndices() == 1) {
    unsigned AS = GEP.getPointerAddressSpace();
    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
        DL.getIndexSizeInBits(AS)) {
      uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);

      bool Matched = false;
      uint64_t C;
      Value *V = nullptr;
      if (TyAllocSize == 1) {
        V = GEP.getOperand(1);
        Matched = true;
      } else if (match(GEP.getOperand(1),
                       m_AShr(m_Value(V), m_ConstantInt(C)))) {
        if (TyAllocSize == 1ULL << C)
          Matched = true;
      } else if (match(GEP.getOperand(1),
                       m_SDiv(m_Value(V), m_ConstantInt(C)))) {
        if (TyAllocSize == C)
          Matched = true;
      }

      if (Matched) {
        // Canonicalize (gep i8* X, -(ptrtoint Y))
        // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
        // The GEP pattern is emitted by the SCEV expander for certain kinds of
        // pointer arithmetic.
        if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
          Operator *Index = cast<Operator>(V);
          Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
          Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
          return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
        }
        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
        // to (bitcast Y)
        Value *Y;
        if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
                           m_PtrToInt(m_Specific(GEP.getOperand(0))))))
          return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
      }
    }
  }

  // We do not handle pointer-vector geps here.
  if (GEPType->isVectorTy())
    return nullptr;

  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
  Value *StrippedPtr = PtrOp->stripPointerCasts();
  PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());

  if (StrippedPtr != PtrOp) {
    bool HasZeroPointerIndex = false;
    Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();

    if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
      HasZeroPointerIndex = C->isZero();

    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    // into     : GEP [10 x i8]* X, i32 0, ...
    //
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    //           into     : GEP i8* X, ...
    //
    // This occurs when the program declares an array extern like "int X[];"
    if (HasZeroPointerIndex) {
      if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
        if (CATy->getElementType() == StrippedPtrEltTy) {
          // -> GEP i8* X, ...
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
          GetElementPtrInst *Res = GetElementPtrInst::Create(
              StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
          Res->setIsInBounds(GEP.isInBounds());
          if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
            return Res;
          // Insert Res, and create an addrspacecast.
          // e.g.,
          // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
          // ->
          // %0 = GEP i8 addrspace(1)* X, ...
          // addrspacecast i8 addrspace(1)* %0 to i8*
          return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
        }

        if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
          if (CATy->getElementType() == XATy->getElementType()) {
            // -> GEP [10 x i8]* X, i32 0, ...
            // At this point, we know that the cast source type is a pointer
            // to an array of the same type as the destination pointer
            // array.  Because the array type is never stepped over (there
            // is a leading zero) we can fold the cast into this GEP.
            if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
              GEP.setOperand(0, StrippedPtr);
              GEP.setSourceElementType(XATy);
              return &GEP;
            }
            // Cannot replace the base pointer directly because StrippedPtr's
            // address space is different. Instead, create a new GEP followed by
            // an addrspacecast.
            // e.g.,
            // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
            //   i32 0, ...
            // ->
            // %0 = GEP [10 x i8] addrspace(1)* X, ...
            // addrspacecast i8 addrspace(1)* %0 to i8*
            SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
            Value *NewGEP =
                GEP.isInBounds()
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                Idx, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                        GEP.getName());
            return new AddrSpaceCastInst(NewGEP, GEPType);
          }
        }
      }
    } else if (GEP.getNumOperands() == 2) {
      // Transform things like:
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
      if (StrippedPtrEltTy->isArrayTy() &&
          DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
              DL.getTypeAllocSize(GEPEltType)) {
        Type *IdxType = DL.getIndexType(GEPType);
        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
        Value *NewGEP =
            GEP.isInBounds()
                ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                            GEP.getName())
                : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                    GEP.getName());

        // V and GEP are both pointer types --> BitCast
        return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
      }

      // Transform things like:
      // %V = mul i64 %N, 4
      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
        // Check that changing the type amounts to dividing the index by a scale
        // factor.
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
        uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
        if (ResSize && SrcSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = SrcSize / ResSize;

          // Earlier transforms ensure that the index has the right type
          // according to Data Layout, which considerably simplifies the
          // logic by eliminating implicit casts.
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
                 "Index type does not match the Data Layout preferences");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Value *NewGEP =
                GEP.isInBounds() && NSW
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                NewIdx, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
                                        GEP.getName());

            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
                                                                 GEPType);
          }
        }
      }

      // Similarly, transform things like:
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
      //   (where tmp = 8*tmp2) into:
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
          StrippedPtrEltTy->isArrayTy()) {
        // Check that changing to the array element type amounts to dividing the
        // index by a scale factor.
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
        uint64_t ArrayEltSize =
            DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
        if (ResSize && ArrayEltSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = ArrayEltSize / ResSize;

          // Earlier transforms ensure that the index has the right type
          // according to the Data Layout, which considerably simplifies
          // the logic by eliminating implicit casts.
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
                 "Index type does not match the Data Layout preferences");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Type *IndTy = DL.getIndexType(GEPType);
            Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};

            Value *NewGEP =
                GEP.isInBounds() && NSW
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                Off, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
                                        GEP.getName());
            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
                                                                 GEPType);
          }
        }
      }
    }
  }

  // addrspacecast between types is canonicalized as a bitcast, then an
  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
  // through the addrspacecast.
  Value *ASCStrippedPtrOp = PtrOp;
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
    //   X = bitcast A addrspace(1)* to B addrspace(1)*
    //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
    //   Z = gep Y, <...constant indices...>
    // Into an addrspacecasted GEP of the struct.
    if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
      ASCStrippedPtrOp = BC;
  }

  if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
    Value *SrcOp = BCI->getOperand(0);
    PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
    Type *SrcEltType = SrcType->getElementType();

    // GEP directly using the source operand if this GEP is accessing an element
    // of a bitcasted pointer to vector or array of the same dimensions:
    // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
    // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
    auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
      return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
             ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
    };
    if (GEP.getNumOperands() == 3 &&
        ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
          areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
         (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
          areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {

