reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileLoader transformation. This pass
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
// profile information in the given profile.
//
// This pass generates branch weight annotations on the IR:
//
// - prof: Represents branch weights. This annotation is added to branches
//      to indicate the weights of each edge coming out of the branch.
//      The weight of each edge is the weight of the target block for
//      that edge. The weight of a block B is computed as the maximum
//      number of samples found in B.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/SampleProfile.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/MisExpect.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <queue>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace sampleprof;
using ProfileCount = Function::ProfileCount;
#define DEBUG_TYPE "sample-profile"

// Command line option to specify the file to read samples from. This is
// mainly used for debugging.
static cl::opt<std::string> SampleProfileFile(
    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);

// The named file contains a set of transformations that may have been applied
// to the symbol names between the program from which the sample data was
// collected and the current program's symbols.
static cl::opt<std::string> SampleProfileRemappingFile(
    "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
    cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);

static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
    "sample-profile-max-propagate-iterations", cl::init(100),
    cl::desc("Maximum number of iterations to go through when propagating "
             "sample block/edge weights through the CFG."));

static cl::opt<unsigned> SampleProfileRecordCoverage(
    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
    cl::desc("Emit a warning if less than N% of records in the input profile "
             "are matched to the IR."));

static cl::opt<unsigned> SampleProfileSampleCoverage(
    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
    cl::desc("Emit a warning if less than N% of samples in the input profile "
             "are matched to the IR."));

static cl::opt<bool> NoWarnSampleUnused(
    "no-warn-sample-unused", cl::init(false), cl::Hidden,
    cl::desc("Use this option to turn off/on warnings about function with "
             "samples but without debug information to use those samples. "));

static cl::opt<bool> ProfileSampleAccurate(
    "profile-sample-accurate", cl::Hidden, cl::init(false),
    cl::desc("If the sample profile is accurate, we will mark all un-sampled "
             "callsite and function as having 0 samples. Otherwise, treat "
             "un-sampled callsites and functions conservatively as unknown. "));

static cl::opt<bool> ProfileAccurateForSymsInList(
    "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
    cl::init(true),
    cl::desc("For symbols in profile symbol list, regard their profiles to "
             "be accurate. It may be overriden by profile-sample-accurate. "));

namespace {

using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
using BlockEdgeMap =
    DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;

class SampleProfileLoader;

class SampleCoverageTracker {
public:
  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};

  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
                       uint32_t Discriminator, uint64_t Samples);
  unsigned computeCoverage(unsigned Used, unsigned Total) const;
  unsigned countUsedRecords(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;
  unsigned countBodyRecords(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;
  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
  uint64_t countBodySamples(const FunctionSamples *FS,
                            ProfileSummaryInfo *PSI) const;

  void clear() {
    SampleCoverage.clear();
    TotalUsedSamples = 0;
  }

private:
  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
  using FunctionSamplesCoverageMap =
      DenseMap<const FunctionSamples *, BodySampleCoverageMap>;

  /// Coverage map for sampling records.
  ///
  /// This map keeps a record of sampling records that have been matched to
  /// an IR instruction. This is used to detect some form of staleness in
  /// profiles (see flag -sample-profile-check-coverage).
  ///
  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
  /// another map that counts how many times the sample record at the
  /// given location has been used.
  FunctionSamplesCoverageMap SampleCoverage;

  /// Number of samples used from the profile.
  ///
  /// When a sampling record is used for the first time, the samples from
  /// that record are added to this accumulator.  Coverage is later computed
  /// based on the total number of samples available in this function and
  /// its callsites.
  ///
  /// Note that this accumulator tracks samples used from a single function
  /// and all the inlined callsites. Strictly, we should have a map of counters
  /// keyed by FunctionSamples pointers, but these stats are cleared after
  /// every function, so we just need to keep a single counter.
  uint64_t TotalUsedSamples = 0;

  SampleProfileLoader &SPLoader;
};

class GUIDToFuncNameMapper {
public:
  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
                        DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
      : CurrentReader(Reader), CurrentModule(M),
      CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
    if (CurrentReader.getFormat() != SPF_Compact_Binary)
      return;

    for (const auto &F : CurrentModule) {
      StringRef OrigName = F.getName();
      CurrentGUIDToFuncNameMap.insert(
          {Function::getGUID(OrigName), OrigName});

      // Local to global var promotion used by optimization like thinlto
      // will rename the var and add suffix like ".llvm.xxx" to the
      // original local name. In sample profile, the suffixes of function
      // names are all stripped. Since it is possible that the mapper is
      // built in post-thin-link phase and var promotion has been done,
      // we need to add the substring of function name without the suffix
      // into the GUIDToFuncNameMap.
      StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
      if (CanonName != OrigName)
        CurrentGUIDToFuncNameMap.insert(
            {Function::getGUID(CanonName), CanonName});
    }

    // Update GUIDToFuncNameMap for each function including inlinees.
    SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
  }

  ~GUIDToFuncNameMapper() {
    if (CurrentReader.getFormat() != SPF_Compact_Binary)
      return;

    CurrentGUIDToFuncNameMap.clear();

    // Reset GUIDToFuncNameMap for of each function as they're no
    // longer valid at this point.
    SetGUIDToFuncNameMapForAll(nullptr);
  }

private:
  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
    std::queue<FunctionSamples *> FSToUpdate;
    for (auto &IFS : CurrentReader.getProfiles()) {
      FSToUpdate.push(&IFS.second);
    }

    while (!FSToUpdate.empty()) {
      FunctionSamples *FS = FSToUpdate.front();
      FSToUpdate.pop();
      FS->GUIDToFuncNameMap = Map;
      for (const auto &ICS : FS->getCallsiteSamples()) {
        const FunctionSamplesMap &FSMap = ICS.second;
        for (auto &IFS : FSMap) {
          FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
          FSToUpdate.push(&FS);
        }
      }
    }
  }

  SampleProfileReader &CurrentReader;
  Module &CurrentModule;
  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
};

