reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the shuffling of insns inside a bundle according to the
// packet formation rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hexagon-shuffle"

#include "MCTargetDesc/HexagonShuffler.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

// Insn shuffling priority.
class HexagonBid {
  // The priority is directly proportional to how restricted the insn is based
  // on its flexibility to run on the available slots.  So, the fewer slots it
  // may run on, the higher its priority.
  enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15.
  unsigned Bid = 0;

public:
  HexagonBid() = default;
  HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; }

  // Check if the insn priority is overflowed.
  bool isSold() const { return (Bid >= MAX); }

  HexagonBid &operator+=(const HexagonBid &B) {
    Bid += B.Bid;
    return *this;
  }
};

// Slot shuffling allocation.
class HexagonUnitAuction {
  HexagonBid Scores[HEXAGON_PACKET_SIZE];
  // Mask indicating which slot is unavailable.
  unsigned isSold : HEXAGON_PACKET_SIZE;

public:
  HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {}

  // Allocate slots.
  bool bid(unsigned B) {
    // Exclude already auctioned slots from the bid.
    unsigned b = B & ~isSold;
    if (b) {
      for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i)
        if (b & (1 << i)) {
          // Request candidate slots.
          Scores[i] += HexagonBid(b);
          isSold |= Scores[i].isSold() << i;
        }
      return true;
    } else
      // Error if the desired slots are already full.
      return false;
  }
};

} // end anonymous namespace

unsigned HexagonResource::setWeight(unsigned s) {
  const unsigned SlotWeight = 8;
  const unsigned MaskWeight = SlotWeight - 1;
  unsigned Units = getUnits();
  unsigned Key = ((1u << s) & Units) != 0;

  // Calculate relative weight of the insn for the given slot, weighing it the
  // heavier the more restrictive the insn is and the lowest the slots that the
  // insn may be executed in.
  if (Key == 0 || Units == 0 || (SlotWeight * s >= 32))
    return Weight = 0;

  unsigned Ctpop = countPopulation(Units);
  unsigned Cttz = countTrailingZeros(Units);
  Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz);
  return Weight;
}

void HexagonCVIResource::SetupTUL(TypeUnitsAndLanes *TUL, StringRef CPU) {
  (*TUL)[HexagonII::TypeCVI_VA] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VA_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_VX] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VX_LATE] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VX_DV] = UnitsAndLanes(CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_VP] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_VP_VS] = UnitsAndLanes(CVI_XLANE, 2);
  (*TUL)[HexagonII::TypeCVI_VS] = UnitsAndLanes(CVI_SHIFT, 1);
  (*TUL)[HexagonII::TypeCVI_VS_VX] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT, 1);
  (*TUL)[HexagonII::TypeCVI_VINLANESAT] =
      (CPU == "hexagonv60")
          ? UnitsAndLanes(CVI_SHIFT, 1)
          : UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_LD] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_TMP_LD] = UnitsAndLanes(CVI_NONE, 0);
  (*TUL)[HexagonII::TypeCVI_VM_VP_LDU] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_VM_ST] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_VM_NEW_ST] = UnitsAndLanes(CVI_NONE, 0);
  (*TUL)[HexagonII::TypeCVI_VM_STU] = UnitsAndLanes(CVI_XLANE, 1);
  (*TUL)[HexagonII::TypeCVI_HIST] = UnitsAndLanes(CVI_XLANE, 4);
  (*TUL)[HexagonII::TypeCVI_GATHER] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_SCATTER] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_SCATTER_DV] =
      UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2);
  (*TUL)[HexagonII::TypeCVI_SCATTER_NEW_ST] =
      UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1);
  (*TUL)[HexagonII::TypeCVI_4SLOT_MPY] = UnitsAndLanes(CVI_XLANE, 4);
  (*TUL)[HexagonII::TypeCVI_ZW] = UnitsAndLanes(CVI_ZW, 1);
}

