reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
//===-- HardwareLoops.cpp - Target Independent Hardware Loops --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Insert hardware loop intrinsics into loops which are deemed profitable by
/// the target, by querying TargetTransformInfo. A hardware loop comprises of
/// two intrinsics: one, outside the loop, to set the loop iteration count and
/// another, in the exit block, to decrement the counter. The decremented value
/// can either be carried through the loop via a phi or handled in some opaque
/// way by the target.
///
//===----------------------------------------------------------------------===//

#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

#define DEBUG_TYPE "hardware-loops"

#define HW_LOOPS_NAME "Hardware Loop Insertion"

using namespace llvm;

static cl::opt<bool>
ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false),
                   cl::desc("Force hardware loops intrinsics to be inserted"));

static cl::opt<bool>
ForceHardwareLoopPHI(
  "force-hardware-loop-phi", cl::Hidden, cl::init(false),
  cl::desc("Force hardware loop counter to be updated through a phi"));

static cl::opt<bool>
ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false),
                cl::desc("Force allowance of nested hardware loops"));

static cl::opt<unsigned>
LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1),
            cl::desc("Set the loop decrement value"));

static cl::opt<unsigned>
CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32),
                cl::desc("Set the loop counter bitwidth"));

static cl::opt<bool>
ForceGuardLoopEntry(
  "force-hardware-loop-guard", cl::Hidden, cl::init(false),
  cl::desc("Force generation of loop guard intrinsic"));

STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");

namespace {

  using TTI = TargetTransformInfo;

  class HardwareLoops : public FunctionPass {
  public:
    static char ID;

    HardwareLoops() : FunctionPass(ID) {
      initializeHardwareLoopsPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LoopInfoWrapperPass>();
      AU.addPreserved<LoopInfoWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addRequired<ScalarEvolutionWrapperPass>();
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
    }

    // Try to convert the given Loop into a hardware loop.
    bool TryConvertLoop(Loop *L);

    // Given that the target believes the loop to be profitable, try to
    // convert it.
    bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo);

  private:
    ScalarEvolution *SE = nullptr;
    LoopInfo *LI = nullptr;
    const DataLayout *DL = nullptr;
    const TargetTransformInfo *TTI = nullptr;
    DominatorTree *DT = nullptr;
    bool PreserveLCSSA = false;
    AssumptionCache *AC = nullptr;
    TargetLibraryInfo *LibInfo = nullptr;
    Module *M = nullptr;
    bool MadeChange = false;
  };

  class HardwareLoop {
    // Expand the trip count scev into a value that we can use.
    Value *InitLoopCount();

    // Insert the set_loop_iteration intrinsic.
    void InsertIterationSetup(Value *LoopCountInit);

    // Insert the loop_decrement intrinsic.
    void InsertLoopDec();

    // Insert the loop_decrement_reg intrinsic.
    Instruction *InsertLoopRegDec(Value *EltsRem);

    // If the target requires the counter value to be updated in the loop,
    // insert a phi to hold the value. The intended purpose is for use by
    // loop_decrement_reg.
    PHINode *InsertPHICounter(Value *NumElts, Value *EltsRem);

    // Create a new cmp, that checks the returned value of loop_decrement*,
    // and update the exit branch to use it.
    void UpdateBranch(Value *EltsRem);

  public:
    HardwareLoop(HardwareLoopInfo &Info, ScalarEvolution &SE,
                 const DataLayout &DL) :
      SE(SE), DL(DL), L(Info.L), M(L->getHeader()->getModule()),
      ExitCount(Info.ExitCount),
      CountType(Info.CountType),
      ExitBranch(Info.ExitBranch),
      LoopDecrement(Info.LoopDecrement),
      UsePHICounter(Info.CounterInReg),
      UseLoopGuard(Info.PerformEntryTest) { }

    void Create();