/// Sample profile pass.
///
/// This pass reads profile data from the file specified by
/// -sample-profile-file and annotates every affected function with the
/// profile information found in that file.
class SampleProfileLoader {
public:
  SampleProfileLoader(
      StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
      std::function<AssumptionCache &(Function &)> GetAssumptionCache,
      std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
      : GetAC(std::move(GetAssumptionCache)),
        GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this),
        Filename(Name), RemappingFilename(RemapName),
        IsThinLTOPreLink(IsThinLTOPreLink) {}

  bool doInitialization(Module &M);
  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
                   ProfileSummaryInfo *_PSI);

  void dump() { Reader->dump(); }

protected:
  friend class SampleCoverageTracker;

  bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
  unsigned getFunctionLoc(Function &F);
  bool emitAnnotations(Function &F);
  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
  const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
  std::vector<const FunctionSamples *>
  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
  bool inlineCallInstruction(Instruction *I);
  bool inlineHotFunctions(Function &F,
                          DenseSet<GlobalValue::GUID> &InlinedGUIDs);
  void printEdgeWeight(raw_ostream &OS, Edge E);
  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
  bool computeBlockWeights(Function &F);
  void findEquivalenceClasses(Function &F);
  template <bool IsPostDom>
  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
                           DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);

  void propagateWeights(Function &F);
  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
  void buildEdges(Function &F);
  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
  void computeDominanceAndLoopInfo(Function &F);
  void clearFunctionData();
  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
                     ProfileSummaryInfo *PSI);

  /// Map basic blocks to their computed weights.
  ///
  /// The weight of a basic block is defined to be the maximum
  /// of all the instruction weights in that block.
  BlockWeightMap BlockWeights;

  /// Map edges to their computed weights.
  ///
  /// Edge weights are computed by propagating basic block weights in
  /// SampleProfile::propagateWeights.
  EdgeWeightMap EdgeWeights;

  /// Set of visited blocks during propagation.
  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;

  /// Set of visited edges during propagation.
  SmallSet<Edge, 32> VisitedEdges;

  /// Equivalence classes for block weights.
  ///
  /// Two blocks BB1 and BB2 are in the same equivalence class if they
  /// dominate and post-dominate each other, and they are in the same loop
  /// nest. When this happens, the two blocks are guaranteed to execute
  /// the same number of times.
  EquivalenceClassMap EquivalenceClass;

  /// Map from function name to Function *. Used to find the function from
  /// the function name. If the function name contains suffix, additional
  /// entry is added to map from the stripped name to the function if there
  /// is one-to-one mapping.
  StringMap<Function *> SymbolMap;

  /// Dominance, post-dominance and loop information.
  std::unique_ptr<DominatorTree> DT;
  std::unique_ptr<PostDominatorTree> PDT;
  std::unique_ptr<LoopInfo> LI;

  std::function<AssumptionCache &(Function &)> GetAC;
  std::function<TargetTransformInfo &(Function &)> GetTTI;

  /// Predecessors for each basic block in the CFG.
  BlockEdgeMap Predecessors;

  /// Successors for each basic block in the CFG.
  BlockEdgeMap Successors;

  SampleCoverageTracker CoverageTracker;

  /// Profile reader object.
  std::unique_ptr<SampleProfileReader> Reader;

  /// Samples collected for the body of this function.
  FunctionSamples *Samples = nullptr;

  /// Name of the profile file to load.
  std::string Filename;

  /// Name of the profile remapping file to load.
  std::string RemappingFilename;

  /// Flag indicating whether the profile input loaded successfully.
  bool ProfileIsValid = false;

  /// Flag indicating if the pass is invoked in ThinLTO compile phase.
  ///
  /// In this phase, in annotation, we should not promote indirect calls.
  /// Instead, we will mark GUIDs that needs to be annotated to the function.
  bool IsThinLTOPreLink;

  /// Profile Summary Info computed from sample profile.
  ProfileSummaryInfo *PSI = nullptr;

  /// Profle Symbol list tells whether a function name appears in the binary
  /// used to generate the current profile.
  std::unique_ptr<ProfileSymbolList> PSL;

  /// Total number of samples collected in this profile.
  ///
  /// This is the sum of all the samples collected in all the functions executed
  /// at runtime.
  uint64_t TotalCollectedSamples = 0;

  /// Optimization Remark Emitter used to emit diagnostic remarks.
  OptimizationRemarkEmitter *ORE = nullptr;

  // Information recorded when we declined to inline a call site
  // because we have determined it is too cold is accumulated for
  // each callee function. Initially this is just the entry count.
  struct NotInlinedProfileInfo {
    uint64_t entryCount;
  };
  DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;

  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
  // all the function symbols defined or declared in current module.
  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;

  // All the Names used in FunctionSamples including outline function
  // names, inline instance names and call target names.
  StringSet<> NamesInProfile;

  // For symbol in profile symbol list, whether to regard their profiles
  // to be accurate. It is mainly decided by existance of profile symbol
  // list and -profile-accurate-for-symsinlist flag, but it can be
  // overriden by -profile-sample-accurate or profile-sample-accurate
  // attribute.
  bool ProfAccForSymsInList;
};

class SampleProfileLoaderLegacyPass : public ModulePass {
public:
  // Class identification, replacement for typeinfo
  static char ID;

  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
                                bool IsThinLTOPreLink = false)
      : ModulePass(ID),
        SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
                     [&](Function &F) -> AssumptionCache & {
                       return ACT->getAssumptionCache(F);
                     },
                     [&](Function &F) -> TargetTransformInfo & {
                       return TTIWP->getTTI(F);
                     }) {
    initializeSampleProfileLoaderLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  void dump() { SampleLoader.dump(); }

  bool doInitialization(Module &M) override {
    return SampleLoader.doInitialization(M);
  }

  StringRef getPassName() const override { return "Sample profile pass"; }
  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
  }

private:
  SampleProfileLoader SampleLoader;
  AssumptionCacheTracker *ACT = nullptr;
  TargetTransformInfoWrapperPass *TTIWP = nullptr;
};

} // end anonymous namespace

/// Return true if the given callsite is hot wrt to hot cutoff threshold.
///
/// Functions that were inlined in the original binary will be represented
/// in the inline stack in the sample profile. If the profile shows that
/// the original inline decision was "good" (i.e., the callsite is executed
/// frequently), then we will recreate the inline decision and apply the
/// profile from the inlined callsite.
///
/// To decide whether an inlined callsite is hot, we compare the callsite
/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
/// regarded as hot if the count is above the cutoff value.
///
/// When ProfileAccurateForSymsInList is enabled and profile symbol list
/// is present, functions in the profile symbol list but without profile will
/// be regarded as cold and much less inlining will happen in CGSCC inlining
/// pass, so we tend to lower the hot criteria here to allow more early
/// inlining to happen for warm callsites and it is helpful for performance.
bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
                                        ProfileSummaryInfo *PSI) {
  if (!CallsiteFS)
    return false; // The callsite was not inlined in the original binary.

  assert(PSI && "PSI is expected to be non null");
  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
  if (ProfAccForSymsInList)
    return !PSI->isColdCount(CallsiteTotalSamples);
  else
    return PSI->isHotCount(CallsiteTotalSamples);
}