HexagonCVIResource::HexagonCVIResource(TypeUnitsAndLanes *TUL,
                                       MCInstrInfo const &MCII, unsigned s,
                                       MCInst const *id)
    : HexagonResource(s) {
  unsigned T = HexagonMCInstrInfo::getType(MCII, *id);

  if (TUL->count(T)) {
    // For an HVX insn.
    Valid = true;
    setUnits((*TUL)[T].first);
    setLanes((*TUL)[T].second);
    setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad());
    setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore());
  } else {
    // For core insns.
    Valid = false;
    setUnits(0);
    setLanes(0);
    setLoad(false);
    setStore(false);
  }
}

struct CVIUnits {
  unsigned Units;
  unsigned Lanes;
};
using HVXInstsT = SmallVector<struct CVIUnits, 8>;

static unsigned makeAllBits(unsigned startBit, unsigned Lanes)
{
  for (unsigned i = 1; i < Lanes; ++i)
    startBit = (startBit << 1) | startBit;
  return startBit;
}

static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx,
                          unsigned usedUnits) {
  if (startIdx < hvxInsts.size()) {
    if (!hvxInsts[startIdx].Units)
      return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits);
    for (unsigned b = 0x1; b <= 0x8; b <<= 1) {
      if ((hvxInsts[startIdx].Units & b) == 0)
        continue;
      unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes);
      if ((allBits & usedUnits) == 0) {
        if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits))
          return true;
      }
    }
    return false;
  }
  return true;
}

HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors,
                                 MCInstrInfo const &MCII,
                                 MCSubtargetInfo const &STI)
    : Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) {
  reset();
  HexagonCVIResource::SetupTUL(&TUL, STI.getCPU());
}

void HexagonShuffler::reset() {
  Packet.clear();
  BundleFlags = 0;
}

void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender,
                             unsigned S) {
  HexagonInstr PI(&TUL, MCII, &ID, Extender, S);

  Packet.push_back(PI);
}

static struct {
  unsigned first;
  unsigned second;
} jumpSlots[] = {{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}};
#define MAX_JUMP_SLOTS (sizeof(jumpSlots) / sizeof(jumpSlots[0]))

void HexagonShuffler::restrictSlot1AOK() {
  bool HasRestrictSlot1AOK = false;
  SMLoc RestrictLoc;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &Inst = ISJ->getDesc();
    if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, Inst)) {
      HasRestrictSlot1AOK = true;
      RestrictLoc = Inst.getLoc();
    }
  }
  if (HasRestrictSlot1AOK)
    for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
      MCInst const &Inst = ISJ->getDesc();
      unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst);
      if (Type != HexagonII::TypeALU32_2op &&
          Type != HexagonII::TypeALU32_3op &&
          Type != HexagonII::TypeALU32_ADDI) {
        unsigned Units = ISJ->Core.getUnits();
        if (Units & 2U) {
          AppliedRestrictions.push_back(std::make_pair(
              Inst.getLoc(),
              "Instruction was restricted from being in slot 1"));
          AppliedRestrictions.push_back(
              std::make_pair(RestrictLoc, "Instruction can only be combine "
                                          "with an ALU instruction in slot 1"));
          ISJ->Core.setUnits(Units & ~2U);
        }
      }
    }
}

void HexagonShuffler::restrictNoSlot1Store() {
  bool HasRestrictNoSlot1Store = false;
  SMLoc RestrictLoc;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &Inst = ISJ->getDesc();
    if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, Inst)) {
      HasRestrictNoSlot1Store = true;
      RestrictLoc = Inst.getLoc();
    }
  }
  if (HasRestrictNoSlot1Store) {
    bool AppliedRestriction = false;
    for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
      MCInst const &Inst = ISJ->getDesc();
      if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) {
        unsigned Units = ISJ->Core.getUnits();
        if (Units & 2U) {
          AppliedRestriction = true;
          AppliedRestrictions.push_back(std::make_pair(
              Inst.getLoc(),
              "Instruction was restricted from being in slot 1"));
          ISJ->Core.setUnits(Units & ~2U);
        }
      }
    }
    if (AppliedRestriction)
      AppliedRestrictions.push_back(std::make_pair(
          RestrictLoc, "Instruction does not allow a store in slot 1"));
  }
}

void HexagonShuffler::applySlotRestrictions() {
  restrictSlot1AOK();
  restrictNoSlot1Store();
}