      // Create a new GEP here, as using `setOperand()` followed by
      // `setSourceElementType()` won't actually update the type of the
      // existing GEP Value. Causing issues if this Value is accessed when
      // constructing an AddrSpaceCastInst
      Value *NGEP =
          GEP.isInBounds()
              ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
              : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
      NGEP->takeName(&GEP);

      // Preserve GEP address space to satisfy users
      if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
        return new AddrSpaceCastInst(NGEP, GEPType);

      return replaceInstUsesWith(GEP, NGEP);
    }

    // See if we can simplify:
    //   X = bitcast A* to B*
    //   Y = gep X, <...constant indices...>
    // into a gep of the original struct. This is important for SROA and alias
    // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
    unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
    APInt Offset(OffsetBits, 0);
    if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
      // If this GEP instruction doesn't move the pointer, just replace the GEP
      // with a bitcast of the real input to the dest type.
      if (!Offset) {
        // If the bitcast is of an allocation, and the allocation will be
        // converted to match the type of the cast, don't touch this.
        if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
          if (Instruction *I = visitBitCast(*BCI)) {
            if (I != BCI) {
              I->takeName(BCI);
              BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
              replaceInstUsesWith(*BCI, I);
            }
            return &GEP;
          }
        }

        if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
          return new AddrSpaceCastInst(SrcOp, GEPType);
        return new BitCastInst(SrcOp, GEPType);
      }

      // Otherwise, if the offset is non-zero, we need to find out if there is a
      // field at Offset in 'A's type.  If so, we can pull the cast through the
      // GEP.
      SmallVector<Value*, 8> NewIndices;
      if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
        Value *NGEP =
            GEP.isInBounds()
                ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
                : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);

        if (NGEP->getType() == GEPType)
          return replaceInstUsesWith(GEP, NGEP);
        NGEP->takeName(&GEP);

        if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
          return new AddrSpaceCastInst(NGEP, GEPType);
        return new BitCastInst(NGEP, GEPType);
      }
    }
  }

  if (!GEP.isInBounds()) {
    unsigned IdxWidth =
        DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
    APInt BasePtrOffset(IdxWidth, 0);
    Value *UnderlyingPtrOp =
            PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
                                                             BasePtrOffset);
    if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
      if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
          BasePtrOffset.isNonNegative()) {
        APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
        if (BasePtrOffset.ule(AllocSize)) {
          return GetElementPtrInst::CreateInBounds(
              GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
              GEP.getName());
        }
      }
    }
  }

  return nullptr;
}

static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
                                         Instruction *AI) {
  if (isa<ConstantPointerNull>(V))
    return true;
  if (auto *LI = dyn_cast<LoadInst>(V))
    return isa<GlobalVariable>(LI->getPointerOperand());
  // Two distinct allocations will never be equal.
  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
  // through bitcasts of V can cause
  // the result statement below to be true, even when AI and V (ex:
  // i8* ->i32* ->i8* of AI) are the same allocations.
  return isAllocLikeFn(V, TLI) && V != AI;
}

static bool isAllocSiteRemovable(Instruction *AI,
                                 SmallVectorImpl<WeakTrackingVH> &Users,
                                 const TargetLibraryInfo *TLI) {
  SmallVector<Instruction*, 4> Worklist;
  Worklist.push_back(AI);

  do {
    Instruction *PI = Worklist.pop_back_val();
    for (User *U : PI->users()) {
      Instruction *I = cast<Instruction>(U);
      switch (I->getOpcode()) {
      default:
        // Give up the moment we see something we can't handle.
        return false;

      case Instruction::AddrSpaceCast:
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
        Users.emplace_back(I);
        Worklist.push_back(I);
        continue;

      case Instruction::ICmp: {
        ICmpInst *ICI = cast<ICmpInst>(I);
        // We can fold eq/ne comparisons with null to false/true, respectively.
        // We also fold comparisons in some conditions provided the alloc has
        // not escaped (see isNeverEqualToUnescapedAlloc).
        if (!ICI->isEquality())
          return false;
        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
          return false;
        Users.emplace_back(I);
        continue;
      }

      case Instruction::Call:
        // Ignore no-op and store intrinsics.
        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
          switch (II->getIntrinsicID()) {
          default:
            return false;

          case Intrinsic::memmove:
          case Intrinsic::memcpy:
          case Intrinsic::memset: {
            MemIntrinsic *MI = cast<MemIntrinsic>(II);
            if (MI->isVolatile() || MI->getRawDest() != PI)
              return false;
            LLVM_FALLTHROUGH;
          }
          case Intrinsic::invariant_start:
          case Intrinsic::invariant_end:
          case Intrinsic::lifetime_start:
          case Intrinsic::lifetime_end:
          case Intrinsic::objectsize:
            Users.emplace_back(I);
            continue;
          }
        }

        if (isFreeCall(I, TLI)) {
          Users.emplace_back(I);
          continue;
        }
        return false;

      case Instruction::Store: {
        StoreInst *SI = cast<StoreInst>(I);
        if (SI->isVolatile() || SI->getPointerOperand() != PI)
          return false;
        Users.emplace_back(I);
        continue;
      }
      }
      llvm_unreachable("missing a return?");
    }
  } while (!Worklist.empty());
  return true;
}

Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
  // If we have a malloc call which is only used in any amount of comparisons to
  // null and free calls, delete the calls and replace the comparisons with true
  // or false as appropriate.