/// Mark as used the sample record for the given function samples at
/// (LineOffset, Discriminator).
///
/// \returns true if this is the first time we mark the given record.
bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
                                            uint32_t LineOffset,
                                            uint32_t Discriminator,
                                            uint64_t Samples) {
  LineLocation Loc(LineOffset, Discriminator);
  unsigned &Count = SampleCoverage[FS][Loc];
  bool FirstTime = (++Count == 1);
  if (FirstTime)
    TotalUsedSamples += Samples;
  return FirstTime;
}

/// Return the number of sample records that were applied from this profile.
///
/// This count does not include records from cold inlined callsites.
unsigned
SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  auto I = SampleCoverage.find(FS);

  // The size of the coverage map for FS represents the number of records
  // that were marked used at least once.
  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;

  // If there are inlined callsites in this function, count the samples found
  // in the respective bodies. However, do not bother counting callees with 0
  // total samples, these are callees that were never invoked at runtime.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Count += countUsedRecords(CalleeSamples, PSI);
    }

  return Count;
}

/// Return the number of sample records in the body of this profile.
///
/// This count does not include records from cold inlined callsites.
unsigned
SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  unsigned Count = FS->getBodySamples().size();

  // Only count records in hot callsites.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Count += countBodyRecords(CalleeSamples, PSI);
    }

  return Count;
}

/// Return the number of samples collected in the body of this profile.
///
/// This count does not include samples from cold inlined callsites.
uint64_t
SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
                                        ProfileSummaryInfo *PSI) const {
  uint64_t Total = 0;
  for (const auto &I : FS->getBodySamples())
    Total += I.second.getSamples();

  // Only count samples in hot callsites.
  for (const auto &I : FS->getCallsiteSamples())
    for (const auto &J : I.second) {
      const FunctionSamples *CalleeSamples = &J.second;
      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
        Total += countBodySamples(CalleeSamples, PSI);
    }

  return Total;
}

/// Return the fraction of sample records used in this profile.
///
/// The returned value is an unsigned integer in the range 0-100 indicating
/// the percentage of sample records that were used while applying this
/// profile to the associated function.
unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
                                                unsigned Total) const {
  assert(Used <= Total &&
         "number of used records cannot exceed the total number of records");
  return Total > 0 ? Used * 100 / Total : 100;
}

/// Clear all the per-function data used to load samples and propagate weights.
void SampleProfileLoader::clearFunctionData() {
  BlockWeights.clear();
  EdgeWeights.clear();
  VisitedBlocks.clear();
  VisitedEdges.clear();
  EquivalenceClass.clear();
  DT = nullptr;
  PDT = nullptr;
  LI = nullptr;
  Predecessors.clear();
  Successors.clear();
  CoverageTracker.clear();
}

#ifndef NDEBUG
/// Print the weight of edge \p E on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param E  Edge to print.
void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
     << "]: " << EdgeWeights[E] << "\n";
}

/// Print the equivalence class of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
                                                const BasicBlock *BB) {
  const BasicBlock *Equiv = EquivalenceClass[BB];
  OS << "equivalence[" << BB->getName()
     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
}

/// Print the weight of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
                                           const BasicBlock *BB) const {
  const auto &I = BlockWeights.find(BB);
  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
  OS << "weight[" << BB->getName() << "]: " << W << "\n";
}
#endif

/// Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
/// collected on that instruction at runtime. To retrieve it, we
/// need to compute the line number of \p Inst relative to the start of its
/// function. We use HeaderLineno to compute the offset. We then
/// look up the samples collected for \p Inst using BodySamples.
///
/// \param Inst Instruction to query.
///
/// \returns the weight of \p Inst.
ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
  const DebugLoc &DLoc = Inst.getDebugLoc();
  if (!DLoc)
    return std::error_code();

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (!FS)
    return std::error_code();

  // Ignore all intrinsics, phinodes and branch instructions.
  // Branch and phinodes instruction usually contains debug info from sources outside of
  // the residing basic block, thus we ignore them during annotation.
  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
    return std::error_code();

  // If a direct call/invoke instruction is inlined in profile
  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
  // it means that the inlined callsite has no sample, thus the call
  // instruction should have 0 count.
  if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
      !ImmutableCallSite(&Inst).isIndirectCall() &&
      findCalleeFunctionSamples(Inst))
    return 0;

  const DILocation *DIL = DLoc;
  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
  uint32_t Discriminator = DIL->getBaseDiscriminator();
  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
  if (R) {
    bool FirstMark =
        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
    if (FirstMark) {
      ORE->emit([&]() {
        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
        Remark << "Applied " << ore::NV("NumSamples", *R);
        Remark << " samples from profile (offset: ";
        Remark << ore::NV("LineOffset", LineOffset);
        if (Discriminator) {
          Remark << ".";
          Remark << ore::NV("Discriminator", Discriminator);
        }
        Remark << ")";
        return Remark;
      });
    }
    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
                      << DIL->getBaseDiscriminator() << ":" << Inst
                      << " (line offset: " << LineOffset << "."
                      << DIL->getBaseDiscriminator() << " - weight: " << R.get()
                      << ")\n");
  }
  return R;
}

/// Compute the weight of a basic block.
///
/// The weight of basic block \p BB is the maximum weight of all the
/// instructions in BB.
///
/// \param BB The basic block to query.
///
/// \returns the weight for \p BB.
ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
  uint64_t Max = 0;
  bool HasWeight = false;
  for (auto &I : BB->getInstList()) {
    const ErrorOr<uint64_t> &R = getInstWeight(I);
    if (R) {
      Max = std::max(Max, R.get());
      HasWeight = true;
    }
  }
  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
}

/// Compute and store the weights of every basic block.
///
/// This populates the BlockWeights map by computing
/// the weights of every basic block in the CFG.
///
/// \param F The function to query.
bool SampleProfileLoader::computeBlockWeights(Function &F) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "Block weights\n");
  for (const auto &BB : F) {
    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
    if (Weight) {
      BlockWeights[&BB] = Weight.get();
      VisitedBlocks.insert(&BB);
      Changed = true;
    }
    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
  }

  return Changed;
}

/// Get the FunctionSamples for a call instruction.
///
/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
/// instance in which that call instruction is calling to. It contains
/// all samples that resides in the inlined instance. We first find the
/// inlined instance in which the call instruction is from, then we
/// traverse its children to find the callsite with the matching
/// location.
///
/// \param Inst Call/Invoke instruction to query.
///
/// \returns The FunctionSamples pointer to the inlined instance.
const FunctionSamples *
SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
  const DILocation *DIL = Inst.getDebugLoc();
  if (!DIL) {
    return nullptr;
  }

  StringRef CalleeName;
  if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
    if (Function *Callee = CI->getCalledFunction())
      CalleeName = Callee->getName();

