reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H

#include "CodeGenHwModes.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SDNodeProperties.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <functional>
#include <map>
#include <numeric>
#include <set>
#include <vector>

namespace llvm {

class Record;
class Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class CodeGenDAGPatterns;
class ComplexPattern;

/// Shared pointer for TreePatternNode.
using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;

/// This represents a set of MVTs. Since the underlying type for the MVT
/// is uint8_t, there are at most 256 values. To reduce the number of memory
/// allocations and deallocations, represent the set as a sequence of bits.
/// To reduce the allocations even further, make MachineValueTypeSet own
/// the storage and use std::array as the bit container.
struct MachineValueTypeSet {
  static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
                             uint8_t>::value,
                "Change uint8_t here to the SimpleValueType's type");
  static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
  using WordType = uint64_t;
  static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
  static unsigned constexpr NumWords = Capacity/WordWidth;
  static_assert(NumWords*WordWidth == Capacity,
                "Capacity should be a multiple of WordWidth");

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  MachineValueTypeSet() {
    clear();
  }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  unsigned size() const {
    unsigned Count = 0;
    for (WordType W : Words)
      Count += countPopulation(W);
    return Count;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  void clear() {
    std::memset(Words.data(), 0, NumWords*sizeof(WordType));
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool empty() const {
    for (WordType W : Words)
      if (W != 0)
        return false;
    return true;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  unsigned count(MVT T) const {
    return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
  }
  std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
    bool V = count(T.SimpleTy);
    Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
    return {*this, V};
  }
  MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
    for (unsigned i = 0; i != NumWords; ++i)
      Words[i] |= S.Words[i];
    return *this;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  void erase(MVT T) {
    Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
  }

  struct const_iterator {
    // Some implementations of the C++ library require these traits to be
    // defined.
    using iterator_category = std::forward_iterator_tag;
    using value_type = MVT;
    using difference_type = ptrdiff_t;
    using pointer = const MVT*;
    using reference = const MVT&;

    LLVM_ATTRIBUTE_ALWAYS_INLINE
    MVT operator*() const {
      assert(Pos != Capacity);
      return MVT::SimpleValueType(Pos);
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
      Pos = End ? Capacity : find_from_pos(0);
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    const_iterator &operator++() {
      assert(Pos != Capacity);
      Pos = find_from_pos(Pos+1);
      return *this;
    }

    LLVM_ATTRIBUTE_ALWAYS_INLINE
    bool operator==(const const_iterator &It) const {
      return Set == It.Set && Pos == It.Pos;
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    bool operator!=(const const_iterator &It) const {
      return !operator==(It);
    }

  private:
    unsigned find_from_pos(unsigned P) const {
      unsigned SkipWords = P / WordWidth;
      unsigned SkipBits = P % WordWidth;
      unsigned Count = SkipWords * WordWidth;

      // If P is in the middle of a word, process it manually here, because
      // the trailing bits need to be masked off to use findFirstSet.
      if (SkipBits != 0) {
        WordType W = Set->Words[SkipWords];
        W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
        if (W != 0)
          return Count + findFirstSet(W);
        Count += WordWidth;
        SkipWords++;
      }

      for (unsigned i = SkipWords; i != NumWords; ++i) {
        WordType W = Set->Words[i];
        if (W != 0)
          return Count + findFirstSet(W);
        Count += WordWidth;
      }
      return Capacity;
    }

    const MachineValueTypeSet *Set;
    unsigned Pos;
  };

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  const_iterator begin() const { return const_iterator(this, false); }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  const_iterator end()   const { return const_iterator(this, true); }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool operator==(const MachineValueTypeSet &S) const {
    return Words == S.Words;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool operator!=(const MachineValueTypeSet &S) const {
    return !operator==(S);
  }

private:
  friend struct const_iterator;
  std::array<WordType,NumWords> Words;
};

struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
  using SetType = MachineValueTypeSet;
  std::vector<unsigned> AddrSpaces;

  TypeSetByHwMode() = default;
  TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
  TypeSetByHwMode(MVT::SimpleValueType VT)
    : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
  TypeSetByHwMode(ValueTypeByHwMode VT)
    : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
  TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);

  SetType &getOrCreate(unsigned Mode) {
    if (hasMode(Mode))
      return get(Mode);
    return Map.insert({Mode,SetType()}).first->second;
  }

  bool isValueTypeByHwMode(bool AllowEmpty) const;
  ValueTypeByHwMode getValueTypeByHwMode() const;