  // This is based on the principle that we can substitute our own allocation
  // function (which will never return null) rather than knowledge of the
  // specific function being called. In some sense this can change the permitted
  // outputs of a program (when we convert a malloc to an alloca, the fact that
  // the allocation is now on the stack is potentially visible, for example),
  // but we believe in a permissible manner.
  SmallVector<WeakTrackingVH, 64> Users;

  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
  // before each store.
  TinyPtrVector<DbgVariableIntrinsic *> DIIs;
  std::unique_ptr<DIBuilder> DIB;
  if (isa<AllocaInst>(MI)) {
    DIIs = FindDbgAddrUses(&MI);
    DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
  }

  if (isAllocSiteRemovable(&MI, Users, &TLI)) {
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
      // Lowering all @llvm.objectsize calls first because they may
      // use a bitcast/GEP of the alloca we are removing.
      if (!Users[i])
       continue;

      Instruction *I = cast<Instruction>(&*Users[i]);

      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::objectsize) {
          Value *Result =
              lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
          replaceInstUsesWith(*I, Result);
          eraseInstFromFunction(*I);
          Users[i] = nullptr; // Skip examining in the next loop.
        }
      }
    }
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
      if (!Users[i])
        continue;

      Instruction *I = cast<Instruction>(&*Users[i]);

      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
        replaceInstUsesWith(*C,
                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
                                             C->isFalseWhenEqual()));
      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
                 isa<AddrSpaceCastInst>(I)) {
        replaceInstUsesWith(*I, UndefValue::get(I->getType()));
      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
        for (auto *DII : DIIs)
          ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
      }
      eraseInstFromFunction(*I);
    }

    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
      // Replace invoke with a NOP intrinsic to maintain the original CFG
      Module *M = II->getModule();
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
                         None, "", II->getParent());
    }

    for (auto *DII : DIIs)
      eraseInstFromFunction(*DII);

    return eraseInstFromFunction(MI);
  }
  return nullptr;
}

/// Move the call to free before a NULL test.
///
/// Check if this free is accessed after its argument has been test
/// against NULL (property 0).
/// If yes, it is legal to move this call in its predecessor block.
///
/// The move is performed only if the block containing the call to free
/// will be removed, i.e.:
/// 1. it has only one predecessor P, and P has two successors
/// 2. it contains the call, noops, and an unconditional branch
/// 3. its successor is the same as its predecessor's successor
///
/// The profitability is out-of concern here and this function should
/// be called only if the caller knows this transformation would be
/// profitable (e.g., for code size).
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
                                                const DataLayout &DL) {
  Value *Op = FI.getArgOperand(0);
  BasicBlock *FreeInstrBB = FI.getParent();
  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();

  // Validate part of constraint #1: Only one predecessor
  // FIXME: We can extend the number of predecessor, but in that case, we
  //        would duplicate the call to free in each predecessor and it may
  //        not be profitable even for code size.
  if (!PredBB)
    return nullptr;

  // Validate constraint #2: Does this block contains only the call to
  //                         free, noops, and an unconditional branch?
  BasicBlock *SuccBB;
  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
    return nullptr;

  // If there are only 2 instructions in the block, at this point,
  // this is the call to free and unconditional.
  // If there are more than 2 instructions, check that they are noops
  // i.e., they won't hurt the performance of the generated code.
  if (FreeInstrBB->size() != 2) {
    for (const Instruction &Inst : *FreeInstrBB) {
      if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
        continue;
      auto *Cast = dyn_cast<CastInst>(&Inst);
      if (!Cast || !Cast->isNoopCast(DL))
        return nullptr;
    }
  }
  // Validate the rest of constraint #1 by matching on the pred branch.
  Instruction *TI = PredBB->getTerminator();
  BasicBlock *TrueBB, *FalseBB;
  ICmpInst::Predicate Pred;
  if (!match(TI, m_Br(m_ICmp(Pred,
                             m_CombineOr(m_Specific(Op),
                                         m_Specific(Op->stripPointerCasts())),
                             m_Zero()),
                      TrueBB, FalseBB)))
    return nullptr;
  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
    return nullptr;

  // Validate constraint #3: Ensure the null case just falls through.
  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
    return nullptr;
  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
         "Broken CFG: missing edge from predecessor to successor");

  // At this point, we know that everything in FreeInstrBB can be moved
  // before TI.
  for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
       It != End;) {
    Instruction &Instr = *It++;
    if (&Instr == FreeInstrBBTerminator)
      break;
    Instr.moveBefore(TI);
  }
  assert(FreeInstrBB->size() == 1 &&
         "Only the branch instruction should remain");
  return &FI;
}

Instruction *InstCombiner::visitFree(CallInst &FI) {
  Value *Op = FI.getArgOperand(0);

  // free undef -> unreachable.
  if (isa<UndefValue>(Op)) {
    // Leave a marker since we can't modify the CFG here.
    CreateNonTerminatorUnreachable(&FI);
    return eraseInstFromFunction(FI);
  }

  // If we have 'free null' delete the instruction.  This can happen in stl code
  // when lots of inlining happens.
  if (isa<ConstantPointerNull>(Op))
    return eraseInstFromFunction(FI);

  // If we optimize for code size, try to move the call to free before the null
  // test so that simplify cfg can remove the empty block and dead code
  // elimination the branch. I.e., helps to turn something like:
  // if (foo) free(foo);
  // into
  // free(foo);
  if (MinimizeSize)
    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
      return I;

  return nullptr;
}

Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
  if (RI.getNumOperands() == 0) // ret void
    return nullptr;

  Value *ResultOp = RI.getOperand(0);
  Type *VTy = ResultOp->getType();
  if (!VTy->isIntegerTy())
    return nullptr;

  // There might be assume intrinsics dominating this return that completely
  // determine the value. If so, constant fold it.
  KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
  if (Known.isConstant())
    RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));

  return nullptr;
}

Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  Value *X = nullptr;
  if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
      !isa<Constant>(X)) {
    // Swap Destinations and condition...
    BI.setCondition(X);
    BI.swapSuccessors();
    return &BI;
  }

  // If the condition is irrelevant, remove the use so that other
  // transforms on the condition become more effective.
  if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
      BI.getSuccessor(0) == BI.getSuccessor(1)) {
    BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
    return &BI;
  }

  // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
  CmpInst::Predicate Pred;
  if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
                      m_BasicBlock(), m_BasicBlock())) &&
      !isCanonicalPredicate(Pred)) {
    // Swap destinations and condition.
    CmpInst *Cond = cast<CmpInst>(BI.getCondition());
    Cond->setPredicate(CmpInst::getInversePredicate(Pred));
    BI.swapSuccessors();
    Worklist.Add(Cond);
    return &BI;
  }

  return nullptr;
}

Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
  Value *Cond = SI.getCondition();
  Value *Op0;
  ConstantInt *AddRHS;
  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
    for (auto Case : SI.cases()) {
      Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
      assert(isa<ConstantInt>(NewCase) &&
             "Result of expression should be constant");
      Case.setValue(cast<ConstantInt>(NewCase));
    }
    SI.setCondition(Op0);
    return &SI;
  }