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (FS == nullptr)
    return nullptr;

  return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
                                                DIL->getBaseDiscriminator()),
                                   CalleeName);
}

/// Returns a vector of FunctionSamples that are the indirect call targets
/// of \p Inst. The vector is sorted by the total number of samples. Stores
/// the total call count of the indirect call in \p Sum.
std::vector<const FunctionSamples *>
SampleProfileLoader::findIndirectCallFunctionSamples(
    const Instruction &Inst, uint64_t &Sum) const {
  const DILocation *DIL = Inst.getDebugLoc();
  std::vector<const FunctionSamples *> R;

  if (!DIL) {
    return R;
  }

  const FunctionSamples *FS = findFunctionSamples(Inst);
  if (FS == nullptr)
    return R;

  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
  uint32_t Discriminator = DIL->getBaseDiscriminator();

  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
  Sum = 0;
  if (T)
    for (const auto &T_C : T.get())
      Sum += T_C.second;
  if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
          FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
    if (M->empty())
      return R;
    for (const auto &NameFS : *M) {
      Sum += NameFS.second.getEntrySamples();
      R.push_back(&NameFS.second);
    }
    llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
      if (L->getEntrySamples() != R->getEntrySamples())
        return L->getEntrySamples() > R->getEntrySamples();
      return FunctionSamples::getGUID(L->getName()) <
             FunctionSamples::getGUID(R->getName());
    });
  }
  return R;
}

/// Get the FunctionSamples for an instruction.
///
/// The FunctionSamples of an instruction \p Inst is the inlined instance
/// in which that instruction is coming from. We traverse the inline stack
/// of that instruction, and match it with the tree nodes in the profile.
///
/// \param Inst Instruction to query.
///
/// \returns the FunctionSamples pointer to the inlined instance.
const FunctionSamples *
SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
  const DILocation *DIL = Inst.getDebugLoc();
  if (!DIL)
    return Samples;

  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
  if (it.second)
    it.first->second = Samples->findFunctionSamples(DIL);
  return it.first->second;
}

bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
  CallSite CS(I);
  Function *CalledFunction = CS.getCalledFunction();
  assert(CalledFunction);
  DebugLoc DLoc = I->getDebugLoc();
  BasicBlock *BB = I->getParent();
  InlineParams Params = getInlineParams();
  Params.ComputeFullInlineCost = true;
  // Checks if there is anything in the reachable portion of the callee at
  // this callsite that makes this inlining potentially illegal. Need to
  // set ComputeFullInlineCost, otherwise getInlineCost may return early
  // when cost exceeds threshold without checking all IRs in the callee.
  // The acutal cost does not matter because we only checks isNever() to
  // see if it is legal to inline the callsite.
  InlineCost Cost =
      getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
                    None, nullptr, nullptr);
  if (Cost.isNever()) {
    ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
              << "incompatible inlining");
    return false;
  }
  InlineFunctionInfo IFI(nullptr, &GetAC);
  if (InlineFunction(CS, IFI)) {
    // The call to InlineFunction erases I, so we can't pass it here.
    ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
              << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
              << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
    return true;
  }
  return false;
}

/// Iteratively inline hot callsites of a function.
///
/// Iteratively traverse all callsites of the function \p F, and find if
/// the corresponding inlined instance exists and is hot in profile. If
/// it is hot enough, inline the callsites and adds new callsites of the
/// callee into the caller. If the call is an indirect call, first promote
/// it to direct call. Each indirect call is limited with a single target.
///
/// \param F function to perform iterative inlining.
/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
///     inlined in the profiled binary.
///
/// \returns True if there is any inline happened.
bool SampleProfileLoader::inlineHotFunctions(
    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
  DenseSet<Instruction *> PromotedInsns;

  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
  // Profile symbol list is ignored when profile-sample-accurate is on.
  assert((!ProfAccForSymsInList ||
          (!ProfileSampleAccurate &&
           !F.hasFnAttribute("profile-sample-accurate"))) &&
         "ProfAccForSymsInList should be false when profile-sample-accurate "
         "is enabled");

  DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
  bool Changed = false;
  while (true) {
    bool LocalChanged = false;
    SmallVector<Instruction *, 10> CIS;
    for (auto &BB : F) {
      bool Hot = false;
      SmallVector<Instruction *, 10> Candidates;
      for (auto &I : BB.getInstList()) {
        const FunctionSamples *FS = nullptr;
        if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
            !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
          Candidates.push_back(&I);
          if (FS->getEntrySamples() > 0)
            localNotInlinedCallSites.try_emplace(&I, FS);
          if (callsiteIsHot(FS, PSI))
            Hot = true;
        }
      }
      if (Hot) {
        CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
      }
    }
    for (auto I : CIS) {
      Function *CalledFunction = CallSite(I).getCalledFunction();
      // Do not inline recursive calls.
      if (CalledFunction == &F)
        continue;
      if (CallSite(I).isIndirectCall()) {
        if (PromotedInsns.count(I))
          continue;
        uint64_t Sum;
        for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
          if (IsThinLTOPreLink) {
            FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
                                     PSI->getOrCompHotCountThreshold());
            continue;
          }
          auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
          // If it is a recursive call, we do not inline it as it could bloat
          // the code exponentially. There is way to better handle this, e.g.
          // clone the caller first, and inline the cloned caller if it is
          // recursive. As llvm does not inline recursive calls, we will
          // simply ignore it instead of handling it explicitly.
          if (CalleeFunctionName == F.getName())
            continue;

          if (!callsiteIsHot(FS, PSI))
            continue;

          const char *Reason = "Callee function not available";
          auto R = SymbolMap.find(CalleeFunctionName);
          if (R != SymbolMap.end() && R->getValue() &&
              !R->getValue()->isDeclaration() &&
              R->getValue()->getSubprogram() &&
              isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
            uint64_t C = FS->getEntrySamples();
            Instruction *DI =
                pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
            Sum -= C;
            PromotedInsns.insert(I);
            // If profile mismatches, we should not attempt to inline DI.
            if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
                inlineCallInstruction(DI)) {
              localNotInlinedCallSites.erase(I);
              LocalChanged = true;
            }
          } else {
            LLVM_DEBUG(dbgs()
                       << "\nFailed to promote indirect call to "
                       << CalleeFunctionName << " because " << Reason << "\n");
          }
        }
      } else if (CalledFunction && CalledFunction->getSubprogram() &&
                 !CalledFunction->isDeclaration()) {
        if (inlineCallInstruction(I)) {
          localNotInlinedCallSites.erase(I);
          LocalChanged = true;
        }
      } else if (IsThinLTOPreLink) {
        findCalleeFunctionSamples(*I)->findInlinedFunctions(
            InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
      }
    }
    if (LocalChanged) {
      Changed = true;
    } else {
      break;
    }
  }