/// Check that the packet is legal and enforce relative insn order.
bool HexagonShuffler::check() {
  // Descriptive slot masks.
  const unsigned slotSingleLoad = 0x1, slotSingleStore = 0x1,
                 slotThree = 0x8, // slotFirstJump = 0x8,
                 slotFirstLoadStore = 0x2, slotLastLoadStore = 0x1;
  // Highest slots for branches and stores used to keep their original order.
  // unsigned slotJump = slotFirstJump;
  unsigned slotLoadStore = slotFirstLoadStore;
  // Number of memory operations, loads, solo loads, stores, solo stores, single
  // stores.
  unsigned memory = 0, loads = 0, load0 = 0, stores = 0, store0 = 0, store1 = 0;
  unsigned NonZCVIloads = 0, AllCVIloads = 0, CVIstores = 0;
  // Number of duplex insns
  unsigned duplex = 0;
  unsigned pSlot3Cnt = 0;
  unsigned memops = 0;
  iterator slot3ISJ = end();
  std::vector<iterator> foundBranches;
  unsigned reservedSlots = 0;

  // Collect information from the insns in the packet.
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &ID = ISJ->getDesc();

    if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) {
      ++pSlot3Cnt;
      slot3ISJ = ISJ;
    }
    reservedSlots |= HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID);

    switch (HexagonMCInstrInfo::getType(MCII, ID)) {
    case HexagonII::TypeS_2op:
    case HexagonII::TypeS_3op:
    case HexagonII::TypeALU64:
      break;
    case HexagonII::TypeJ:
      foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeCVI_VM_VP_LDU:
    case HexagonII::TypeCVI_VM_LD:
    case HexagonII::TypeCVI_VM_TMP_LD:
    case HexagonII::TypeCVI_GATHER:
    case HexagonII::TypeCVI_GATHER_RST:
      ++NonZCVIloads;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeCVI_ZW:
      ++AllCVIloads;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeLD:
      ++loads;
      ++memory;
      if (ISJ->Core.getUnits() == slotSingleLoad ||
          HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU)
        ++load0;
      if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn())
        foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeCVI_VM_STU:
    case HexagonII::TypeCVI_VM_ST:
    case HexagonII::TypeCVI_VM_NEW_ST:
    case HexagonII::TypeCVI_SCATTER:
    case HexagonII::TypeCVI_SCATTER_DV:
    case HexagonII::TypeCVI_SCATTER_RST:
    case HexagonII::TypeCVI_SCATTER_NEW_RST:
    case HexagonII::TypeCVI_SCATTER_NEW_ST:
      ++CVIstores;
      LLVM_FALLTHROUGH;
    case HexagonII::TypeST:
      ++stores;
      ++memory;
      if (ISJ->Core.getUnits() == slotSingleStore ||
          HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU)
        ++store0;
      break;
    case HexagonII::TypeV4LDST:
      ++loads;
      ++stores;
      ++store1;
      ++memops;
      ++memory;
      break;
    case HexagonII::TypeNCJ:
      ++memory; // NV insns are memory-like.
      foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeV2LDST:
      if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
        ++loads;
        ++memory;
        if (ISJ->Core.getUnits() == slotSingleLoad ||
            HexagonMCInstrInfo::getType(MCII, ID) ==
                HexagonII::TypeCVI_VM_VP_LDU)
          ++load0;
      } else {
        assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore());
        ++memory;
        ++stores;
      }
      break;
    case HexagonII::TypeCR:
    // Legacy conditional branch predicated on a register.
    case HexagonII::TypeCJ:
      if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch())
        foundBranches.push_back(ISJ);
      break;
    case HexagonII::TypeDUPLEX: {
      ++duplex;
      MCInst const &Inst0 = *ID.getOperand(0).getInst();
      MCInst const &Inst1 = *ID.getOperand(1).getInst();
      if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn())
        foundBranches.push_back(ISJ);
      if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn())
        foundBranches.push_back(ISJ);
      break;
    }
    }
  }
  applySlotRestrictions();

  // Check if the packet is legal.
  const unsigned ZCVIloads = AllCVIloads - NonZCVIloads;
  const bool ValidHVXMem =
      NonZCVIloads <= 1 && ZCVIloads <= 1 && CVIstores <= 1;
  if ((load0 > 1 || store0 > 1 || !ValidHVXMem) ||
      (duplex > 1 || (duplex && memory))) {
    reportError(llvm::Twine("invalid instruction packet"));
    return false;
  }