  KnownBits Known = computeKnownBits(Cond, 0, &SI);
  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();

  // Compute the number of leading bits we can ignore.
  // TODO: A better way to determine this would use ComputeNumSignBits().
  for (auto &C : SI.cases()) {
    LeadingKnownZeros = std::min(
        LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
    LeadingKnownOnes = std::min(
        LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
  }

  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);

  // Shrink the condition operand if the new type is smaller than the old type.
  // But do not shrink to a non-standard type, because backend can't generate 
  // good code for that yet.
  // TODO: We can make it aggressive again after fixing PR39569.
  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
      shouldChangeType(Known.getBitWidth(), NewWidth)) {
    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
    Builder.SetInsertPoint(&SI);
    Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
    SI.setCondition(NewCond);

    for (auto Case : SI.cases()) {
      APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
      Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
    }
    return &SI;
  }

  return nullptr;
}

Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
  Value *Agg = EV.getAggregateOperand();

  if (!EV.hasIndices())
    return replaceInstUsesWith(EV, Agg);

  if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
                                          SQ.getWithInstruction(&EV)))
    return replaceInstUsesWith(EV, V);

  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
    // We're extracting from an insertvalue instruction, compare the indices
    const unsigned *exti, *exte, *insi, *inse;
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
         exte = EV.idx_end(), inse = IV->idx_end();
         exti != exte && insi != inse;
         ++exti, ++insi) {
      if (*insi != *exti)
        // The insert and extract both reference distinctly different elements.
        // This means the extract is not influenced by the insert, and we can
        // replace the aggregate operand of the extract with the aggregate
        // operand of the insert. i.e., replace
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
        // %E = extractvalue { i32, { i32 } } %I, 0
        // with
        // %E = extractvalue { i32, { i32 } } %A, 0
        return ExtractValueInst::Create(IV->getAggregateOperand(),
                                        EV.getIndices());
    }
    if (exti == exte && insi == inse)
      // Both iterators are at the end: Index lists are identical. Replace
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
      // with "i32 42"
      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
    if (exti == exte) {
      // The extract list is a prefix of the insert list. i.e. replace
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %E = extractvalue { i32, { i32 } } %I, 1
      // with
      // %X = extractvalue { i32, { i32 } } %A, 1
      // %E = insertvalue { i32 } %X, i32 42, 0
      // by switching the order of the insert and extract (though the
      // insertvalue should be left in, since it may have other uses).
      Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
                                                EV.getIndices());
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
                                     makeArrayRef(insi, inse));
    }
    if (insi == inse)
      // The insert list is a prefix of the extract list
      // We can simply remove the common indices from the extract and make it
      // operate on the inserted value instead of the insertvalue result.
      // i.e., replace
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
      // with
      // %E extractvalue { i32 } { i32 42 }, 0
      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
                                      makeArrayRef(exti, exte));
  }
  if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
    // We're extracting from an overflow intrinsic, see if we're the only user,
    // which allows us to simplify multiple result intrinsics to simpler
    // things that just get one value.
    if (WO->hasOneUse()) {
      // Check if we're grabbing only the result of a 'with overflow' intrinsic
      // and replace it with a traditional binary instruction.
      if (*EV.idx_begin() == 0) {
        Instruction::BinaryOps BinOp = WO->getBinaryOp();
        Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
        replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
        eraseInstFromFunction(*WO);
        return BinaryOperator::Create(BinOp, LHS, RHS);
      }

      // If the normal result of the add is dead, and the RHS is a constant,
      // we can transform this into a range comparison.
      // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
      if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
        if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
          return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
                              ConstantExpr::getNot(CI));
    }
  }
  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
    // If the (non-volatile) load only has one use, we can rewrite this to a
    // load from a GEP. This reduces the size of the load. If a load is used
    // only by extractvalue instructions then this either must have been
    // optimized before, or it is a struct with padding, in which case we
    // don't want to do the transformation as it loses padding knowledge.
    if (L->isSimple() && L->hasOneUse()) {
      // extractvalue has integer indices, getelementptr has Value*s. Convert.
      SmallVector<Value*, 4> Indices;
      // Prefix an i32 0 since we need the first element.
      Indices.push_back(Builder.getInt32(0));
      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
            I != E; ++I)
        Indices.push_back(Builder.getInt32(*I));

      // We need to insert these at the location of the old load, not at that of
      // the extractvalue.
      Builder.SetInsertPoint(L);
      Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
                                             L->getPointerOperand(), Indices);
      Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
      // Whatever aliasing information we had for the orignal load must also
      // hold for the smaller load, so propagate the annotations.
      AAMDNodes Nodes;
      L->getAAMetadata(Nodes);
      NL->setAAMetadata(Nodes);
      // Returning the load directly will cause the main loop to insert it in
      // the wrong spot, so use replaceInstUsesWith().
      return replaceInstUsesWith(EV, NL);
    }
  // We could simplify extracts from other values. Note that nested extracts may
  // already be simplified implicitly by the above: extract (extract (insert) )
  // will be translated into extract ( insert ( extract ) ) first and then just
  // the value inserted, if appropriate. Similarly for extracts from single-use
  // loads: extract (extract (load)) will be translated to extract (load (gep))
  // and if again single-use then via load (gep (gep)) to load (gep).
  // However, double extracts from e.g. function arguments or return values
  // aren't handled yet.
  return nullptr;
}

