reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
//===- llvm/Support/ErrorOr.h - Error Smart Pointer -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Provides ErrorOr<T> smart pointer.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_ERROROR_H
#define LLVM_SUPPORT_ERROROR_H

#include "llvm/Support/AlignOf.h"
#include <cassert>
#include <system_error>
#include <type_traits>
#include <utility>

namespace llvm {

/// Represents either an error or a value T.
///
/// ErrorOr<T> is a pointer-like class that represents the result of an
/// operation. The result is either an error, or a value of type T. This is
/// designed to emulate the usage of returning a pointer where nullptr indicates
/// failure. However instead of just knowing that the operation failed, we also
/// have an error_code and optional user data that describes why it failed.
///
/// It is used like the following.
/// \code
///   ErrorOr<Buffer> getBuffer();
///
///   auto buffer = getBuffer();
///   if (error_code ec = buffer.getError())
///     return ec;
///   buffer->write("adena");
/// \endcode
///
///
/// Implicit conversion to bool returns true if there is a usable value. The
/// unary * and -> operators provide pointer like access to the value. Accessing
/// the value when there is an error has undefined behavior.
///
/// When T is a reference type the behavior is slightly different. The reference
/// is held in a std::reference_wrapper<std::remove_reference<T>::type>, and
/// there is special handling to make operator -> work as if T was not a
/// reference.
///
/// T cannot be a rvalue reference.
template<class T>
class ErrorOr {
  template <class OtherT> friend class ErrorOr;

  static const bool isRef = std::is_reference<T>::value;

  using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;

public:
  using storage_type = typename std::conditional<isRef, wrap, T>::type;

private:
  using reference = typename std::remove_reference<T>::type &;
  using const_reference = const typename std::remove_reference<T>::type &;
  using pointer = typename std::remove_reference<T>::type *;
  using const_pointer = const typename std::remove_reference<T>::type *;

public:
  template <class E>
  ErrorOr(E ErrorCode,
          typename std::enable_if<std::is_error_code_enum<E>::value ||
                                      std::is_error_condition_enum<E>::value,
                                  void *>::type = nullptr)
      : HasError(true) {
    new (getErrorStorage()) std::error_code(make_error_code(ErrorCode));
  }

  ErrorOr(std::error_code EC) : HasError(true) {
    new (getErrorStorage()) std::error_code(EC);
  }

  template <class OtherT>
  ErrorOr(OtherT &&Val,
          typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
              * = nullptr)
      : HasError(false) {
    new (getStorage()) storage_type(std::forward<OtherT>(Val));
  }

  ErrorOr(const ErrorOr &Other) {
    copyConstruct(Other);
  }

  template <class OtherT>
  ErrorOr(
      const ErrorOr<OtherT> &Other,
      typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
          nullptr) {
    copyConstruct(Other);
  }

  template <class OtherT>
  explicit ErrorOr(
      const ErrorOr<OtherT> &Other,
      typename std::enable_if<
          !std::is_convertible<OtherT, const T &>::value>::type * = nullptr) {
    copyConstruct(Other);
  }

  ErrorOr(ErrorOr &&Other) {
    moveConstruct(std::move(Other));
  }

  template <class OtherT>
  ErrorOr(
      ErrorOr<OtherT> &&Other,
      typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
          nullptr) {
    moveConstruct(std::move(Other));
  }

  // This might eventually need SFINAE but it's more complex than is_convertible
  // & I'm too lazy to write it right now.
  template <class OtherT>
  explicit ErrorOr(
      ErrorOr<OtherT> &&Other,
      typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
          nullptr) {
    moveConstruct(std::move(Other));
  }

  ErrorOr &operator=(const ErrorOr &Other) {
    copyAssign(Other);
    return *this;
  }

  ErrorOr &operator=(ErrorOr &&Other) {
    moveAssign(std::move(Other));
    return *this;
  }

  ~ErrorOr() {
    if (!HasError)
      getStorage()->~storage_type();
  }

  /// Return false if there is an error.
  explicit operator bool() const {
    return !HasError;
  }

  reference get() { return *getStorage(); }
  const_reference get() const { return const_cast<ErrorOr<T> *>(this)->get(); }

  std::error_code getError() const {
    return HasError ? *getErrorStorage() : std::error_code();
  }

  pointer operator ->() {
    return toPointer(getStorage());
  }

  const_pointer operator->() const { return toPointer(getStorage()); }

  reference operator *() {
    return *getStorage();
  }

  const_reference operator*() const { return *getStorage(); }

private:
  template <class OtherT>
  void copyConstruct(const ErrorOr<OtherT> &Other) {
    if (!Other.HasError) {
      // Get the other value.
      HasError = false;
      new (getStorage()) storage_type(*Other.getStorage());
    } else {
      // Get other's error.
      HasError = true;
      new (getErrorStorage()) std::error_code(Other.getError());
    }
  }

  template <class T1>
  static bool compareThisIfSameType(const T1 &a, const T1 &b) {
    return &a == &b;
  }

  template <class T1, class T2>
  static bool compareThisIfSameType(const T1 &a, const T2 &b) {
    return false;
  }

  template <class OtherT>
  void copyAssign(const ErrorOr<OtherT> &Other) {
    if (compareThisIfSameType(*this, Other))
      return;

    this->~ErrorOr();
    new (this) ErrorOr(Other);
  }

  template <class OtherT>
  void moveConstruct(ErrorOr<OtherT> &&Other) {
    if (!Other.HasError) {
      // Get the other value.
      HasError = false;
      new (getStorage()) storage_type(std::move(*Other.getStorage()));
    } else {
      // Get other's error.
      HasError = true;
      new (getErrorStorage()) std::error_code(Other.getError());
    }
  }

  template <class OtherT>
  void moveAssign(ErrorOr<OtherT> &&Other) {
    if (compareThisIfSameType(*this, Other))
      return;

    this->~ErrorOr();
    new (this) ErrorOr(std::move(Other));
  }

  pointer toPointer(pointer Val) {
    return Val;
  }

  const_pointer toPointer(const_pointer Val) const { return Val; }

  pointer toPointer(wrap *Val) {
    return &Val->get();
  }

  const_pointer toPointer(const wrap *Val) const { return &Val->get(); }

  storage_type *getStorage() {
    assert(!HasError && "Cannot get value when an error exists!");
    return reinterpret_cast<storage_type*>(TStorage.buffer);
  }

  const storage_type *getStorage() const {
    assert(!HasError && "Cannot get value when an error exists!");
    return reinterpret_cast<const storage_type*>(TStorage.buffer);
  }

  std::error_code *getErrorStorage() {
    assert(HasError && "Cannot get error when a value exists!");
    return reinterpret_cast<std::error_code *>(ErrorStorage.buffer);
  }

  const std::error_code *getErrorStorage() const {
    return const_cast<ErrorOr<T> *>(this)->getErrorStorage();
  }

  union {
    AlignedCharArrayUnion<storage_type> TStorage;
    AlignedCharArrayUnion<std::error_code> ErrorStorage;
  };
  bool HasError : 1;
};

template <class T, class E>
typename std::enable_if<std::is_error_code_enum<E>::value ||
                            std::is_error_condition_enum<E>::value,
                        bool>::type
operator==(const ErrorOr<T> &Err, E Code) {
  return Err.getError() == Code;
}

} // end namespace llvm

#endif // LLVM_SUPPORT_ERROROR_H