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool isMachineValueType() const {
    return isDefaultOnly() && Map.begin()->second.size() == 1;
  }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  MVT getMachineValueType() const {
    assert(isMachineValueType());
    return *Map.begin()->second.begin();
  }

  bool isPossible() const;

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool isDefaultOnly() const {
    return Map.size() == 1 && Map.begin()->first == DefaultMode;
  }

  bool isPointer() const {
    return getValueTypeByHwMode().isPointer();
  }

  unsigned getPtrAddrSpace() const {
    assert(isPointer());
    return getValueTypeByHwMode().PtrAddrSpace;
  }

  bool insert(const ValueTypeByHwMode &VVT);
  bool constrain(const TypeSetByHwMode &VTS);
  template <typename Predicate> bool constrain(Predicate P);
  template <typename Predicate>
  bool assign_if(const TypeSetByHwMode &VTS, Predicate P);

  void writeToStream(raw_ostream &OS) const;
  static void writeToStream(const SetType &S, raw_ostream &OS);

  bool operator==(const TypeSetByHwMode &VTS) const;
  bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }

  void dump() const;
  bool validate() const;

private:
  unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
  /// Intersect two sets. Return true if anything has changed.
  bool intersect(SetType &Out, const SetType &In);
};

raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);

struct TypeInfer {
  TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}

  bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
    return VTS.isValueTypeByHwMode(AllowEmpty);
  }
  ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
                                bool AllowEmpty) const {
    assert(VTS.isValueTypeByHwMode(AllowEmpty));
    return VTS.getValueTypeByHwMode();
  }

  /// The protocol in the following functions (Merge*, force*, Enforce*,
  /// expand*) is to return "true" if a change has been made, "false"
  /// otherwise.

  bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
  bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
  }
  bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
  }

  /// Reduce the set \p Out to have at most one element for each mode.
  bool forceArbitrary(TypeSetByHwMode &Out);

  /// The following four functions ensure that upon return the set \p Out
  /// will only contain types of the specified kind: integer, floating-point,
  /// scalar, or vector.
  /// If \p Out is empty, all legal types of the specified kind will be added
  /// to it. Otherwise, all types that are not of the specified kind will be
  /// removed from \p Out.
  bool EnforceInteger(TypeSetByHwMode &Out);
  bool EnforceFloatingPoint(TypeSetByHwMode &Out);
  bool EnforceScalar(TypeSetByHwMode &Out);
  bool EnforceVector(TypeSetByHwMode &Out);

  /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
  /// unchanged.
  bool EnforceAny(TypeSetByHwMode &Out);
  /// Make sure that for each type in \p Small, there exists a larger type
  /// in \p Big.
  bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
  /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
  ///    for each type U in \p Elem, U is a scalar type.
  /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
  ///    (vector) type T in \p Vec, such that U is the element type of T.
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                              const ValueTypeByHwMode &VVT);
  /// Ensure that for each type T in \p Sub, T is a vector type, and there
  /// exists a type U in \p Vec such that U is a vector type with the same
  /// element type as T and at least as many elements as T.
  bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
                                    TypeSetByHwMode &Sub);
  /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
  /// 2. Ensure that for each vector type T in \p V, there exists a vector
  ///    type U in \p W, such that T and U have the same number of elements.
  /// 3. Ensure that for each vector type U in \p W, there exists a vector
  ///    type T in \p V, such that T and U have the same number of elements
  ///    (reverse of 2).
  bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
  /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
  ///    such that T and U have equal size in bits.
  /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
  ///    such that T and U have equal size in bits (reverse of 1).
  bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);

  /// For each overloaded type (i.e. of form *Any), replace it with the
  /// corresponding subset of legal, specific types.
  void expandOverloads(TypeSetByHwMode &VTS);
  void expandOverloads(TypeSetByHwMode::SetType &Out,
                       const TypeSetByHwMode::SetType &Legal);

  struct ValidateOnExit {
    ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
  #ifndef NDEBUG
    ~ValidateOnExit();
  #else
    ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
  #endif
    TypeInfer &Infer;
    TypeSetByHwMode &VTS;
  };

  struct SuppressValidation {
    SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
      Infer.Validate = false;
    }
    ~SuppressValidation() {
      Infer.Validate = SavedValidate;
    }
    TypeInfer &Infer;
    bool SavedValidate;
  };

  TreePattern &TP;
  unsigned ForceMode;     // Mode to use when set.
  bool CodeGen = false;   // Set during generation of matcher code.
  bool Validate = true;   // Indicate whether to validate types.

private:
  const TypeSetByHwMode &getLegalTypes();