  // Accumulate not inlined callsite information into notInlinedSamples
  for (const auto &Pair : localNotInlinedCallSites) {
    Instruction *I = Pair.getFirst();
    Function *Callee = CallSite(I).getCalledFunction();
    if (!Callee || Callee->isDeclaration())
      continue;
    const FunctionSamples *FS = Pair.getSecond();
    auto pair =
        notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
    pair.first->second.entryCount += FS->getEntrySamples();
  }
  return Changed;
}

/// Find equivalence classes for the given block.
///
/// This finds all the blocks that are guaranteed to execute the same
/// number of times as \p BB1. To do this, it traverses all the
/// descendants of \p BB1 in the dominator or post-dominator tree.
///
/// A block BB2 will be in the same equivalence class as \p BB1 if
/// the following holds:
///
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
///    is a descendant of \p BB1 in the dominator tree, then BB2 should
///    dominate BB1 in the post-dominator tree.
///
/// 2- Both BB2 and \p BB1 must be in the same loop.
///
/// For every block BB2 that meets those two requirements, we set BB2's
/// equivalence class to \p BB1.
///
/// \param BB1  Block to check.
/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
///                 with blocks from \p BB1's dominator tree, then
///                 this is the post-dominator tree, and vice versa.
template <bool IsPostDom>
void SampleProfileLoader::findEquivalencesFor(
    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
  const BasicBlock *EC = EquivalenceClass[BB1];
  uint64_t Weight = BlockWeights[EC];
  for (const auto *BB2 : Descendants) {
    bool IsDomParent = DomTree->dominates(BB2, BB1);
    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
      EquivalenceClass[BB2] = EC;
      // If BB2 is visited, then the entire EC should be marked as visited.
      if (VisitedBlocks.count(BB2)) {
        VisitedBlocks.insert(EC);
      }

      // If BB2 is heavier than BB1, make BB2 have the same weight
      // as BB1.
      //
      // Note that we don't worry about the opposite situation here
      // (when BB2 is lighter than BB1). We will deal with this
      // during the propagation phase. Right now, we just want to
      // make sure that BB1 has the largest weight of all the
      // members of its equivalence set.
      Weight = std::max(Weight, BlockWeights[BB2]);
    }
  }
  if (EC == &EC->getParent()->getEntryBlock()) {
    BlockWeights[EC] = Samples->getHeadSamples() + 1;
  } else {
    BlockWeights[EC] = Weight;
  }
}

/// Find equivalence classes.
///
/// Since samples may be missing from blocks, we can fill in the gaps by setting
/// the weights of all the blocks in the same equivalence class to the same
/// weight. To compute the concept of equivalence, we use dominance and loop
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// \param F The function to query.
void SampleProfileLoader::findEquivalenceClasses(Function &F) {
  SmallVector<BasicBlock *, 8> DominatedBBs;
  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
  // Find equivalence sets based on dominance and post-dominance information.
  for (auto &BB : F) {
    BasicBlock *BB1 = &BB;

    // Compute BB1's equivalence class once.
    if (EquivalenceClass.count(BB1)) {
      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
      continue;
    }

    // By default, blocks are in their own equivalence class.
    EquivalenceClass[BB1] = BB1;

    // Traverse all the blocks dominated by BB1. We are looking for
    // every basic block BB2 such that:
    //
    // 1- BB1 dominates BB2.
    // 2- BB2 post-dominates BB1.
    // 3- BB1 and BB2 are in the same loop nest.
    //
    // If all those conditions hold, it means that BB2 is executed
    // as many times as BB1, so they are placed in the same equivalence
    // class by making BB2's equivalence class be BB1.
    DominatedBBs.clear();
    DT->getDescendants(BB1, DominatedBBs);
    findEquivalencesFor(BB1, DominatedBBs, PDT.get());

    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
  }

  // Assign weights to equivalence classes.
  //
  // All the basic blocks in the same equivalence class will execute
  // the same number of times. Since we know that the head block in
  // each equivalence class has the largest weight, assign that weight
  // to all the blocks in that equivalence class.
  LLVM_DEBUG(
      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
  for (auto &BI : F) {
    const BasicBlock *BB = &BI;
    const BasicBlock *EquivBB = EquivalenceClass[BB];
    if (BB != EquivBB)
      BlockWeights[BB] = BlockWeights[EquivBB];
    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
  }
}

/// Visit the given edge to decide if it has a valid weight.
///
/// If \p E has not been visited before, we copy to \p UnknownEdge
/// and increment the count of unknown edges.
///
/// \param E  Edge to visit.
/// \param NumUnknownEdges  Current number of unknown edges.
/// \param UnknownEdge  Set if E has not been visited before.
///
/// \returns E's weight, if known. Otherwise, return 0.
uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
                                        Edge *UnknownEdge) {
  if (!VisitedEdges.count(E)) {
    (*NumUnknownEdges)++;
    *UnknownEdge = E;
    return 0;
  }

  return EdgeWeights[E];
}

/// Propagate weights through incoming/outgoing edges.
///
/// If the weight of a basic block is known, and there is only one edge
/// with an unknown weight, we can calculate the weight of that edge.
///
/// Similarly, if all the edges have a known count, we can calculate the
/// count of the basic block, if needed.
///
/// \param F  Function to process.
/// \param UpdateBlockCount  Whether we should update basic block counts that
///                          has already been annotated.
///
/// \returns  True if new weights were assigned to edges or blocks.
bool SampleProfileLoader::propagateThroughEdges(Function &F,
                                                bool UpdateBlockCount) {
  bool Changed = false;
  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
  for (const auto &BI : F) {
    const BasicBlock *BB = &BI;
    const BasicBlock *EC = EquivalenceClass[BB];

    // Visit all the predecessor and successor edges to determine
    // which ones have a weight assigned already. Note that it doesn't
    // matter that we only keep track of a single unknown edge. The
    // only case we are interested in handling is when only a single
    // edge is unknown (see setEdgeOrBlockWeight).
    for (unsigned i = 0; i < 2; i++) {
      uint64_t TotalWeight = 0;
      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;

      if (i == 0) {
        // First, visit all predecessor edges.
        NumTotalEdges = Predecessors[BB].size();
        for (auto *Pred : Predecessors[BB]) {
          Edge E = std::make_pair(Pred, BB);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
          if (E.first == E.second)
            SelfReferentialEdge = E;
        }
        if (NumTotalEdges == 1) {
          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
        }
      } else {
        // On the second round, visit all successor edges.
        NumTotalEdges = Successors[BB].size();
        for (auto *Succ : Successors[BB]) {
          Edge E = std::make_pair(BB, Succ);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
        }
        if (NumTotalEdges == 1) {
          SingleEdge = std::make_pair(BB, Successors[BB][0]);
        }
      }