  private:
    ScalarEvolution &SE;
    const DataLayout &DL;
    Loop *L                 = nullptr;
    Module *M               = nullptr;
    const SCEV *ExitCount   = nullptr;
    Type *CountType         = nullptr;
    BranchInst *ExitBranch  = nullptr;
    Value *LoopDecrement    = nullptr;
    bool UsePHICounter      = false;
    bool UseLoopGuard       = false;
    BasicBlock *BeginBB     = nullptr;
  };
}

char HardwareLoops::ID = 0;

bool HardwareLoops::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  LLVM_DEBUG(dbgs() << "HWLoops: Running on " << F.getName() << "\n");

  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  DL = &F.getParent()->getDataLayout();
  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
  LibInfo = TLIP ? &TLIP->getTLI(F) : nullptr;
  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  M = F.getParent();

  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
    Loop *L = *I;
    if (!L->getParentLoop())
      TryConvertLoop(L);
  }

  return MadeChange;
}

// Return true if the search should stop, which will be when an inner loop is
// converted and the parent loop doesn't support containing a hardware loop.
bool HardwareLoops::TryConvertLoop(Loop *L) {
  // Process nested loops first.
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    if (TryConvertLoop(*I))
      return true; // Stop search.

  HardwareLoopInfo HWLoopInfo(L);
  if (!HWLoopInfo.canAnalyze(*LI))
    return false;

  if (TTI->isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo) ||
      ForceHardwareLoops) {

    // Allow overriding of the counter width and loop decrement value.
    if (CounterBitWidth.getNumOccurrences())
      HWLoopInfo.CountType =
        IntegerType::get(M->getContext(), CounterBitWidth);

    if (LoopDecrement.getNumOccurrences())
      HWLoopInfo.LoopDecrement =
        ConstantInt::get(HWLoopInfo.CountType, LoopDecrement);

    MadeChange |= TryConvertLoop(HWLoopInfo);
    return MadeChange && (!HWLoopInfo.IsNestingLegal && !ForceNestedLoop);
  }

  return false;
}

bool HardwareLoops::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) {

  Loop *L = HWLoopInfo.L;
  LLVM_DEBUG(dbgs() << "HWLoops: Try to convert profitable loop: " << *L);

  if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT, ForceNestedLoop,
                                          ForceHardwareLoopPHI))
    return false;

  assert(
      (HWLoopInfo.ExitBlock && HWLoopInfo.ExitBranch && HWLoopInfo.ExitCount) &&
      "Hardware Loop must have set exit info.");

  BasicBlock *Preheader = L->getLoopPreheader();

  // If we don't have a preheader, then insert one.
  if (!Preheader)
    Preheader = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
  if (!Preheader)
    return false;

  HardwareLoop HWLoop(HWLoopInfo, *SE, *DL);
  HWLoop.Create();
  ++NumHWLoops;
  return true;
}

void HardwareLoop::Create() {
  LLVM_DEBUG(dbgs() << "HWLoops: Converting loop..\n");
 
  Value *LoopCountInit = InitLoopCount();
  if (!LoopCountInit)
    return;

  InsertIterationSetup(LoopCountInit);

  if (UsePHICounter || ForceHardwareLoopPHI) {
    Instruction *LoopDec = InsertLoopRegDec(LoopCountInit);
    Value *EltsRem = InsertPHICounter(LoopCountInit, LoopDec);
    LoopDec->setOperand(0, EltsRem);
    UpdateBranch(LoopDec);
  } else
    InsertLoopDec();

  // Run through the basic blocks of the loop and see if any of them have dead
  // PHIs that can be removed.
  for (auto I : L->blocks())
    DeleteDeadPHIs(I);
}

static bool CanGenerateTest(Loop *L, Value *Count) {
  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader->getSinglePredecessor())
    return false;