  /// Cached legal types (in default mode).
  bool LegalTypesCached = false;
  TypeSetByHwMode LegalCache;
};

/// Set type used to track multiply used variables in patterns
typedef StringSet<> MultipleUseVarSet;

/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
  SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);

  unsigned OperandNo;   // The operand # this constraint applies to.
  enum {
    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
    SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
  } ConstraintType;

  union {   // The discriminated union.
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameAs_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisVTSmallerThanOp_Info;
    struct {
      unsigned BigOperandNum;
    } SDTCisOpSmallerThanOp_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisEltOfVec_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSubVecOfVec_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameNumEltsAs_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameSizeAs_Info;
  } x;

  // The VT for SDTCisVT and SDTCVecEltisVT.
  // Must not be in the union because it has a non-trivial destructor.
  ValueTypeByHwMode VVT;

  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
  /// constraint to the nodes operands.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, an error
  /// is flagged.
  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
                           TreePattern &TP) const;
};

/// ScopedName - A name of a node associated with a "scope" that indicates
/// the context (e.g. instance of Pattern or PatFrag) in which the name was
/// used. This enables substitution of pattern fragments while keeping track
/// of what name(s) were originally given to various nodes in the tree.
class ScopedName {
  unsigned Scope;
  std::string Identifier;
public:
  ScopedName(unsigned Scope, StringRef Identifier)
    : Scope(Scope), Identifier(Identifier) {
    assert(Scope != 0 &&
           "Scope == 0 is used to indicate predicates without arguments");
  }

  unsigned getScope() const { return Scope; }
  const std::string &getIdentifier() const { return Identifier; }

  std::string getFullName() const;

  bool operator==(const ScopedName &o) const;
  bool operator!=(const ScopedName &o) const;
};

/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file.  This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
  Record *Def;
  StringRef EnumName;
  StringRef SDClassName;
  unsigned Properties;
  unsigned NumResults;
  int NumOperands;
  std::vector<SDTypeConstraint> TypeConstraints;
public:
  // Parse the specified record.
  SDNodeInfo(Record *R, const CodeGenHwModes &CGH);

  unsigned getNumResults() const { return NumResults; }

  /// getNumOperands - This is the number of operands required or -1 if
  /// variadic.
  int getNumOperands() const { return NumOperands; }
  Record *getRecord() const { return Def; }
  StringRef getEnumName() const { return EnumName; }
  StringRef getSDClassName() const { return SDClassName; }

  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
    return TypeConstraints;
  }

  /// getKnownType - If the type constraints on this node imply a fixed type
  /// (e.g. all stores return void, etc), then return it as an
  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
  MVT::SimpleValueType getKnownType(unsigned ResNo) const;

  /// hasProperty - Return true if this node has the specified property.
  ///
  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }

  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
  /// constraints for this node to the operands of the node.  This returns
  /// true if it makes a change, false otherwise.  If a type contradiction is
  /// found, an error is flagged.
  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
};

/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
class TreePredicateFn {
  /// PatFragRec - This is the TreePattern for the PatFrag that we
  /// originally came from.
  TreePattern *PatFragRec;
public:
  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
  TreePredicateFn(TreePattern *N);


  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }

  /// isAlwaysTrue - Return true if this is a noop predicate.
  bool isAlwaysTrue() const;

  bool isImmediatePattern() const { return hasImmCode(); }

  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
  /// this is an immediate predicate.  It is an error to call this on a
  /// non-immediate pattern.
  std::string getImmediatePredicateCode() const {
    std::string Result = getImmCode();
    assert(!Result.empty() && "Isn't an immediate pattern!");
    return Result;
  }

  bool operator==(const TreePredicateFn &RHS) const {
    return PatFragRec == RHS.PatFragRec;
  }

  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }

  /// Return the name to use in the generated code to reference this, this is
  /// "Predicate_foo" if from a pattern fragment "foo".
  std::string getFnName() const;

  /// getCodeToRunOnSDNode - Return the code for the function body that
  /// evaluates this predicate.  The argument is expected to be in "Node",
  /// not N.  This handles casting and conversion to a concrete node type as
  /// appropriate.
  std::string getCodeToRunOnSDNode() const;

  /// Get the data type of the argument to getImmediatePredicateCode().
  StringRef getImmType() const;

  /// Get a string that describes the type returned by getImmType() but is
  /// usable as part of an identifier.
  StringRef getImmTypeIdentifier() const;

  // Predicate code uses the PatFrag's captured operands.
  bool usesOperands() const;