      // After visiting all the edges, there are three cases that we
      // can handle immediately:
      //
      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
      //   In this case, we simply check that the sum of all the edges
      //   is the same as BB's weight. If not, we change BB's weight
      //   to match. Additionally, if BB had not been visited before,
      //   we mark it visited.
      //
      // - Only one edge is unknown and BB has already been visited.
      //   In this case, we can compute the weight of the edge by
      //   subtracting the total block weight from all the known
      //   edge weights. If the edges weight more than BB, then the
      //   edge of the last remaining edge is set to zero.
      //
      // - There exists a self-referential edge and the weight of BB is
      //   known. In this case, this edge can be based on BB's weight.
      //   We add up all the other known edges and set the weight on
      //   the self-referential edge as we did in the previous case.
      //
      // In any other case, we must continue iterating. Eventually,
      // all edges will get a weight, or iteration will stop when
      // it reaches SampleProfileMaxPropagateIterations.
      if (NumUnknownEdges <= 1) {
        uint64_t &BBWeight = BlockWeights[EC];
        if (NumUnknownEdges == 0) {
          if (!VisitedBlocks.count(EC)) {
            // If we already know the weight of all edges, the weight of the
            // basic block can be computed. It should be no larger than the sum
            // of all edge weights.
            if (TotalWeight > BBWeight) {
              BBWeight = TotalWeight;
              Changed = true;
              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
                                << " known. Set weight for block: ";
                         printBlockWeight(dbgs(), BB););
            }
          } else if (NumTotalEdges == 1 &&
                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
            // If there is only one edge for the visited basic block, use the
            // block weight to adjust edge weight if edge weight is smaller.
            EdgeWeights[SingleEdge] = BlockWeights[EC];
            Changed = true;
          }
        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
          // If there is a single unknown edge and the block has been
          // visited, then we can compute E's weight.
          if (BBWeight >= TotalWeight)
            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
          else
            EdgeWeights[UnknownEdge] = 0;
          const BasicBlock *OtherEC;
          if (i == 0)
            OtherEC = EquivalenceClass[UnknownEdge.first];
          else
            OtherEC = EquivalenceClass[UnknownEdge.second];
          // Edge weights should never exceed the BB weights it connects.
          if (VisitedBlocks.count(OtherEC) &&
              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
          VisitedEdges.insert(UnknownEdge);
          Changed = true;
          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
                     printEdgeWeight(dbgs(), UnknownEdge));
        }
      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
        // If a block Weights 0, all its in/out edges should weight 0.
        if (i == 0) {
          for (auto *Pred : Predecessors[BB]) {
            Edge E = std::make_pair(Pred, BB);
            EdgeWeights[E] = 0;
            VisitedEdges.insert(E);
          }
        } else {
          for (auto *Succ : Successors[BB]) {
            Edge E = std::make_pair(BB, Succ);
            EdgeWeights[E] = 0;
            VisitedEdges.insert(E);
          }
        }
      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
        uint64_t &BBWeight = BlockWeights[BB];
        // We have a self-referential edge and the weight of BB is known.
        if (BBWeight >= TotalWeight)
          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
        else
          EdgeWeights[SelfReferentialEdge] = 0;
        VisitedEdges.insert(SelfReferentialEdge);
        Changed = true;
        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
                   printEdgeWeight(dbgs(), SelfReferentialEdge));
      }
      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
        BlockWeights[EC] = TotalWeight;
        VisitedBlocks.insert(EC);
        Changed = true;
      }
    }
  }

  return Changed;
}

/// Build in/out edge lists for each basic block in the CFG.
///
/// We are interested in unique edges. If a block B1 has multiple
/// edges to another block B2, we only add a single B1->B2 edge.
void SampleProfileLoader::buildEdges(Function &F) {
  for (auto &BI : F) {
    BasicBlock *B1 = &BI;

    // Add predecessors for B1.
    SmallPtrSet<BasicBlock *, 16> Visited;
    if (!Predecessors[B1].empty())
      llvm_unreachable("Found a stale predecessors list in a basic block.");
    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
      BasicBlock *B2 = *PI;
      if (Visited.insert(B2).second)
        Predecessors[B1].push_back(B2);
    }

    // Add successors for B1.
    Visited.clear();
    if (!Successors[B1].empty())
      llvm_unreachable("Found a stale successors list in a basic block.");
    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
      BasicBlock *B2 = *SI;
      if (Visited.insert(B2).second)
        Successors[B1].push_back(B2);
    }
  }
}

/// Returns the sorted CallTargetMap \p M by count in descending order.
static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
    const SampleRecord::CallTargetMap & M) {
  SmallVector<InstrProfValueData, 2> R;
  for (const auto &I : SampleRecord::SortCallTargets(M)) {
    R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
  }
  return R;
}

/// Propagate weights into edges
///
/// The following rules are applied to every block BB in the CFG:
///
/// - If BB has a single predecessor/successor, then the weight
///   of that edge is the weight of the block.
///
/// - If all incoming or outgoing edges are known except one, and the
///   weight of the block is already known, the weight of the unknown
///   edge will be the weight of the block minus the sum of all the known
///   edges. If the sum of all the known edges is larger than BB's weight,
///   we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
///   known, the weight for that edge is set to the weight of the block
///   minus the weight of the other incoming edges to that block (if
///   known).
void SampleProfileLoader::propagateWeights(Function &F) {
  bool Changed = true;
  unsigned I = 0;

  // If BB weight is larger than its corresponding loop's header BB weight,
  // use the BB weight to replace the loop header BB weight.
  for (auto &BI : F) {
    BasicBlock *BB = &BI;
    Loop *L = LI->getLoopFor(BB);
    if (!L) {
      continue;
    }
    BasicBlock *Header = L->getHeader();
    if (Header && BlockWeights[BB] > BlockWeights[Header]) {
      BlockWeights[Header] = BlockWeights[BB];
    }
  }

  // Before propagation starts, build, for each block, a list of
  // unique predecessors and successors. This is necessary to handle
  // identical edges in multiway branches. Since we visit all blocks and all
  // edges of the CFG, it is cleaner to build these lists once at the start
  // of the pass.
  buildEdges(F);

  // Propagate until we converge or we go past the iteration limit.
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, false);
  }

  // The first propagation propagates BB counts from annotated BBs to unknown
  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
  // to propagate edge weights.
  VisitedEdges.clear();
  Changed = true;
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, false);
  }

  // The 3rd propagation pass allows adjust annotated BB weights that are
  // obviously wrong.
  Changed = true;
  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F, true);
  }

