reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
//===- OrcMCJITReplacement.h - Orc based MCJIT replacement ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Orc based MCJIT replacement.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
#define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

namespace llvm {

class ObjectCache;

namespace orc {

class OrcMCJITReplacement : public ExecutionEngine {

  // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
  // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
  // expecting - see finalizeMemory.
  class MCJITReplacementMemMgr : public MCJITMemoryManager {
  public:
    MCJITReplacementMemMgr(OrcMCJITReplacement &M,
                           std::shared_ptr<MCJITMemoryManager> ClientMM)
      : M(M), ClientMM(std::move(ClientMM)) {}

    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
                                 unsigned SectionID,
                                 StringRef SectionName) override {
      uint8_t *Addr =
          ClientMM->allocateCodeSection(Size, Alignment, SectionID,
                                        SectionName);
      M.SectionsAllocatedSinceLastLoad.insert(Addr);
      return Addr;
    }

    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
                                 unsigned SectionID, StringRef SectionName,
                                 bool IsReadOnly) override {
      uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
                                                    SectionName, IsReadOnly);
      M.SectionsAllocatedSinceLastLoad.insert(Addr);
      return Addr;
    }

    void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
                                uintptr_t RODataSize, uint32_t RODataAlign,
                                uintptr_t RWDataSize,
                                uint32_t RWDataAlign) override {
      return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign,
                                              RODataSize, RODataAlign,
                                              RWDataSize, RWDataAlign);
    }

    bool needsToReserveAllocationSpace() override {
      return ClientMM->needsToReserveAllocationSpace();
    }

    void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
                          size_t Size) override {
      return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
    }

    void deregisterEHFrames() override {
      return ClientMM->deregisterEHFrames();
    }

    void notifyObjectLoaded(RuntimeDyld &RTDyld,
                            const object::ObjectFile &O) override {
      return ClientMM->notifyObjectLoaded(RTDyld, O);
    }

    void notifyObjectLoaded(ExecutionEngine *EE,
                            const object::ObjectFile &O) override {
      return ClientMM->notifyObjectLoaded(EE, O);
    }

    bool finalizeMemory(std::string *ErrMsg = nullptr) override {
      // Each set of objects loaded will be finalized exactly once, but since
      // symbol lookup during relocation may recursively trigger the
      // loading/relocation of other modules, and since we're forwarding all
      // finalizeMemory calls to a single underlying memory manager, we need to
      // defer forwarding the call on until all necessary objects have been
      // loaded. Otherwise, during the relocation of a leaf object, we will end
      // up finalizing memory, causing a crash further up the stack when we
      // attempt to apply relocations to finalized memory.
      // To avoid finalizing too early, look at how many objects have been
      // loaded but not yet finalized. This is a bit of a hack that relies on
      // the fact that we're lazily emitting object files: The only way you can
      // get more than one set of objects loaded but not yet finalized is if
      // they were loaded during relocation of another set.
      if (M.UnfinalizedSections.size() == 1)
        return ClientMM->finalizeMemory(ErrMsg);
      return false;
    }

  private:
    OrcMCJITReplacement &M;
    std::shared_ptr<MCJITMemoryManager> ClientMM;
  };

  class LinkingORCResolver : public orc::SymbolResolver {
  public:
    LinkingORCResolver(OrcMCJITReplacement &M) : M(M) {}

    SymbolNameSet getResponsibilitySet(const SymbolNameSet &Symbols) override {
      SymbolNameSet Result;

      for (auto &S : Symbols) {
        if (auto Sym = M.findMangledSymbol(*S)) {
          if (!Sym.getFlags().isStrong())
            Result.insert(S);
        } else if (auto Err = Sym.takeError()) {
          M.reportError(std::move(Err));
          return SymbolNameSet();
        } else {
          if (auto Sym2 = M.ClientResolver->findSymbolInLogicalDylib(*S)) {
            if (!Sym2.getFlags().isStrong())
              Result.insert(S);
          } else if (auto Err = Sym2.takeError()) {
            M.reportError(std::move(Err));
            return SymbolNameSet();
          } else
            Result.insert(S);
        }
      }