  // Is the desired predefined predicate for a load?
  bool isLoad() const;
  // Is the desired predefined predicate for a store?
  bool isStore() const;
  // Is the desired predefined predicate for an atomic?
  bool isAtomic() const;

  /// Is this predicate the predefined unindexed load predicate?
  /// Is this predicate the predefined unindexed store predicate?
  bool isUnindexed() const;
  /// Is this predicate the predefined non-extending load predicate?
  bool isNonExtLoad() const;
  /// Is this predicate the predefined any-extend load predicate?
  bool isAnyExtLoad() const;
  /// Is this predicate the predefined sign-extend load predicate?
  bool isSignExtLoad() const;
  /// Is this predicate the predefined zero-extend load predicate?
  bool isZeroExtLoad() const;
  /// Is this predicate the predefined non-truncating store predicate?
  bool isNonTruncStore() const;
  /// Is this predicate the predefined truncating store predicate?
  bool isTruncStore() const;

  /// Is this predicate the predefined monotonic atomic predicate?
  bool isAtomicOrderingMonotonic() const;
  /// Is this predicate the predefined acquire atomic predicate?
  bool isAtomicOrderingAcquire() const;
  /// Is this predicate the predefined release atomic predicate?
  bool isAtomicOrderingRelease() const;
  /// Is this predicate the predefined acquire-release atomic predicate?
  bool isAtomicOrderingAcquireRelease() const;
  /// Is this predicate the predefined sequentially consistent atomic predicate?
  bool isAtomicOrderingSequentiallyConsistent() const;

  /// Is this predicate the predefined acquire-or-stronger atomic predicate?
  bool isAtomicOrderingAcquireOrStronger() const;
  /// Is this predicate the predefined weaker-than-acquire atomic predicate?
  bool isAtomicOrderingWeakerThanAcquire() const;

  /// Is this predicate the predefined release-or-stronger atomic predicate?
  bool isAtomicOrderingReleaseOrStronger() const;
  /// Is this predicate the predefined weaker-than-release atomic predicate?
  bool isAtomicOrderingWeakerThanRelease() const;

  /// If non-null, indicates that this predicate is a predefined memory VT
  /// predicate for a load/store and returns the ValueType record for the memory VT.
  Record *getMemoryVT() const;
  /// If non-null, indicates that this predicate is a predefined memory VT
  /// predicate (checking only the scalar type) for load/store and returns the
  /// ValueType record for the memory VT.
  Record *getScalarMemoryVT() const;

  ListInit *getAddressSpaces() const;
  int64_t getMinAlignment() const;

  // If true, indicates that GlobalISel-based C++ code was supplied.
  bool hasGISelPredicateCode() const;
  std::string getGISelPredicateCode() const;

private:
  bool hasPredCode() const;
  bool hasImmCode() const;
  std::string getPredCode() const;
  std::string getImmCode() const;
  bool immCodeUsesAPInt() const;
  bool immCodeUsesAPFloat() const;

  bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
};

struct TreePredicateCall {
  TreePredicateFn Fn;

  // Scope -- unique identifier for retrieving named arguments. 0 is used when
  // the predicate does not use named arguments.
  unsigned Scope;

  TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
    : Fn(Fn), Scope(Scope) {}

  bool operator==(const TreePredicateCall &o) const {
    return Fn == o.Fn && Scope == o.Scope;
  }
  bool operator!=(const TreePredicateCall &o) const {
    return !(*this == o);
  }
};

class TreePatternNode {
  /// The type of each node result.  Before and during type inference, each
  /// result may be a set of possible types.  After (successful) type inference,
  /// each is a single concrete type.
  std::vector<TypeSetByHwMode> Types;

  /// The index of each result in results of the pattern.
  std::vector<unsigned> ResultPerm;

  /// Operator - The Record for the operator if this is an interior node (not
  /// a leaf).
  Record *Operator;

  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
  ///
  Init *Val;

  /// Name - The name given to this node with the :$foo notation.
  ///
  std::string Name;

  std::vector<ScopedName> NamesAsPredicateArg;

  /// PredicateCalls - The predicate functions to execute on this node to check
  /// for a match.  If this list is empty, no predicate is involved.
  std::vector<TreePredicateCall> PredicateCalls;

