reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
//===-------- OrcMCJITReplacement.cpp - Orc-based MCJIT replacement -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "OrcMCJITReplacement.h"
#include "llvm/ExecutionEngine/GenericValue.h"

namespace {

static struct RegisterJIT {
  RegisterJIT() { llvm::orc::OrcMCJITReplacement::Register(); }
} JITRegistrator;

}

extern "C" void LLVMLinkInOrcMCJITReplacement() {}

namespace llvm {
namespace orc {

GenericValue
OrcMCJITReplacement::runFunction(Function *F,
                                 ArrayRef<GenericValue> ArgValues) {
  assert(F && "Function *F was null at entry to run()");

  void *FPtr = getPointerToFunction(F);
  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
  FunctionType *FTy = F->getFunctionType();
  Type *RetTy = FTy->getReturnType();

  assert((FTy->getNumParams() == ArgValues.size() ||
          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
         "Wrong number of arguments passed into function!");
  assert(FTy->getNumParams() == ArgValues.size() &&
         "This doesn't support passing arguments through varargs (yet)!");

  // Handle some common cases first.  These cases correspond to common `main'
  // prototypes.
  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
    switch (ArgValues.size()) {
    case 3:
      if (FTy->getParamType(0)->isIntegerTy(32) &&
          FTy->getParamType(1)->isPointerTy() &&
          FTy->getParamType(2)->isPointerTy()) {
        int (*PF)(int, char **, const char **) =
            (int (*)(int, char **, const char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
                                 (char **)GVTOP(ArgValues[1]),
                                 (const char **)GVTOP(ArgValues[2])));
        return rv;
      }
      break;
    case 2:
      if (FTy->getParamType(0)->isIntegerTy(32) &&
          FTy->getParamType(1)->isPointerTy()) {
        int (*PF)(int, char **) = (int (*)(int, char **))(intptr_t)FPtr;

        // Call the function.
        GenericValue rv;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
                                 (char **)GVTOP(ArgValues[1])));
        return rv;
      }
      break;
    case 1:
      if (FTy->getNumParams() == 1 && FTy->getParamType(0)->isIntegerTy(32)) {
        GenericValue rv;
        int (*PF)(int) = (int (*)(int))(intptr_t)FPtr;
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
        return rv;
      }
      break;
    }
  }

  // Handle cases where no arguments are passed first.
  if (ArgValues.empty()) {
    GenericValue rv;
    switch (RetTy->getTypeID()) {
    default:
      llvm_unreachable("Unknown return type for function call!");
    case Type::IntegerTyID: {
      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
      if (BitWidth == 1)
        rv.IntVal = APInt(BitWidth, ((bool (*)())(intptr_t)FPtr)());
      else if (BitWidth <= 8)
        rv.IntVal = APInt(BitWidth, ((char (*)())(intptr_t)FPtr)());
      else if (BitWidth <= 16)
        rv.IntVal = APInt(BitWidth, ((short (*)())(intptr_t)FPtr)());
      else if (BitWidth <= 32)
        rv.IntVal = APInt(BitWidth, ((int (*)())(intptr_t)FPtr)());
      else if (BitWidth <= 64)
        rv.IntVal = APInt(BitWidth, ((int64_t (*)())(intptr_t)FPtr)());
      else
        llvm_unreachable("Integer types > 64 bits not supported");
      return rv;
    }
    case Type::VoidTyID:
      rv.IntVal = APInt(32, ((int (*)())(intptr_t)FPtr)());
      return rv;
    case Type::FloatTyID:
      rv.FloatVal = ((float (*)())(intptr_t)FPtr)();
      return rv;
    case Type::DoubleTyID:
      rv.DoubleVal = ((double (*)())(intptr_t)FPtr)();
      return rv;
    case Type::X86_FP80TyID:
    case Type::FP128TyID:
    case Type::PPC_FP128TyID:
      llvm_unreachable("long double not supported yet");
    case Type::PointerTyID:
      return PTOGV(((void *(*)())(intptr_t)FPtr)());
    }
  }

  llvm_unreachable("Full-featured argument passing not supported yet!");
}

void OrcMCJITReplacement::runStaticConstructorsDestructors(bool isDtors) {
  auto &CtorDtorsMap = isDtors ? UnexecutedDestructors : UnexecutedConstructors;

  for (auto &KV : CtorDtorsMap)
    cantFail(LegacyCtorDtorRunner<LazyEmitLayerT>(
                 AcknowledgeORCv1Deprecation, std::move(KV.second), KV.first)
                 .runViaLayer(LazyEmitLayer));

  CtorDtorsMap.clear();
}

} // End namespace orc.
} // End namespace llvm.