  BasicBlock *Pred = Preheader->getSinglePredecessor();
  if (!isa<BranchInst>(Pred->getTerminator()))
    return false;

  auto *BI = cast<BranchInst>(Pred->getTerminator());
  if (BI->isUnconditional() || !isa<ICmpInst>(BI->getCondition()))
    return false;

  // Check that the icmp is checking for equality of Count and zero and that
  // a non-zero value results in entering the loop.
  auto ICmp = cast<ICmpInst>(BI->getCondition());
  LLVM_DEBUG(dbgs() << " - Found condition: " << *ICmp << "\n");
  if (!ICmp->isEquality())
    return false;

  auto IsCompareZero = [](ICmpInst *ICmp, Value *Count, unsigned OpIdx) {
    if (auto *Const = dyn_cast<ConstantInt>(ICmp->getOperand(OpIdx)))
      return Const->isZero() && ICmp->getOperand(OpIdx ^ 1) == Count;
    return false;
  };

  if (!IsCompareZero(ICmp, Count, 0) && !IsCompareZero(ICmp, Count, 1))
    return false;

  unsigned SuccIdx = ICmp->getPredicate() == ICmpInst::ICMP_NE ? 0 : 1;
  if (BI->getSuccessor(SuccIdx) != Preheader)
    return false;

  return true;
}

Value *HardwareLoop::InitLoopCount() {
  LLVM_DEBUG(dbgs() << "HWLoops: Initialising loop counter value:\n");
  // Can we replace a conditional branch with an intrinsic that sets the
  // loop counter and tests that is not zero?

  SCEVExpander SCEVE(SE, DL, "loopcnt");
  if (!ExitCount->getType()->isPointerTy() &&
      ExitCount->getType() != CountType)
    ExitCount = SE.getZeroExtendExpr(ExitCount, CountType);

  ExitCount = SE.getAddExpr(ExitCount, SE.getOne(CountType));

  // If we're trying to use the 'test and set' form of the intrinsic, we need
  // to replace a conditional branch that is controlling entry to the loop. It
  // is likely (guaranteed?) that the preheader has an unconditional branch to
  // the loop header, so also check if it has a single predecessor.
  if (SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
                                  SE.getZero(ExitCount->getType()))) {
    LLVM_DEBUG(dbgs() << " - Attempting to use test.set counter.\n");
    UseLoopGuard |= ForceGuardLoopEntry;
  } else
    UseLoopGuard = false;

  BasicBlock *BB = L->getLoopPreheader();
  if (UseLoopGuard && BB->getSinglePredecessor() &&
      cast<BranchInst>(BB->getTerminator())->isUnconditional())
    BB = BB->getSinglePredecessor();

  if (!isSafeToExpandAt(ExitCount, BB->getTerminator(), SE)) {
    LLVM_DEBUG(dbgs() << "- Bailing, unsafe to expand ExitCount "
               << *ExitCount << "\n");
    return nullptr;
  }

  Value *Count = SCEVE.expandCodeFor(ExitCount, CountType,
                                     BB->getTerminator());

  // FIXME: We've expanded Count where we hope to insert the counter setting
  // intrinsic. But, in the case of the 'test and set' form, we may fallback to
  // the just 'set' form and in which case the insertion block is most likely
  // different. It means there will be instruction(s) in a block that possibly
  // aren't needed. The isLoopEntryGuardedByCond is trying to avoid this issue,
  // but it's doesn't appear to work in all cases.