  /// TransformFn - The transformation function to execute on this node before
  /// it can be substituted into the resulting instruction on a pattern match.
  Record *TransformFn;

  std::vector<TreePatternNodePtr> Children;

public:
  TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
                  unsigned NumResults)
      : Operator(Op), Val(nullptr), TransformFn(nullptr),
        Children(std::move(Ch)) {
    Types.resize(NumResults);
    ResultPerm.resize(NumResults);
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
  }
  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
    : Operator(nullptr), Val(val), TransformFn(nullptr) {
    Types.resize(NumResults);
    ResultPerm.resize(NumResults);
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
  }

  bool hasName() const { return !Name.empty(); }
  const std::string &getName() const { return Name; }
  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }

  const std::vector<ScopedName> &getNamesAsPredicateArg() const {
    return NamesAsPredicateArg;
  }
  void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
    NamesAsPredicateArg = Names;
  }
  void addNameAsPredicateArg(const ScopedName &N) {
    NamesAsPredicateArg.push_back(N);
  }

  bool isLeaf() const { return Val != nullptr; }

  // Type accessors.
  unsigned getNumTypes() const { return Types.size(); }
  ValueTypeByHwMode getType(unsigned ResNo) const {
    return Types[ResNo].getValueTypeByHwMode();
  }
  const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
  const TypeSetByHwMode &getExtType(unsigned ResNo) const {
    return Types[ResNo];
  }
  TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
  void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
  MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
    return Types[ResNo].getMachineValueType().SimpleTy;
  }

  bool hasConcreteType(unsigned ResNo) const {
    return Types[ResNo].isValueTypeByHwMode(false);
  }
  bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
    return Types[ResNo].empty();
  }

  unsigned getNumResults() const { return ResultPerm.size(); }
  unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
  void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }

  Init *getLeafValue() const { assert(isLeaf()); return Val; }
  Record *getOperator() const { assert(!isLeaf()); return Operator; }

  unsigned getNumChildren() const { return Children.size(); }
  TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
  const TreePatternNodePtr &getChildShared(unsigned N) const {
    return Children[N];
  }
  void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }

  /// hasChild - Return true if N is any of our children.
  bool hasChild(const TreePatternNode *N) const {
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      if (Children[i].get() == N)
        return true;
    return false;
  }

  bool hasProperTypeByHwMode() const;
  bool hasPossibleType() const;
  bool setDefaultMode(unsigned Mode);

  bool hasAnyPredicate() const { return !PredicateCalls.empty(); }

  const std::vector<TreePredicateCall> &getPredicateCalls() const {
    return PredicateCalls;
  }
  void clearPredicateCalls() { PredicateCalls.clear(); }
  void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
    assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
    PredicateCalls = Calls;
  }
  void addPredicateCall(const TreePredicateCall &Call) {
    assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
    assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
    PredicateCalls.push_back(Call);
  }
  void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
    assert((Scope != 0) == Fn.usesOperands());
    addPredicateCall(TreePredicateCall(Fn, Scope));
  }

  Record *getTransformFn() const { return TransformFn; }
  void setTransformFn(Record *Fn) { TransformFn = Fn; }

  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;

  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
  /// return the ComplexPattern information, otherwise return null.
  const ComplexPattern *
  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;

  /// Returns the number of MachineInstr operands that would be produced by this
  /// node if it mapped directly to an output Instruction's
  /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
  /// for Operands; otherwise 1.
  unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;

  /// NodeHasProperty - Return true if this node has the specified property.
  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// TreeHasProperty - Return true if any node in this tree has the specified
  /// property.
  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
  /// marked isCommutative.
  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;

  void print(raw_ostream &OS) const;
  void dump() const;

public:   // Higher level manipulation routines.

  /// clone - Return a new copy of this tree.
  ///
  TreePatternNodePtr clone() const;

  /// RemoveAllTypes - Recursively strip all the types of this tree.
  void RemoveAllTypes();

  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
  /// the specified node.  For this comparison, all of the state of the node
  /// is considered, except for the assigned name.  Nodes with differing names
  /// that are otherwise identical are considered isomorphic.
  bool isIsomorphicTo(const TreePatternNode *N,
                      const MultipleUseVarSet &DepVars) const;

  /// SubstituteFormalArguments - Replace the formal arguments in this tree
  /// with actual values specified by ArgMap.
  void
  SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, return the set of inlined versions (this can be more than
  /// one if a PatFrags record has multiple alternatives).
  void InlinePatternFragments(TreePatternNodePtr T,
                              TreePattern &TP,
                              std::vector<TreePatternNodePtr> &OutAlternatives);

  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
  /// this node and its children in the tree.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, flag an error.
  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);

  /// UpdateNodeType - Set the node type of N to VT if VT contains
  /// information.  If N already contains a conflicting type, then flag an
  /// error.  This returns true if any information was updated.
  ///
  bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
                      TreePattern &TP);
  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
                      TreePattern &TP);
  bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
                      TreePattern &TP);