/// Return 'true' if the given typeinfo will match anything.
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
  switch (Personality) {
  case EHPersonality::GNU_C:
  case EHPersonality::GNU_C_SjLj:
  case EHPersonality::Rust:
    // The GCC C EH and Rust personality only exists to support cleanups, so
    // it's not clear what the semantics of catch clauses are.
    return false;
  case EHPersonality::Unknown:
    return false;
  case EHPersonality::GNU_Ada:
    // While __gnat_all_others_value will match any Ada exception, it doesn't
    // match foreign exceptions (or didn't, before gcc-4.7).
    return false;
  case EHPersonality::GNU_CXX:
  case EHPersonality::GNU_CXX_SjLj:
  case EHPersonality::GNU_ObjC:
  case EHPersonality::MSVC_X86SEH:
  case EHPersonality::MSVC_Win64SEH:
  case EHPersonality::MSVC_CXX:
  case EHPersonality::CoreCLR:
  case EHPersonality::Wasm_CXX:
    return TypeInfo->isNullValue();
  }
  llvm_unreachable("invalid enum");
}

static bool shorter_filter(const Value *LHS, const Value *RHS) {
  return
    cast<ArrayType>(LHS->getType())->getNumElements()
  <
    cast<ArrayType>(RHS->getType())->getNumElements();
}

Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
  // The logic here should be correct for any real-world personality function.
  // However if that turns out not to be true, the offending logic can always
  // be conditioned on the personality function, like the catch-all logic is.
  EHPersonality Personality =
      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());

  // Simplify the list of clauses, eg by removing repeated catch clauses
  // (these are often created by inlining).
  bool MakeNewInstruction = false; // If true, recreate using the following:
  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.

  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
    bool isLastClause = i + 1 == e;
    if (LI.isCatch(i)) {
      // A catch clause.
      Constant *CatchClause = LI.getClause(i);
      Constant *TypeInfo = CatchClause->stripPointerCasts();

      // If we already saw this clause, there is no point in having a second
      // copy of it.
      if (AlreadyCaught.insert(TypeInfo).second) {
        // This catch clause was not already seen.
        NewClauses.push_back(CatchClause);
      } else {
        // Repeated catch clause - drop the redundant copy.
        MakeNewInstruction = true;
      }

      // If this is a catch-all then there is no point in keeping any following
      // clauses or marking the landingpad as having a cleanup.
      if (isCatchAll(Personality, TypeInfo)) {
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }
    } else {
      // A filter clause.  If any of the filter elements were already caught
      // then they can be dropped from the filter.  It is tempting to try to
      // exploit the filter further by saying that any typeinfo that does not
      // occur in the filter can't be caught later (and thus can be dropped).
      // However this would be wrong, since typeinfos can match without being
      // equal (for example if one represents a C++ class, and the other some
      // class derived from it).
      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
      Constant *FilterClause = LI.getClause(i);
      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
      unsigned NumTypeInfos = FilterType->getNumElements();

      // An empty filter catches everything, so there is no point in keeping any
      // following clauses or marking the landingpad as having a cleanup.  By
      // dealing with this case here the following code is made a bit simpler.
      if (!NumTypeInfos) {
        NewClauses.push_back(FilterClause);
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }

      bool MakeNewFilter = false; // If true, make a new filter.
      SmallVector<Constant *, 16> NewFilterElts; // New elements.
      if (isa<ConstantAggregateZero>(FilterClause)) {
        // Not an empty filter - it contains at least one null typeinfo.
        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
        Constant *TypeInfo =
          Constant::getNullValue(FilterType->getElementType());
        // If this typeinfo is a catch-all then the filter can never match.
        if (isCatchAll(Personality, TypeInfo)) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // There is no point in having multiple copies of this typeinfo, so
        // discard all but the first copy if there is more than one.
        NewFilterElts.push_back(TypeInfo);
        if (NumTypeInfos > 1)
          MakeNewFilter = true;
      } else {
        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
        NewFilterElts.reserve(NumTypeInfos);

        // Remove any filter elements that were already caught or that already
        // occurred in the filter.  While there, see if any of the elements are
        // catch-alls.  If so, the filter can be discarded.
        bool SawCatchAll = false;
        for (unsigned j = 0; j != NumTypeInfos; ++j) {
          Constant *Elt = Filter->getOperand(j);
          Constant *TypeInfo = Elt->stripPointerCasts();
          if (isCatchAll(Personality, TypeInfo)) {
            // This element is a catch-all.  Bail out, noting this fact.
            SawCatchAll = true;
            break;
          }

          // Even if we've seen a type in a catch clause, we don't want to
          // remove it from the filter.  An unexpected type handler may be
          // set up for a call site which throws an exception of the same
          // type caught.  In order for the exception thrown by the unexpected
          // handler to propagate correctly, the filter must be correctly
          // described for the call site.
          //
          // Example:
          //
          // void unexpected() { throw 1;}
          // void foo() throw (int) {
          //   std::set_unexpected(unexpected);
          //   try {
          //     throw 2.0;
          //   } catch (int i) {}
          // }

          // There is no point in having multiple copies of the same typeinfo in
          // a filter, so only add it if we didn't already.
          if (SeenInFilter.insert(TypeInfo).second)
            NewFilterElts.push_back(cast<Constant>(Elt));
        }
        // A filter containing a catch-all cannot match anything by definition.
        if (SawCatchAll) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // If we dropped something from the filter, make a new one.
        if (NewFilterElts.size() < NumTypeInfos)
          MakeNewFilter = true;
      }
      if (MakeNewFilter) {
        FilterType = ArrayType::get(FilterType->getElementType(),
                                    NewFilterElts.size());
        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
        MakeNewInstruction = true;
      }

      NewClauses.push_back(FilterClause);

      // If the new filter is empty then it will catch everything so there is
      // no point in keeping any following clauses or marking the landingpad
      // as having a cleanup.  The case of the original filter being empty was
      // already handled above.
      if (MakeNewFilter && !NewFilterElts.size()) {
        assert(MakeNewInstruction && "New filter but not a new instruction!");
        CleanupFlag = false;
        break;
      }
    }
  }

  // If several filters occur in a row then reorder them so that the shortest
  // filters come first (those with the smallest number of elements).  This is
  // advantageous because shorter filters are more likely to match, speeding up
  // unwinding, but mostly because it increases the effectiveness of the other
  // filter optimizations below.
  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
    unsigned j;
    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
    for (j = i; j != e; ++j)
      if (!isa<ArrayType>(NewClauses[j]->getType()))
        break;