  // Generate MD_prof metadata for every branch instruction using the
  // edge weights computed during propagation.
  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
  LLVMContext &Ctx = F.getContext();
  MDBuilder MDB(Ctx);
  for (auto &BI : F) {
    BasicBlock *BB = &BI;

    if (BlockWeights[BB]) {
      for (auto &I : BB->getInstList()) {
        if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
          continue;
        CallSite CS(&I);
        if (!CS.getCalledFunction()) {
          const DebugLoc &DLoc = I.getDebugLoc();
          if (!DLoc)
            continue;
          const DILocation *DIL = DLoc;
          uint32_t LineOffset = FunctionSamples::getOffset(DIL);
          uint32_t Discriminator = DIL->getBaseDiscriminator();

          const FunctionSamples *FS = findFunctionSamples(I);
          if (!FS)
            continue;
          auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
          if (!T || T.get().empty())
            continue;
          SmallVector<InstrProfValueData, 2> SortedCallTargets =
              GetSortedValueDataFromCallTargets(T.get());
          uint64_t Sum;
          findIndirectCallFunctionSamples(I, Sum);
          annotateValueSite(*I.getParent()->getParent()->getParent(), I,
                            SortedCallTargets, Sum, IPVK_IndirectCallTarget,
                            SortedCallTargets.size());
        } else if (!isa<IntrinsicInst>(&I)) {
          I.setMetadata(LLVMContext::MD_prof,
                        MDB.createBranchWeights(
                            {static_cast<uint32_t>(BlockWeights[BB])}));
        }
      }
    }
    Instruction *TI = BB->getTerminator();
    if (TI->getNumSuccessors() == 1)
      continue;
    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
      continue;

    DebugLoc BranchLoc = TI->getDebugLoc();
    LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
                      << ((BranchLoc) ? Twine(BranchLoc.getLine())
                                      : Twine("<UNKNOWN LOCATION>"))
                      << ".\n");
    SmallVector<uint32_t, 4> Weights;
    uint32_t MaxWeight = 0;
    Instruction *MaxDestInst;
    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
      BasicBlock *Succ = TI->getSuccessor(I);
      Edge E = std::make_pair(BB, Succ);
      uint64_t Weight = EdgeWeights[E];
      LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
      // Use uint32_t saturated arithmetic to adjust the incoming weights,
      // if needed. Sample counts in profiles are 64-bit unsigned values,
      // but internally branch weights are expressed as 32-bit values.
      if (Weight > std::numeric_limits<uint32_t>::max()) {
        LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
        Weight = std::numeric_limits<uint32_t>::max();
      }
      // Weight is added by one to avoid propagation errors introduced by
      // 0 weights.
      Weights.push_back(static_cast<uint32_t>(Weight + 1));
      if (Weight != 0) {
        if (Weight > MaxWeight) {
          MaxWeight = Weight;
          MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
        }
      }
    }

    misexpect::verifyMisExpect(TI, Weights, TI->getContext());

    uint64_t TempWeight;
    // Only set weights if there is at least one non-zero weight.
    // In any other case, let the analyzer set weights.
    // Do not set weights if the weights are present. In ThinLTO, the profile
    // annotation is done twice. If the first annotation already set the
    // weights, the second pass does not need to set it.
    if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
      LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
      TI->setMetadata(LLVMContext::MD_prof,
                      MDB.createBranchWeights(Weights));
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
               << "most popular destination for conditional branches at "
               << ore::NV("CondBranchesLoc", BranchLoc);
      });
    } else {
      LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
    }
  }
}

/// Get the line number for the function header.
///
/// This looks up function \p F in the current compilation unit and
/// retrieves the line number where the function is defined. This is
/// line 0 for all the samples read from the profile file. Every line
/// number is relative to this line.
///
/// \param F  Function object to query.
///
/// \returns the line number where \p F is defined. If it returns 0,
///          it means that there is no debug information available for \p F.
unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
  if (DISubprogram *S = F.getSubprogram())
    return S->getLine();

  if (NoWarnSampleUnused)
    return 0;

  // If the start of \p F is missing, emit a diagnostic to inform the user
  // about the missed opportunity.
  F.getContext().diagnose(DiagnosticInfoSampleProfile(
      "No debug information found in function " + F.getName() +
          ": Function profile not used",
      DS_Warning));
  return 0;
}

void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
  DT.reset(new DominatorTree);
  DT->recalculate(F);

  PDT.reset(new PostDominatorTree(F));

  LI.reset(new LoopInfo);
  LI->analyze(*DT);
}

/// Generate branch weight metadata for all branches in \p F.
///
/// Branch weights are computed out of instruction samples using a
/// propagation heuristic. Propagation proceeds in 3 phases:
///
/// 1- Assignment of block weights. All the basic blocks in the function
///    are initial assigned the same weight as their most frequently
///    executed instruction.
///
/// 2- Creation of equivalence classes. Since samples may be missing from
///    blocks, we can fill in the gaps by setting the weights of all the
///    blocks in the same equivalence class to the same weight. To compute
///    the concept of equivalence, we use dominance and loop information.
///    Two blocks B1 and B2 are in the same equivalence class if B1
///    dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// 3- Propagation of block weights into edges. This uses a simple
///    propagation heuristic. The following rules are applied to every
///    block BB in the CFG:
///
///    - If BB has a single predecessor/successor, then the weight
///      of that edge is the weight of the block.
///
///    - If all the edges are known except one, and the weight of the
///      block is already known, the weight of the unknown edge will
///      be the weight of the block minus the sum of all the known
///      edges. If the sum of all the known edges is larger than BB's weight,
///      we set the unknown edge weight to zero.
///
///    - If there is a self-referential edge, and the weight of the block is
///      known, the weight for that edge is set to the weight of the block
///      minus the weight of the other incoming edges to that block (if
///      known).
///
/// Since this propagation is not guaranteed to finalize for every CFG, we
/// only allow it to proceed for a limited number of iterations (controlled
/// by -sample-profile-max-propagate-iterations).
///
/// FIXME: Try to replace this propagation heuristic with a scheme
/// that is guaranteed to finalize. A work-list approach similar to
/// the standard value propagation algorithm used by SSA-CCP might
/// work here.
///
/// Once all the branch weights are computed, we emit the MD_prof
/// metadata on BB using the computed values for each of its branches.
///
/// \param F The function to query.
///
/// \returns true if \p F was modified. Returns false, otherwise.
bool SampleProfileLoader::emitAnnotations(Function &F) {
  bool Changed = false;

  if (getFunctionLoc(F) == 0)
    return false;

  LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
                    << F.getName() << ": " << getFunctionLoc(F) << "\n");