  // Modify packet accordingly.
  // TODO: need to reserve slots #0 and #1 for duplex insns.
  bool bOnlySlot3 = false;
  for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
    MCInst const &ID = ISJ->getDesc();

    if (!ISJ->Core.getUnits()) {
      // Error if insn may not be executed in any slot.
      return false;
    }

    // A single load must use slot #0.
    if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
      if (loads == 1 && loads == memory && memops == 0)
        // Pin the load to slot #0.
        switch (ID.getOpcode()) {
        case Hexagon::V6_vgathermw:
        case Hexagon::V6_vgathermh:
        case Hexagon::V6_vgathermhw:
        case Hexagon::V6_vgathermwq:
        case Hexagon::V6_vgathermhq:
        case Hexagon::V6_vgathermhwq:
          // Slot1 only loads
          break;
        default:
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad);
          break;
        }
      else if (loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf
        // Loads must keep the original order ONLY if
        // isMemReorderDisabled() == true
        if (slotLoadStore < slotLastLoadStore) {
          // Error if no more slots available for loads.
          reportError(
              llvm::Twine("invalid instruction packet: too many loads"));
          return false;
        }
        // Pin the load to the highest slot available to it.
        ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
        // Update the next highest slot available to loads.
        slotLoadStore >>= 1;
      }
    }

    // A single store must use slot #0.
    if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) {
      if (!store0) {
        if (stores == 1 && (loads == 0 || !isMemReorderDisabled()))
          // Pin the store to slot #0 only if isMemReorderDisabled() == false
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore);
        else if (stores >= 1) {
          if (slotLoadStore < slotLastLoadStore) {
            // Error if no more slots available for stores.
            reportError(Twine("invalid instruction packet: too many stores"));
            return false;
          }
          // Pin the store to the highest slot available to it.
          ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
          // Update the next highest slot available to stores.
          slotLoadStore >>= 1;
        }
      }
      if (store1 && stores > 1) {
        // Error if a single store with another store.
        reportError(Twine("invalid instruction packet: too many stores"));
        return false;
      }
    }

    // flag if an instruction requires to be in slot 3
    if (ISJ->Core.getUnits() == slotThree)
      bOnlySlot3 = true;

    if (!ISJ->Core.getUnits()) {
      // Error if insn may not be executed in any slot.
      reportError(Twine("invalid instruction packet: out of slots"));
      return false;
    }
  }

  // preserve branch order
  bool validateSlots = true;
  if (foundBranches.size() > 1) {
    if (foundBranches.size() > 2) {
      reportError(Twine("too many branches in packet"));
      return false;
    }

    // try all possible choices
    for (unsigned int i = 0; i < MAX_JUMP_SLOTS; ++i) {
      // validate first jump with this slot rule
      if (!(jumpSlots[i].first & foundBranches[0]->Core.getUnits()))
        continue;

      // validate second jump with this slot rule
      if (!(jumpSlots[i].second & foundBranches[1]->Core.getUnits()))
        continue;

      // both valid for this configuration, set new slot rules
      PacketSave = Packet;
      foundBranches[0]->Core.setUnits(jumpSlots[i].first);
      foundBranches[1]->Core.setUnits(jumpSlots[i].second);

      HexagonUnitAuction AuctionCore(reservedSlots);
      std::stable_sort(begin(), end(), HexagonInstr::lessCore);

      // see if things ok with that instruction being pinned to slot "slotJump"
      bool bFail = false;
      for (iterator I = begin(); I != end() && !bFail; ++I)
        if (!AuctionCore.bid(I->Core.getUnits()))
          bFail = true;

      // if yes, great, if not then restore original slot mask
      if (!bFail) {
        validateSlots = false; // all good, no need to re-do auction
        break;
      } else
        // restore original values
        Packet = PacketSave;
    }
    if (validateSlots) {
      reportError(Twine("invalid instruction packet: out of slots"));
      return false;
    }
  }

  if (foundBranches.size() <= 1 && bOnlySlot3 == false && pSlot3Cnt == 1 &&
      slot3ISJ != end()) {
    validateSlots = true;
    // save off slot mask of instruction marked with A_PREFER_SLOT3
    // and then pin it to slot #3
    unsigned saveUnits = slot3ISJ->Core.getUnits();
    slot3ISJ->Core.setUnits(saveUnits & slotThree);