    // Check whether the filters are already sorted by length.  We need to know
    // if sorting them is actually going to do anything so that we only make a
    // new landingpad instruction if it does.
    for (unsigned k = i; k + 1 < j; ++k)
      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
        // Not sorted, so sort the filters now.  Doing an unstable sort would be
        // correct too but reordering filters pointlessly might confuse users.
        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
                         shorter_filter);
        MakeNewInstruction = true;
        break;
      }

    // Look for the next batch of filters.
    i = j + 1;
  }

  // If typeinfos matched if and only if equal, then the elements of a filter L
  // that occurs later than a filter F could be replaced by the intersection of
  // the elements of F and L.  In reality two typeinfos can match without being
  // equal (for example if one represents a C++ class, and the other some class
  // derived from it) so it would be wrong to perform this transform in general.
  // However the transform is correct and useful if F is a subset of L.  In that
  // case L can be replaced by F, and thus removed altogether since repeating a
  // filter is pointless.  So here we look at all pairs of filters F and L where
  // L follows F in the list of clauses, and remove L if every element of F is
  // an element of L.  This can occur when inlining C++ functions with exception
  // specifications.
  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
    // Examine each filter in turn.
    Value *Filter = NewClauses[i];
    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
    if (!FTy)
      // Not a filter - skip it.
      continue;
    unsigned FElts = FTy->getNumElements();
    // Examine each filter following this one.  Doing this backwards means that
    // we don't have to worry about filters disappearing under us when removed.
    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
      Value *LFilter = NewClauses[j];
      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
      if (!LTy)
        // Not a filter - skip it.
        continue;
      // If Filter is a subset of LFilter, i.e. every element of Filter is also
      // an element of LFilter, then discard LFilter.
      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
      // If Filter is empty then it is a subset of LFilter.
      if (!FElts) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
        // Move on to the next filter.
        continue;
      }
      unsigned LElts = LTy->getNumElements();
      // If Filter is longer than LFilter then it cannot be a subset of it.
      if (FElts > LElts)
        // Move on to the next filter.
        continue;
      // At this point we know that LFilter has at least one element.
      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
        // Filter is a subset of LFilter iff Filter contains only zeros (as we
        // already know that Filter is not longer than LFilter).
        if (isa<ConstantAggregateZero>(Filter)) {
          assert(FElts <= LElts && "Should have handled this case earlier!");
          // Discard LFilter.
          NewClauses.erase(J);
          MakeNewInstruction = true;
        }
        // Move on to the next filter.
        continue;
      }
      ConstantArray *LArray = cast<ConstantArray>(LFilter);
      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
        // Since Filter is non-empty and contains only zeros, it is a subset of
        // LFilter iff LFilter contains a zero.
        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
        for (unsigned l = 0; l != LElts; ++l)
          if (LArray->getOperand(l)->isNullValue()) {
            // LFilter contains a zero - discard it.
            NewClauses.erase(J);
            MakeNewInstruction = true;
            break;
          }
        // Move on to the next filter.
        continue;
      }
      // At this point we know that both filters are ConstantArrays.  Loop over
      // operands to see whether every element of Filter is also an element of
      // LFilter.  Since filters tend to be short this is probably faster than
      // using a method that scales nicely.
      ConstantArray *FArray = cast<ConstantArray>(Filter);
      bool AllFound = true;
      for (unsigned f = 0; f != FElts; ++f) {
        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
        AllFound = false;
        for (unsigned l = 0; l != LElts; ++l) {
          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
          if (LTypeInfo == FTypeInfo) {
            AllFound = true;
            break;
          }
        }
        if (!AllFound)
          break;
      }
      if (AllFound) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
      }
      // Move on to the next filter.
    }
  }

  // If we changed any of the clauses, replace the old landingpad instruction
  // with a new one.
  if (MakeNewInstruction) {
    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
                                                 NewClauses.size());
    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
      NLI->addClause(NewClauses[i]);
    // A landing pad with no clauses must have the cleanup flag set.  It is
    // theoretically possible, though highly unlikely, that we eliminated all
    // clauses.  If so, force the cleanup flag to true.
    if (NewClauses.empty())
      CleanupFlag = true;
    NLI->setCleanup(CleanupFlag);
    return NLI;
  }

  // Even if none of the clauses changed, we may nonetheless have understood
  // that the cleanup flag is pointless.  Clear it if so.
  if (LI.isCleanup() != CleanupFlag) {
    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
    LI.setCleanup(CleanupFlag);
    return &LI;
  }

  return nullptr;
}

/// Try to move the specified instruction from its current block into the
/// beginning of DestBlock, which can only happen if it's safe to move the
/// instruction past all of the instructions between it and the end of its
/// block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
  assert(I->hasOneUse() && "Invariants didn't hold!");
  BasicBlock *SrcBlock = I->getParent();

  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
      I->isTerminator())
    return false;

  // Do not sink static or dynamic alloca instructions. Static allocas must
  // remain in the entry block, and dynamic allocas must not be sunk in between
  // a stacksave / stackrestore pair, which would incorrectly shorten its
  // lifetime.
  if (isa<AllocaInst>(I))
    return false;

  // Do not sink into catchswitch blocks.
  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
    return false;

  // Do not sink convergent call instructions.
  if (auto *CI = dyn_cast<CallInst>(I)) {
    if (CI->isConvergent())
      return false;
  }
  // We can only sink load instructions if there is nothing between the load and
  // the end of block that could change the value.
  if (I->mayReadFromMemory()) {
    for (BasicBlock::iterator Scan = I->getIterator(),
                              E = I->getParent()->end();
         Scan != E; ++Scan)
      if (Scan->mayWriteToMemory())
        return false;
  }
  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
  I->moveBefore(&*InsertPos);
  ++NumSunkInst;