  UseLoopGuard = UseLoopGuard && CanGenerateTest(L, Count);
  BeginBB = UseLoopGuard ? BB : L->getLoopPreheader();
  LLVM_DEBUG(dbgs() << " - Loop Count: " << *Count << "\n"
             << " - Expanded Count in " << BB->getName() << "\n"
             << " - Will insert set counter intrinsic into: "
             << BeginBB->getName() << "\n");
  return Count;
}

void HardwareLoop::InsertIterationSetup(Value *LoopCountInit) {
  IRBuilder<> Builder(BeginBB->getTerminator());
  Type *Ty = LoopCountInit->getType();
  Intrinsic::ID ID = UseLoopGuard ?
    Intrinsic::test_set_loop_iterations : Intrinsic::set_loop_iterations;
  Function *LoopIter = Intrinsic::getDeclaration(M, ID, Ty);
  Value *SetCount = Builder.CreateCall(LoopIter, LoopCountInit);

  // Use the return value of the intrinsic to control the entry of the loop.
  if (UseLoopGuard) {
    assert((isa<BranchInst>(BeginBB->getTerminator()) &&
            cast<BranchInst>(BeginBB->getTerminator())->isConditional()) &&
           "Expected conditional branch");
    auto *LoopGuard = cast<BranchInst>(BeginBB->getTerminator());
    LoopGuard->setCondition(SetCount);
    if (LoopGuard->getSuccessor(0) != L->getLoopPreheader())
      LoopGuard->swapSuccessors();
  }
  LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop counter: "
             << *SetCount << "\n");
}

void HardwareLoop::InsertLoopDec() {
  IRBuilder<> CondBuilder(ExitBranch);

  Function *DecFunc =
    Intrinsic::getDeclaration(M, Intrinsic::loop_decrement,
                              LoopDecrement->getType());
  Value *Ops[] = { LoopDecrement };
  Value *NewCond = CondBuilder.CreateCall(DecFunc, Ops);
  Value *OldCond = ExitBranch->getCondition();
  ExitBranch->setCondition(NewCond);

  // The false branch must exit the loop.
  if (!L->contains(ExitBranch->getSuccessor(0)))
    ExitBranch->swapSuccessors();

  // The old condition may be dead now, and may have even created a dead PHI
  // (the original induction variable).
  RecursivelyDeleteTriviallyDeadInstructions(OldCond);

  LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *NewCond << "\n");
}

Instruction* HardwareLoop::InsertLoopRegDec(Value *EltsRem) {
  IRBuilder<> CondBuilder(ExitBranch);

  Function *DecFunc =
      Intrinsic::getDeclaration(M, Intrinsic::loop_decrement_reg,
                                { EltsRem->getType(), EltsRem->getType(),
                                  LoopDecrement->getType()
                                });
  Value *Ops[] = { EltsRem, LoopDecrement };
  Value *Call = CondBuilder.CreateCall(DecFunc, Ops);

  LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *Call << "\n");
  return cast<Instruction>(Call);
}

PHINode* HardwareLoop::InsertPHICounter(Value *NumElts, Value *EltsRem) {
  BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = ExitBranch->getParent();
  IRBuilder<> Builder(Header->getFirstNonPHI());
  PHINode *Index = Builder.CreatePHI(NumElts->getType(), 2);
  Index->addIncoming(NumElts, Preheader);
  Index->addIncoming(EltsRem, Latch);
  LLVM_DEBUG(dbgs() << "HWLoops: PHI Counter: " << *Index << "\n");
  return Index;
}

void HardwareLoop::UpdateBranch(Value *EltsRem) {
  IRBuilder<> CondBuilder(ExitBranch);
  Value *NewCond =
    CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->getType(), 0));
  Value *OldCond = ExitBranch->getCondition();
  ExitBranch->setCondition(NewCond);

  // The false branch must exit the loop.
  if (!L->contains(ExitBranch->getSuccessor(0)))
    ExitBranch->swapSuccessors();

  // The old condition may be dead now, and may have even created a dead PHI
  // (the original induction variable).
  RecursivelyDeleteTriviallyDeadInstructions(OldCond);
}

INITIALIZE_PASS_BEGIN(HardwareLoops, DEBUG_TYPE, HW_LOOPS_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(HardwareLoops, DEBUG_TYPE, HW_LOOPS_NAME, false, false)

FunctionPass *llvm::createHardwareLoopsPass() { return new HardwareLoops(); }