      return Result;
    }

    SymbolNameSet lookup(std::shared_ptr<AsynchronousSymbolQuery> Query,
                         SymbolNameSet Symbols) override {
      SymbolNameSet UnresolvedSymbols;
      bool NewSymbolsResolved = false;

      for (auto &S : Symbols) {
        if (auto Sym = M.findMangledSymbol(*S)) {
          if (auto Addr = Sym.getAddress()) {
            Query->notifySymbolMetRequiredState(
                S, JITEvaluatedSymbol(*Addr, Sym.getFlags()));
            NewSymbolsResolved = true;
          } else {
            M.ES.legacyFailQuery(*Query, Addr.takeError());
            return SymbolNameSet();
          }
        } else if (auto Err = Sym.takeError()) {
          M.ES.legacyFailQuery(*Query, std::move(Err));
          return SymbolNameSet();
        } else {
          if (auto Sym2 = M.ClientResolver->findSymbol(*S)) {
            if (auto Addr = Sym2.getAddress()) {
              Query->notifySymbolMetRequiredState(
                  S, JITEvaluatedSymbol(*Addr, Sym2.getFlags()));
              NewSymbolsResolved = true;
            } else {
              M.ES.legacyFailQuery(*Query, Addr.takeError());
              return SymbolNameSet();
            }
          } else if (auto Err = Sym2.takeError()) {
            M.ES.legacyFailQuery(*Query, std::move(Err));
            return SymbolNameSet();
          } else
            UnresolvedSymbols.insert(S);
        }
      }

      if (NewSymbolsResolved && Query->isComplete())
        Query->handleComplete();

      return UnresolvedSymbols;
    }

  private:
    OrcMCJITReplacement &M;
  };

private:
  static ExecutionEngine *
  createOrcMCJITReplacement(std::string *ErrorMsg,
                            std::shared_ptr<MCJITMemoryManager> MemMgr,
                            std::shared_ptr<LegacyJITSymbolResolver> Resolver,
                            std::unique_ptr<TargetMachine> TM) {
    return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
                                   std::move(TM));
  }

  void reportError(Error Err) {
    logAllUnhandledErrors(std::move(Err), errs(), "MCJIT error: ");
  }

public:
  OrcMCJITReplacement(std::shared_ptr<MCJITMemoryManager> MemMgr,
                      std::shared_ptr<LegacyJITSymbolResolver> ClientResolver,
                      std::unique_ptr<TargetMachine> TM)
      : ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)),
        MemMgr(
            std::make_shared<MCJITReplacementMemMgr>(*this, std::move(MemMgr))),
        Resolver(std::make_shared<LinkingORCResolver>(*this)),
        ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
        NotifyFinalized(*this),
        ObjectLayer(
            AcknowledgeORCv1Deprecation, ES,
            [this](VModuleKey K) {
              return ObjectLayerT::Resources{this->MemMgr, this->Resolver};
            },
            NotifyObjectLoaded, NotifyFinalized),
        CompileLayer(AcknowledgeORCv1Deprecation, ObjectLayer,
                     SimpleCompiler(*this->TM),
                     [this](VModuleKey K, std::unique_ptr<Module> M) {
                       Modules.push_back(std::move(M));
                     }),
        LazyEmitLayer(AcknowledgeORCv1Deprecation, CompileLayer) {}

  static void Register() {
    OrcMCJITReplacementCtor = createOrcMCJITReplacement;
  }

  void addModule(std::unique_ptr<Module> M) override {
    // If this module doesn't have a DataLayout attached then attach the
    // default.
    if (M->getDataLayout().isDefault()) {
      M->setDataLayout(getDataLayout());
    } else {
      assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
    }