  // Also sink all related debug uses from the source basic block. Otherwise we
  // get debug use before the def. Attempt to salvage debug uses first, to
  // maximise the range variables have location for. If we cannot salvage, then
  // mark the location undef: we know it was supposed to receive a new location
  // here, but that computation has been sunk.
  SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
  findDbgUsers(DbgUsers, I);
  for (auto *DII : reverse(DbgUsers)) {
    if (DII->getParent() == SrcBlock) {
      if (isa<DbgDeclareInst>(DII)) {
        // A dbg.declare instruction should not be cloned, since there can only be
        // one per variable fragment. It should be left in the original place since
        // sunk instruction is not an alloca(otherwise we could not be here).
        // But we need to update arguments of dbg.declare instruction, so that it
        // would not point into sunk instruction.
        if (!isa<CastInst>(I))
          continue; // dbg.declare points at something it shouldn't

        DII->setOperand(
            0, MetadataAsValue::get(I->getContext(),
                                    ValueAsMetadata::get(I->getOperand(0))));
        continue;
      }

      // dbg.value is in the same basic block as the sunk inst, see if we can
      // salvage it. Clone a new copy of the instruction: on success we need
      // both salvaged and unsalvaged copies.
      SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
          cast<DbgVariableIntrinsic>(DII->clone())};

      if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
        // We are unable to salvage: sink the cloned dbg.value, and mark the
        // original as undef, terminating any earlier variable location.
        LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
        TmpUser[0]->insertBefore(&*InsertPos);
        Value *Undef = UndefValue::get(I->getType());
        DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
                                                ValueAsMetadata::get(Undef)));
      } else {
        // We successfully salvaged: place the salvaged dbg.value in the
        // original location, and move the unmodified dbg.value to sink with
        // the sunk inst.
        TmpUser[0]->insertBefore(DII);
        DII->moveBefore(&*InsertPos);
      }
    }
  }
  return true;
}

bool InstCombiner::run() {
  while (!Worklist.isEmpty()) {
    Instruction *I = Worklist.RemoveOne();
    if (I == nullptr) continue;  // skip null values.

    // Check to see if we can DCE the instruction.
    if (isInstructionTriviallyDead(I, &TLI)) {
      LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
      eraseInstFromFunction(*I);
      ++NumDeadInst;
      MadeIRChange = true;
      continue;
    }

    if (!DebugCounter::shouldExecute(VisitCounter))
      continue;

    // Instruction isn't dead, see if we can constant propagate it.
    if (!I->use_empty() &&
        (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
      if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
        LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
                          << '\n');

        // Add operands to the worklist.
        replaceInstUsesWith(*I, C);
        ++NumConstProp;
        if (isInstructionTriviallyDead(I, &TLI))
          eraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }
    }

    // In general, it is possible for computeKnownBits to determine all bits in
    // a value even when the operands are not all constants.
    Type *Ty = I->getType();
    if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
      KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
      if (Known.isConstant()) {
        Constant *C = ConstantInt::get(Ty, Known.getConstant());
        LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
                          << " from: " << *I << '\n');

        // Add operands to the worklist.
        replaceInstUsesWith(*I, C);
        ++NumConstProp;
        if (isInstructionTriviallyDead(I, &TLI))
          eraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }
    }

    // See if we can trivially sink this instruction to a successor basic block.
    if (EnableCodeSinking && I->hasOneUse()) {
      BasicBlock *BB = I->getParent();
      Instruction *UserInst = cast<Instruction>(*I->user_begin());
      BasicBlock *UserParent;

      // Get the block the use occurs in.
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
        UserParent = PN->getIncomingBlock(*I->use_begin());
      else
        UserParent = UserInst->getParent();

      if (UserParent != BB) {
        bool UserIsSuccessor = false;
        // See if the user is one of our successors.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          if (*SI == UserParent) {
            UserIsSuccessor = true;
            break;
          }

        // If the user is one of our immediate successors, and if that successor
        // only has us as a predecessors (we'd have to split the critical edge
        // otherwise), we can keep going.
        if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
          // Okay, the CFG is simple enough, try to sink this instruction.
          if (TryToSinkInstruction(I, UserParent)) {
            LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
            MadeIRChange = true;
            // We'll add uses of the sunk instruction below, but since sinking
            // can expose opportunities for it's *operands* add them to the
            // worklist
            for (Use &U : I->operands())
              if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
                Worklist.Add(OpI);
          }
        }
      }
    }

    // Now that we have an instruction, try combining it to simplify it.
    Builder.SetInsertPoint(I);
    Builder.SetCurrentDebugLocation(I->getDebugLoc());

#ifndef NDEBUG
    std::string OrigI;
#endif
    LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
    LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');

    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
                          << "    New = " << *Result << '\n');

        if (I->getDebugLoc())
          Result->setDebugLoc(I->getDebugLoc());
        // Everything uses the new instruction now.
        I->replaceAllUsesWith(Result);

        // Move the name to the new instruction first.
        Result->takeName(I);

        // Push the new instruction and any users onto the worklist.
        Worklist.AddUsersToWorkList(*Result);
        Worklist.Add(Result);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        BasicBlock::iterator InsertPos = I->getIterator();

        // If we replace a PHI with something that isn't a PHI, fix up the
        // insertion point.
        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
          InsertPos = InstParent->getFirstInsertionPt();

        InstParent->getInstList().insert(InsertPos, Result);

        eraseInstFromFunction(*I);
      } else {
        LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
                          << "    New = " << *I << '\n');

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (isInstructionTriviallyDead(I, &TLI)) {
          eraseInstFromFunction(*I);
        } else {
          Worklist.AddUsersToWorkList(*I);
          Worklist.Add(I);
        }
      }
      MadeIRChange = true;
    }
  }

  Worklist.Zap();
  return MadeIRChange;
}

/// Walk the function in depth-first order, adding all reachable code to the
/// worklist.
///
/// This has a couple of tricks to make the code faster and more powerful.  In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant).  Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
                                       SmallPtrSetImpl<BasicBlock *> &Visited,
                                       InstCombineWorklist &ICWorklist,
                                       const TargetLibraryInfo *TLI) {
  bool MadeIRChange = false;
  SmallVector<BasicBlock*, 256> Worklist;
  Worklist.push_back(BB);

  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
  DenseMap<Constant *, Constant *> FoldedConstants;

  do {
    BB = Worklist.pop_back_val();