    HexagonUnitAuction AuctionCore(reservedSlots);
    std::stable_sort(begin(), end(), HexagonInstr::lessCore);

    // see if things ok with that instruction being pinned to slot #3
    bool bFail = false;
    for (iterator I = begin(); I != end() && !bFail; ++I)
      if (!AuctionCore.bid(I->Core.getUnits()))
        bFail = true;

    // if yes, great, if not then restore original slot mask
    if (!bFail)
      validateSlots = false; // all good, no need to re-do auction
    else
      for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
        MCInst const &ID = ISJ->getDesc();
        if (HexagonMCInstrInfo::prefersSlot3(MCII, ID))
          ISJ->Core.setUnits(saveUnits);
      }
  }

  // Check if any slot, core or CVI, is over-subscribed.
  // Verify the core slot subscriptions.
  if (validateSlots) {
    HexagonUnitAuction AuctionCore(reservedSlots);

    std::stable_sort(begin(), end(), HexagonInstr::lessCore);

    for (iterator I = begin(); I != end(); ++I)
      if (!AuctionCore.bid(I->Core.getUnits())) {
        reportError(Twine("invalid instruction packet: slot error"));
        return false;
      }
  }
  // Verify the CVI slot subscriptions.
  std::stable_sort(begin(), end(), HexagonInstr::lessCVI);
  // create vector of hvx instructions to check
  HVXInstsT hvxInsts;
  hvxInsts.clear();
  for (iterator I = begin(); I != end(); ++I) {
    struct CVIUnits inst;
    inst.Units = I->CVI.getUnits();
    inst.Lanes = I->CVI.getLanes();
    if (inst.Units == 0)
      continue; // not an hvx inst or an hvx inst that doesn't uses any pipes
    hvxInsts.push_back(inst);
  }
  // if there are any hvx instructions in this packet, check pipe usage
  if (hvxInsts.size() > 0) {
    unsigned startIdx, usedUnits;
    startIdx = usedUnits = 0x0;
    if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) {
      // too many pipes used to be valid
      reportError(Twine("invalid instruction packet: slot error"));
      return false;
    }
  }

  return true;
}

bool HexagonShuffler::shuffle() {
  if (size() > HEXAGON_PACKET_SIZE) {
    // Ignore a packet with with more than what a packet can hold
    // or with compound or duplex insns for now.
    reportError(Twine("invalid instruction packet"));
    return false;
  }

  // Check and prepare packet.
  bool Ok = true;
  if (size() > 1 && (Ok = check()))
    // Reorder the handles for each slot.
    for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE;
         ++nSlot) {
      iterator ISJ, ISK;
      unsigned slotSkip, slotWeight;

      // Prioritize the handles considering their restrictions.
      for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0;
           ISK != Packet.end(); ++ISK, ++slotSkip)
        if (slotSkip < nSlot - emptySlots)
          // Note which handle to begin at.
          ++ISJ;
        else
          // Calculate the weight of the slot.
          slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1);

      if (slotWeight)
        // Sort the packet, favoring source order,
        // beginning after the previous slot.
        std::stable_sort(ISJ, Packet.end());
      else
        // Skip unused slot.
        ++emptySlots;
    }

  for (iterator ISJ = begin(); ISJ != end(); ++ISJ)
    LLVM_DEBUG(dbgs().write_hex(ISJ->Core.getUnits()); if (ISJ->CVI.isValid()) {
      dbgs() << '/';
      dbgs().write_hex(ISJ->CVI.getUnits()) << '|';
      dbgs() << ISJ->CVI.getLanes();
    } dbgs() << ':'
             << HexagonMCInstrInfo::getDesc(MCII, ISJ->getDesc()).getOpcode();
               dbgs() << '\n');
  LLVM_DEBUG(dbgs() << '\n');

  return Ok;
}

void HexagonShuffler::reportError(Twine const &Msg) {
  if (ReportErrors) {
    for (auto const &I : AppliedRestrictions) {
      auto SM = Context.getSourceManager();
      if (SM)
        SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second);
    }
    Context.reportError(Loc, Msg);
  }
}