    // Rename, bump linkage and record static constructors and destructors.
    // We have to do this before we hand over ownership of the module to the
    // JIT.
    std::vector<std::string> CtorNames, DtorNames;
    {
      unsigned CtorId = 0, DtorId = 0;
      for (auto Ctor : orc::getConstructors(*M)) {
        std::string NewCtorName = ("__ORCstatic_ctor." + Twine(CtorId++)).str();
        Ctor.Func->setName(NewCtorName);
        Ctor.Func->setLinkage(GlobalValue::ExternalLinkage);
        Ctor.Func->setVisibility(GlobalValue::HiddenVisibility);
        CtorNames.push_back(mangle(NewCtorName));
      }
      for (auto Dtor : orc::getDestructors(*M)) {
        std::string NewDtorName = ("__ORCstatic_dtor." + Twine(DtorId++)).str();
        dbgs() << "Found dtor: " << NewDtorName << "\n";
        Dtor.Func->setName(NewDtorName);
        Dtor.Func->setLinkage(GlobalValue::ExternalLinkage);
        Dtor.Func->setVisibility(GlobalValue::HiddenVisibility);
        DtorNames.push_back(mangle(NewDtorName));
      }
    }

    auto K = ES.allocateVModule();

    UnexecutedConstructors[K] = std::move(CtorNames);
    UnexecutedDestructors[K] = std::move(DtorNames);

    cantFail(LazyEmitLayer.addModule(K, std::move(M)));
  }

  void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
    cantFail(ObjectLayer.addObject(
        ES.allocateVModule(), MemoryBuffer::getMemBufferCopy(O->getData())));
  }

  void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
    std::unique_ptr<object::ObjectFile> Obj;
    std::unique_ptr<MemoryBuffer> ObjBuffer;
    std::tie(Obj, ObjBuffer) = O.takeBinary();
    cantFail(ObjectLayer.addObject(ES.allocateVModule(), std::move(ObjBuffer)));
  }

  void addArchive(object::OwningBinary<object::Archive> A) override {
    Archives.push_back(std::move(A));
  }

  bool removeModule(Module *M) override {
    auto I = Modules.begin();
    for (auto E = Modules.end(); I != E; ++I)
      if (I->get() == M)
        break;
    if (I == Modules.end())
      return false;
    Modules.erase(I);
    return true;
  }

  uint64_t getSymbolAddress(StringRef Name) {
    return cantFail(findSymbol(Name).getAddress());
  }

  JITSymbol findSymbol(StringRef Name) {
    return findMangledSymbol(mangle(Name));
  }

  void finalizeObject() override {
    // This is deprecated - Aim to remove in ExecutionEngine.
    // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
  }

  void mapSectionAddress(const void *LocalAddress,
                         uint64_t TargetAddress) override {
    for (auto &P : UnfinalizedSections)
      if (P.second.count(LocalAddress))
        ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
  }

  uint64_t getGlobalValueAddress(const std::string &Name) override {
    return getSymbolAddress(Name);
  }

  uint64_t getFunctionAddress(const std::string &Name) override {
    return getSymbolAddress(Name);
  }

  void *getPointerToFunction(Function *F) override {
    uint64_t FAddr = getSymbolAddress(F->getName());
    return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
  }

  void *getPointerToNamedFunction(StringRef Name,
                                  bool AbortOnFailure = true) override {
    uint64_t Addr = getSymbolAddress(Name);
    if (!Addr && AbortOnFailure)
      llvm_unreachable("Missing symbol!");
    return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
  }

  GenericValue runFunction(Function *F,
                           ArrayRef<GenericValue> ArgValues) override;

  void setObjectCache(ObjectCache *NewCache) override {
    CompileLayer.getCompiler().setObjectCache(NewCache);
  }

  void setProcessAllSections(bool ProcessAllSections) override {
    ObjectLayer.setProcessAllSections(ProcessAllSections);
  }

  void runStaticConstructorsDestructors(bool isDtors) override;

private:
  JITSymbol findMangledSymbol(StringRef Name) {
    if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
      return Sym;
    if (auto Sym = ClientResolver->findSymbol(Name))
      return Sym;
    if (auto Sym = scanArchives(Name))
      return Sym;