    // We have now visited this block!  If we've already been here, ignore it.
    if (!Visited.insert(BB).second)
      continue;

    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
      Instruction *Inst = &*BBI++;

      // DCE instruction if trivially dead.
      if (isInstructionTriviallyDead(Inst, TLI)) {
        ++NumDeadInst;
        LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
        if (!salvageDebugInfo(*Inst))
          replaceDbgUsesWithUndef(Inst);
        Inst->eraseFromParent();
        MadeIRChange = true;
        continue;
      }

      // ConstantProp instruction if trivially constant.
      if (!Inst->use_empty() &&
          (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
          LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
                            << '\n');
          Inst->replaceAllUsesWith(C);
          ++NumConstProp;
          if (isInstructionTriviallyDead(Inst, TLI))
            Inst->eraseFromParent();
          MadeIRChange = true;
          continue;
        }

      // See if we can constant fold its operands.
      for (Use &U : Inst->operands()) {
        if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
          continue;

        auto *C = cast<Constant>(U);
        Constant *&FoldRes = FoldedConstants[C];
        if (!FoldRes)
          FoldRes = ConstantFoldConstant(C, DL, TLI);
        if (!FoldRes)
          FoldRes = C;

        if (FoldRes != C) {
          LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
                            << "\n    Old = " << *C
                            << "\n    New = " << *FoldRes << '\n');
          U = FoldRes;
          MadeIRChange = true;
        }
      }

      // Skip processing debug intrinsics in InstCombine. Processing these call instructions
      // consumes non-trivial amount of time and provides no value for the optimization.
      if (!isa<DbgInfoIntrinsic>(Inst))
        InstrsForInstCombineWorklist.push_back(Inst);
    }

    // Recursively visit successors.  If this is a branch or switch on a
    // constant, only visit the reachable successor.
    Instruction *TI = BB->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
        Worklist.push_back(ReachableBB);
        continue;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
        Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
        continue;
      }
    }

    for (BasicBlock *SuccBB : successors(TI))
      Worklist.push_back(SuccBB);
  } while (!Worklist.empty());

  // Once we've found all of the instructions to add to instcombine's worklist,
  // add them in reverse order.  This way instcombine will visit from the top
  // of the function down.  This jives well with the way that it adds all uses
  // of instructions to the worklist after doing a transformation, thus avoiding
  // some N^2 behavior in pathological cases.
  ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);

  return MadeIRChange;
}

/// Populate the IC worklist from a function, and prune any dead basic
/// blocks discovered in the process.
///
/// This also does basic constant propagation and other forward fixing to make
/// the combiner itself run much faster.
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
                                          TargetLibraryInfo *TLI,
                                          InstCombineWorklist &ICWorklist) {
  bool MadeIRChange = false;

  // Do a depth-first traversal of the function, populate the worklist with
  // the reachable instructions.  Ignore blocks that are not reachable.  Keep
  // track of which blocks we visit.
  SmallPtrSet<BasicBlock *, 32> Visited;
  MadeIRChange |=
      AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);

  // Do a quick scan over the function.  If we find any blocks that are
  // unreachable, remove any instructions inside of them.  This prevents
  // the instcombine code from having to deal with some bad special cases.
  for (BasicBlock &BB : F) {
    if (Visited.count(&BB))
      continue;

    unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
    MadeIRChange |= NumDeadInstInBB > 0;
    NumDeadInst += NumDeadInstInBB;
  }

  return MadeIRChange;
}

static bool combineInstructionsOverFunction(
    Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
    AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
    OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
    ProfileSummaryInfo *PSI, bool ExpensiveCombines = true,
    LoopInfo *LI = nullptr) {
  auto &DL = F.getParent()->getDataLayout();
  ExpensiveCombines |= EnableExpensiveCombines;

  /// Builder - This is an IRBuilder that automatically inserts new
  /// instructions into the worklist when they are created.
  IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
      F.getContext(), TargetFolder(DL),
      IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
        Worklist.Add(I);
        if (match(I, m_Intrinsic<Intrinsic::assume>()))
          AC.registerAssumption(cast<CallInst>(I));
      }));

  // Lower dbg.declare intrinsics otherwise their value may be clobbered
  // by instcombiner.
  bool MadeIRChange = false;
  if (ShouldLowerDbgDeclare)
    MadeIRChange = LowerDbgDeclare(F);

  // Iterate while there is work to do.
  int Iteration = 0;
  while (true) {
    ++Iteration;
    LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
                      << F.getName() << "\n");

    MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);

    InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
                    AC, TLI, DT, ORE, BFI, PSI, DL, LI);
    IC.MaxArraySizeForCombine = MaxArraySize;

    if (!IC.run())
      break;
  }

  return MadeIRChange || Iteration > 1;
}

PreservedAnalyses InstCombinePass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  auto *LI = AM.getCachedResult<LoopAnalysis>(F);

  auto *AA = &AM.getResult<AAManager>(F);
  const ModuleAnalysisManager &MAM =
      AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
  ProfileSummaryInfo *PSI =
      MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;

  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
                                       BFI, PSI, ExpensiveCombines, LI))
    // No changes, all analyses are preserved.
    return PreservedAnalyses::all();

  // Mark all the analyses that instcombine updates as preserved.
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<BasicAA>();
  PA.preserve<GlobalsAA>();
  return PA;
}

void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
}

bool InstructionCombiningPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  // Required analyses.
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  // Optional analyses.
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  BlockFrequencyInfo *BFI =
      (PSI && PSI->hasProfileSummary()) ?
      &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
      nullptr;

  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
                                         BFI, PSI, ExpensiveCombines, LI);
}

char InstructionCombiningPass::ID = 0;

INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
                      "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
                    "Combine redundant instructions", false, false)

// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
  initializeInstructionCombiningPassPass(Registry);
}

void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
  initializeInstructionCombiningPassPass(*unwrap(R));
}

FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
  return new InstructionCombiningPass(ExpensiveCombines);
}

void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
  unwrap(PM)->add(createInstructionCombiningPass());
}