  // Update node type with types inferred from an instruction operand or result
  // def from the ins/outs lists.
  // Return true if the type changed.
  bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);

  /// ContainsUnresolvedType - Return true if this tree contains any
  /// unresolved types.
  bool ContainsUnresolvedType(TreePattern &TP) const;

  /// canPatternMatch - If it is impossible for this pattern to match on this
  /// target, fill in Reason and return false.  Otherwise, return true.
  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
};

inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
  TPN.print(OS);
  return OS;
}


/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
  /// Trees - The list of pattern trees which corresponds to this pattern.
  /// Note that PatFrag's only have a single tree.
  ///
  std::vector<TreePatternNodePtr> Trees;

  /// NamedNodes - This is all of the nodes that have names in the trees in this
  /// pattern.
  StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;

  /// TheRecord - The actual TableGen record corresponding to this pattern.
  ///
  Record *TheRecord;

  /// Args - This is a list of all of the arguments to this pattern (for
  /// PatFrag patterns), which are the 'node' markers in this pattern.
  std::vector<std::string> Args;

  /// CDP - the top-level object coordinating this madness.
  ///
  CodeGenDAGPatterns &CDP;

  /// isInputPattern - True if this is an input pattern, something to match.
  /// False if this is an output pattern, something to emit.
  bool isInputPattern;

  /// hasError - True if the currently processed nodes have unresolvable types
  /// or other non-fatal errors
  bool HasError;

  /// It's important that the usage of operands in ComplexPatterns is
  /// consistent: each named operand can be defined by at most one
  /// ComplexPattern. This records the ComplexPattern instance and the operand
  /// number for each operand encountered in a ComplexPattern to aid in that
  /// check.
  StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;

  TypeInfer Infer;

public:

  /// TreePattern constructor - Parse the specified DagInits into the
  /// current record.
  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
              CodeGenDAGPatterns &ise);

  /// getTrees - Return the tree patterns which corresponds to this pattern.
  ///
  const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
  unsigned getNumTrees() const { return Trees.size(); }
  const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
  void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
  const TreePatternNodePtr &getOnlyTree() const {
    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
    return Trees[0];
  }

  const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
    if (NamedNodes.empty())
      ComputeNamedNodes();
    return NamedNodes;
  }

  /// getRecord - Return the actual TableGen record corresponding to this
  /// pattern.
  ///
  Record *getRecord() const { return TheRecord; }

  unsigned getNumArgs() const { return Args.size(); }
  const std::string &getArgName(unsigned i) const {
    assert(i < Args.size() && "Argument reference out of range!");
    return Args[i];
  }
  std::vector<std::string> &getArgList() { return Args; }

  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, inline them into place, giving us a pattern without any
  /// PatFrags references.  This may increase the number of trees in the
  /// pattern if a PatFrags has multiple alternatives.
  void InlinePatternFragments() {
    std::vector<TreePatternNodePtr> Copy = Trees;
    Trees.clear();
    for (unsigned i = 0, e = Copy.size(); i != e; ++i)
      Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
  }

  /// InferAllTypes - Infer/propagate as many types throughout the expression
  /// patterns as possible.  Return true if all types are inferred, false
  /// otherwise.  Bail out if a type contradiction is found.
  bool InferAllTypes(
      const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);

  /// error - If this is the first error in the current resolution step,
  /// print it and set the error flag.  Otherwise, continue silently.
  void error(const Twine &Msg);
  bool hasError() const {
    return HasError;
  }
  void resetError() {
    HasError = false;
  }

  TypeInfer &getInfer() { return Infer; }

  void print(raw_ostream &OS) const;
  void dump() const;

private:
  TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
  void ComputeNamedNodes();
  void ComputeNamedNodes(TreePatternNode *N);
};


inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            const TypeSetByHwMode &InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}

inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            MVT::SimpleValueType InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}

inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            ValueTypeByHwMode InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}


/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
/// that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
  std::vector<TreePatternNodePtr> DefaultOps;
};

class DAGInstruction {
  std::vector<Record*> Results;
  std::vector<Record*> Operands;
  std::vector<Record*> ImpResults;
  TreePatternNodePtr SrcPattern;
  TreePatternNodePtr ResultPattern;

public:
  DAGInstruction(const std::vector<Record*> &results,
                 const std::vector<Record*> &operands,
                 const std::vector<Record*> &impresults,
                 TreePatternNodePtr srcpattern = nullptr,
                 TreePatternNodePtr resultpattern = nullptr)
    : Results(results), Operands(operands), ImpResults(impresults),
      SrcPattern(srcpattern), ResultPattern(resultpattern) {}

  unsigned getNumResults() const { return Results.size(); }
  unsigned getNumOperands() const { return Operands.size(); }
  unsigned getNumImpResults() const { return ImpResults.size(); }
  const std::vector<Record*>& getImpResults() const { return ImpResults; }