    return nullptr;
  }

  JITSymbol scanArchives(StringRef Name) {
    for (object::OwningBinary<object::Archive> &OB : Archives) {
      object::Archive *A = OB.getBinary();
      // Look for our symbols in each Archive
      auto OptionalChildOrErr = A->findSym(Name);
      if (!OptionalChildOrErr)
        report_fatal_error(OptionalChildOrErr.takeError());
      auto &OptionalChild = *OptionalChildOrErr;
      if (OptionalChild) {
        // FIXME: Support nested archives?
        Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
            OptionalChild->getAsBinary();
        if (!ChildBinOrErr) {
          // TODO: Actually report errors helpfully.
          consumeError(ChildBinOrErr.takeError());
          continue;
        }
        std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
        if (ChildBin->isObject()) {
          cantFail(ObjectLayer.addObject(
              ES.allocateVModule(),
              MemoryBuffer::getMemBufferCopy(ChildBin->getData())));
          if (auto Sym = ObjectLayer.findSymbol(Name, true))
            return Sym;
        }
      }
    }
    return nullptr;
  }

  class NotifyObjectLoadedT {
  public:
    using LoadedObjInfoListT =
        std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>;

    NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}

    void operator()(VModuleKey K, const object::ObjectFile &Obj,
                    const RuntimeDyld::LoadedObjectInfo &Info) const {
      M.UnfinalizedSections[K] = std::move(M.SectionsAllocatedSinceLastLoad);
      M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
      M.MemMgr->notifyObjectLoaded(&M, Obj);
    }
  private:
    OrcMCJITReplacement &M;
  };

  class NotifyFinalizedT {
  public:
    NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}

    void operator()(VModuleKey K, const object::ObjectFile &Obj,
                    const RuntimeDyld::LoadedObjectInfo &Info) {
      M.UnfinalizedSections.erase(K);
    }

  private:
    OrcMCJITReplacement &M;
  };

  std::string mangle(StringRef Name) {
    std::string MangledName;
    {
      raw_string_ostream MangledNameStream(MangledName);
      Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
    }
    return MangledName;
  }

  using ObjectLayerT = LegacyRTDyldObjectLinkingLayer;
  using CompileLayerT = LegacyIRCompileLayer<ObjectLayerT, orc::SimpleCompiler>;
  using LazyEmitLayerT = LazyEmittingLayer<CompileLayerT>;

  ExecutionSession ES;

  std::unique_ptr<TargetMachine> TM;
  std::shared_ptr<MCJITReplacementMemMgr> MemMgr;
  std::shared_ptr<LinkingORCResolver> Resolver;
  std::shared_ptr<LegacyJITSymbolResolver> ClientResolver;
  Mangler Mang;

  // IMPORTANT: ShouldDelete *must* come before LocalModules: The shared_ptr
  // delete blocks in LocalModules refer to the ShouldDelete map, so
  // LocalModules needs to be destructed before ShouldDelete.
  std::map<Module*, bool> ShouldDelete;

  NotifyObjectLoadedT NotifyObjectLoaded;
  NotifyFinalizedT NotifyFinalized;

  ObjectLayerT ObjectLayer;
  CompileLayerT CompileLayer;
  LazyEmitLayerT LazyEmitLayer;

  std::map<VModuleKey, std::vector<std::string>> UnexecutedConstructors;
  std::map<VModuleKey, std::vector<std::string>> UnexecutedDestructors;

  // We need to store ObjLayerT::ObjSetHandles for each of the object sets
  // that have been emitted but not yet finalized so that we can forward the
  // mapSectionAddress calls appropriately.
  using SectionAddrSet = std::set<const void *>;
  SectionAddrSet SectionsAllocatedSinceLastLoad;
  std::map<VModuleKey, SectionAddrSet> UnfinalizedSections;

  std::vector<object::OwningBinary<object::Archive>> Archives;
};

} // end namespace orc

} // end namespace llvm

#endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H