  DenseSet<GlobalValue::GUID> InlinedGUIDs;
  Changed |= inlineHotFunctions(F, InlinedGUIDs);

  // Compute basic block weights.
  Changed |= computeBlockWeights(F);

  if (Changed) {
    // Add an entry count to the function using the samples gathered at the
    // function entry.
    // Sets the GUIDs that are inlined in the profiled binary. This is used
    // for ThinLink to make correct liveness analysis, and also make the IR
    // match the profiled binary before annotation.
    F.setEntryCount(
        ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
        &InlinedGUIDs);

    // Compute dominance and loop info needed for propagation.
    computeDominanceAndLoopInfo(F);

    // Find equivalence classes.
    findEquivalenceClasses(F);

    // Propagate weights to all edges.
    propagateWeights(F);
  }

  // If coverage checking was requested, compute it now.
  if (SampleProfileRecordCoverage) {
    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
    if (Coverage < SampleProfileRecordCoverage) {
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
              Twine(Coverage) + "%) were applied",
          DS_Warning));
    }
  }

  if (SampleProfileSampleCoverage) {
    uint64_t Used = CoverageTracker.getTotalUsedSamples();
    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
    if (Coverage < SampleProfileSampleCoverage) {
      F.getContext().diagnose(DiagnosticInfoSampleProfile(
          F.getSubprogram()->getFilename(), getFunctionLoc(F),
          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
              Twine(Coverage) + "%) were applied",
          DS_Warning));
    }
  }
  return Changed;
}

char SampleProfileLoaderLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
                      "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
                    "Sample Profile loader", false, false)

bool SampleProfileLoader::doInitialization(Module &M) {
  auto &Ctx = M.getContext();

  std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
  auto ReaderOrErr =
      SampleProfileReader::create(Filename, Ctx, RemappingFilename);
  if (std::error_code EC = ReaderOrErr.getError()) {
    std::string Msg = "Could not open profile: " + EC.message();
    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
    return false;
  }
  Reader = std::move(ReaderOrErr.get());
  Reader->collectFuncsFrom(M);
  ProfileIsValid = (Reader->read() == sampleprof_error::success);
  PSL = Reader->getProfileSymbolList();

  // While profile-sample-accurate is on, ignore symbol list.
  ProfAccForSymsInList =
      ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
  if (ProfAccForSymsInList) {
    NamesInProfile.clear();
    if (auto NameTable = Reader->getNameTable())
      NamesInProfile.insert(NameTable->begin(), NameTable->end());
  }

  return true;
}

ModulePass *llvm::createSampleProfileLoaderPass() {
  return new SampleProfileLoaderLegacyPass();
}

ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
  return new SampleProfileLoaderLegacyPass(Name);
}

bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
                                      ProfileSummaryInfo *_PSI) {
  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
  if (!ProfileIsValid)
    return false;

  PSI = _PSI;
  if (M.getProfileSummary(/* IsCS */ false) == nullptr)
    M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
                        ProfileSummary::PSK_Sample);

  // Compute the total number of samples collected in this profile.
  for (const auto &I : Reader->getProfiles())
    TotalCollectedSamples += I.second.getTotalSamples();

  // Populate the symbol map.
  for (const auto &N_F : M.getValueSymbolTable()) {
    StringRef OrigName = N_F.getKey();
    Function *F = dyn_cast<Function>(N_F.getValue());
    if (F == nullptr)
      continue;
    SymbolMap[OrigName] = F;
    auto pos = OrigName.find('.');
    if (pos != StringRef::npos) {
      StringRef NewName = OrigName.substr(0, pos);
      auto r = SymbolMap.insert(std::make_pair(NewName, F));
      // Failiing to insert means there is already an entry in SymbolMap,
      // thus there are multiple functions that are mapped to the same
      // stripped name. In this case of name conflicting, set the value
      // to nullptr to avoid confusion.
      if (!r.second)
        r.first->second = nullptr;
    }
  }

  bool retval = false;
  for (auto &F : M)
    if (!F.isDeclaration()) {
      clearFunctionData();
      retval |= runOnFunction(F, AM);
    }

  // Account for cold calls not inlined....
  for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
       notInlinedCallInfo)
    updateProfileCallee(pair.first, pair.second.entryCount);

  return retval;
}

bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
  ACT = &getAnalysis<AssumptionCacheTracker>();
  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  return SampleLoader.runOnModule(M, nullptr, PSI);
}

bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {

  DILocation2SampleMap.clear();
  // By default the entry count is initialized to -1, which will be treated
  // conservatively by getEntryCount as the same as unknown (None). This is
  // to avoid newly added code to be treated as cold. If we have samples
  // this will be overwritten in emitAnnotations.
  uint64_t initialEntryCount = -1;

  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
    // initialize all the function entry counts to 0. It means all the
    // functions without profile will be regarded as cold.
    initialEntryCount = 0;
    // profile-sample-accurate is a user assertion which has a higher precedence
    // than symbol list. When profile-sample-accurate is on, ignore symbol list.
    ProfAccForSymsInList = false;
  }

  // PSL -- profile symbol list include all the symbols in sampled binary.
  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
  // old functions without samples being cold, without having to worry
  // about new and hot functions being mistakenly treated as cold.
  if (ProfAccForSymsInList) {
    // Initialize the entry count to 0 for functions in the list.
    if (PSL->contains(F.getName()))
      initialEntryCount = 0;

    // Function in the symbol list but without sample will be regarded as
    // cold. To minimize the potential negative performance impact it could
    // have, we want to be a little conservative here saying if a function
    // shows up in the profile, no matter as outline function, inline instance
    // or call targets, treat the function as not being cold. This will handle
    // the cases such as most callsites of a function are inlined in sampled
    // binary but not inlined in current build (because of source code drift,
    // imprecise debug information, or the callsites are all cold individually
    // but not cold accumulatively...), so the outline function showing up as
    // cold in sampled binary will actually not be cold after current build.
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
    if (NamesInProfile.count(CanonName))
      initialEntryCount = -1;
  }

  F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
  if (AM) {
    auto &FAM =
        AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
            .getManager();
    ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  } else {
    OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
    ORE = OwnedORE.get();
  }
  Samples = Reader->getSamplesFor(F);
  if (Samples && !Samples->empty())
    return emitAnnotations(F);
  return false;
}

PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
                                               ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };
  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
    return FAM.getResult<TargetIRAnalysis>(F);
  };

  SampleProfileLoader SampleLoader(
      ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
      ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
                                       : ProfileRemappingFileName,
      IsThinLTOPreLink, GetAssumptionCache, GetTTI);

  SampleLoader.doInitialization(M);

  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
  if (!SampleLoader.runOnModule(M, &AM, PSI))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}