  Record *getResult(unsigned RN) const {
    assert(RN < Results.size());
    return Results[RN];
  }

  Record *getOperand(unsigned ON) const {
    assert(ON < Operands.size());
    return Operands[ON];
  }

  Record *getImpResult(unsigned RN) const {
    assert(RN < ImpResults.size());
    return ImpResults[RN];
  }

  TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
  TreePatternNodePtr getResultPattern() const { return ResultPattern; }
};

/// This class represents a condition that has to be satisfied for a pattern
/// to be tried. It is a generalization of a class "Pattern" from Target.td:
/// in addition to the Target.td's predicates, this class can also represent
/// conditions associated with HW modes. Both types will eventually become
/// strings containing C++ code to be executed, the difference is in how
/// these strings are generated.
class Predicate {
public:
  Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
    assert(R->isSubClassOf("Predicate") &&
           "Predicate objects should only be created for records derived"
           "from Predicate class");
  }
  Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
    IfCond(C), IsHwMode(true) {}

  /// Return a string which contains the C++ condition code that will serve
  /// as a predicate during instruction selection.
  std::string getCondString() const {
    // The string will excute in a subclass of SelectionDAGISel.
    // Cast to std::string explicitly to avoid ambiguity with StringRef.
    std::string C = IsHwMode
        ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
        : std::string(Def->getValueAsString("CondString"));
    if (C.empty())
      return "";
    return IfCond ? C : "!("+C+')';
  }

  bool operator==(const Predicate &P) const {
    return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
  }
  bool operator<(const Predicate &P) const {
    if (IsHwMode != P.IsHwMode)
      return IsHwMode < P.IsHwMode;
    assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
    if (IfCond != P.IfCond)
      return IfCond < P.IfCond;
    if (Def)
      return LessRecord()(Def, P.Def);
    return Features < P.Features;
  }
  Record *Def;            ///< Predicate definition from .td file, null for
                          ///< HW modes.
  std::string Features;   ///< Feature string for HW mode.
  bool IfCond;            ///< The boolean value that the condition has to
                          ///< evaluate to for this predicate to be true.
  bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
};

/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
  PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
                 TreePatternNodePtr src, TreePatternNodePtr dst,
                 std::vector<Record *> dstregs, int complexity,
                 unsigned uid, unsigned setmode = 0)
      : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
        Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
        AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}

  Record          *SrcRecord;   // Originating Record for the pattern.
  TreePatternNodePtr SrcPattern;      // Source pattern to match.
  TreePatternNodePtr DstPattern;      // Resulting pattern.
  std::vector<Predicate> Predicates;  // Top level predicate conditions
                                      // to match.
  std::vector<Record*> Dstregs; // Physical register defs being matched.
  int              AddedComplexity; // Add to matching pattern complexity.
  unsigned         ID;          // Unique ID for the record.
  unsigned         ForceMode;   // Force this mode in type inference when set.

  Record          *getSrcRecord()  const { return SrcRecord; }
  TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
  TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
  TreePatternNode *getDstPattern() const { return DstPattern.get(); }
  TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
  int         getAddedComplexity() const { return AddedComplexity; }
  const std::vector<Predicate> &getPredicates() const { return Predicates; }

  std::string getPredicateCheck() const;

  /// Compute the complexity metric for the input pattern.  This roughly
  /// corresponds to the number of nodes that are covered.
  int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
};

class CodeGenDAGPatterns {
  RecordKeeper &Records;
  CodeGenTarget Target;
  CodeGenIntrinsicTable Intrinsics;
  CodeGenIntrinsicTable TgtIntrinsics;

  std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
  std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
      SDNodeXForms;
  std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
  std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
      PatternFragments;
  std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
  std::map<Record*, DAGInstruction, LessRecordByID> Instructions;

  // Specific SDNode definitions:
  Record *intrinsic_void_sdnode;
  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;

  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
  /// value is the pattern to match, the second pattern is the result to
  /// emit.
  std::vector<PatternToMatch> PatternsToMatch;

  TypeSetByHwMode LegalVTS;

  using PatternRewriterFn = std::function<void (TreePattern *)>;
  PatternRewriterFn PatternRewriter;

  unsigned NumScopes = 0;

public:
  CodeGenDAGPatterns(RecordKeeper &R,
                     PatternRewriterFn PatternRewriter = nullptr);

  CodeGenTarget &getTargetInfo() { return Target; }
  const CodeGenTarget &getTargetInfo() const { return Target; }
  const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }

  Record *getSDNodeNamed(const std::string &Name) const;

  const SDNodeInfo &getSDNodeInfo(Record *R) const {
    auto F = SDNodes.find(R);
    assert(F != SDNodes.end() && "Unknown node!");
    return F->second;
  }

  // Node transformation lookups.
  typedef std::pair<Record*, std::string> NodeXForm;
  const NodeXForm &getSDNodeTransform(Record *R) const {
    auto F = SDNodeXForms.find(R);
    assert(F != SDNodeXForms.end() && "Invalid transform!");
    return F->second;
  }

  typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
          nx_iterator;
  nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
  nx_iterator nx_end() const { return SDNodeXForms.end(); }


  const ComplexPattern &getComplexPattern(Record *R) const {
    auto F = ComplexPatterns.find(R);
    assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
    return F->second;
  }

  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
    llvm_unreachable("Unknown intrinsic!");
  }

  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
    if (IID-1 < Intrinsics.size())
      return Intrinsics[IID-1];
    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
      return TgtIntrinsics[IID-Intrinsics.size()-1];
    llvm_unreachable("Bad intrinsic ID!");
  }

  unsigned getIntrinsicID(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return i;
    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
    llvm_unreachable("Unknown intrinsic!");
  }

  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
    auto F = DefaultOperands.find(R);
    assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
    return F->second;
  }

  // Pattern Fragment information.
  TreePattern *getPatternFragment(Record *R) const {
    auto F = PatternFragments.find(R);
    assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
    return F->second.get();
  }
  TreePattern *getPatternFragmentIfRead(Record *R) const {
    auto F = PatternFragments.find(R);
    if (F == PatternFragments.end())
      return nullptr;
    return F->second.get();
  }

  typedef std::map<Record *, std::unique_ptr<TreePattern>,
                   LessRecordByID>::const_iterator pf_iterator;
  pf_iterator pf_begin() const { return PatternFragments.begin(); }
  pf_iterator pf_end() const { return PatternFragments.end(); }
  iterator_range<pf_iterator> ptfs() const { return PatternFragments; }

  // Patterns to match information.
  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
  iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }

  /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
  typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
  void parseInstructionPattern(
      CodeGenInstruction &CGI, ListInit *Pattern,
      DAGInstMap &DAGInsts);

  const DAGInstruction &getInstruction(Record *R) const {
    auto F = Instructions.find(R);
    assert(F != Instructions.end() && "Unknown instruction!");
    return F->second;
  }

  Record *get_intrinsic_void_sdnode() const {
    return intrinsic_void_sdnode;
  }
  Record *get_intrinsic_w_chain_sdnode() const {
    return intrinsic_w_chain_sdnode;
  }
  Record *get_intrinsic_wo_chain_sdnode() const {
    return intrinsic_wo_chain_sdnode;
  }

  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }

  unsigned allocateScope() { return ++NumScopes; }

  bool operandHasDefault(Record *Op) const {
    return Op->isSubClassOf("OperandWithDefaultOps") &&
      !getDefaultOperand(Op).DefaultOps.empty();
  }

private:
  void ParseNodeInfo();
  void ParseNodeTransforms();
  void ParseComplexPatterns();
  void ParsePatternFragments(bool OutFrags = false);
  void ParseDefaultOperands();
  void ParseInstructions();
  void ParsePatterns();
  void ExpandHwModeBasedTypes();
  void InferInstructionFlags();
  void GenerateVariants();
  void VerifyInstructionFlags();

  std::vector<Predicate> makePredList(ListInit *L);

  void ParseOnePattern(Record *TheDef,
                       TreePattern &Pattern, TreePattern &Result,
                       const std::vector<Record *> &InstImpResults);
  void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
  void FindPatternInputsAndOutputs(
      TreePattern &I, TreePatternNodePtr Pat,
      std::map<std::string, TreePatternNodePtr> &InstInputs,
      MapVector<std::string, TreePatternNodePtr,
                std::map<std::string, unsigned>> &InstResults,
      std::vector<Record *> &InstImpResults);
};


inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
                                             TreePattern &TP) const {
    bool MadeChange = false;
    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
    return MadeChange;
  }

} // end namespace llvm

#endif