reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
//===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MCOperandInfo and MCInstrDesc classes, which
// are used to describe target instructions and their operands.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_MC_MCINSTRDESC_H
#define LLVM_MC_MCINSTRDESC_H

#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/DataTypes.h"
#include <string>

namespace llvm {
  class MCInst;
  class MCSubtargetInfo;
  class FeatureBitset;

//===----------------------------------------------------------------------===//
// Machine Operand Flags and Description
//===----------------------------------------------------------------------===//

namespace MCOI {
// Operand constraints
enum OperandConstraint {
  TIED_TO = 0,  // Must be allocated the same register as.
  EARLY_CLOBBER // Operand is an early clobber register operand
};

/// These are flags set on operands, but should be considered
/// private, all access should go through the MCOperandInfo accessors.
/// See the accessors for a description of what these are.
enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };

/// Operands are tagged with one of the values of this enum.
enum OperandType {
  OPERAND_UNKNOWN = 0,
  OPERAND_IMMEDIATE = 1,
  OPERAND_REGISTER = 2,
  OPERAND_MEMORY = 3,
  OPERAND_PCREL = 4,

  OPERAND_FIRST_GENERIC = 6,
  OPERAND_GENERIC_0 = 6,
  OPERAND_GENERIC_1 = 7,
  OPERAND_GENERIC_2 = 8,
  OPERAND_GENERIC_3 = 9,
  OPERAND_GENERIC_4 = 10,
  OPERAND_GENERIC_5 = 11,
  OPERAND_LAST_GENERIC = 11,

  OPERAND_FIRST_GENERIC_IMM = 12,
  OPERAND_GENERIC_IMM_0 = 12,
  OPERAND_LAST_GENERIC_IMM = 12,

  OPERAND_FIRST_TARGET = 13,
};

}

/// This holds information about one operand of a machine instruction,
/// indicating the register class for register operands, etc.
class MCOperandInfo {
public:
  /// This specifies the register class enumeration of the operand
  /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
  /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
  /// get a dynamic register class.
  int16_t RegClass;

  /// These are flags from the MCOI::OperandFlags enum.
  uint8_t Flags;

  /// Information about the type of the operand.
  uint8_t OperandType;
  /// The lower 16 bits are used to specify which constraints are set.
  /// The higher 16 bits are used to specify the value of constraints (4 bits
  /// each).
  uint32_t Constraints;

  /// Set if this operand is a pointer value and it requires a callback
  /// to look up its register class.
  bool isLookupPtrRegClass() const {
    return Flags & (1 << MCOI::LookupPtrRegClass);
  }

  /// Set if this is one of the operands that made up of the predicate
  /// operand that controls an isPredicable() instruction.
  bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }

  /// Set if this operand is a optional def.
  bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }

  bool isGenericType() const {
    return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
           OperandType <= MCOI::OPERAND_LAST_GENERIC;
  }

  unsigned getGenericTypeIndex() const {
    assert(isGenericType() && "non-generic types don't have an index");
    return OperandType - MCOI::OPERAND_FIRST_GENERIC;
  }

  bool isGenericImm() const {
    return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
           OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
  }

  unsigned getGenericImmIndex() const {
    assert(isGenericImm() && "non-generic immediates don't have an index");
    return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
  }
};

//===----------------------------------------------------------------------===//
// Machine Instruction Flags and Description
//===----------------------------------------------------------------------===//

namespace MCID {
/// These should be considered private to the implementation of the
/// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
/// not use these directly.  These all correspond to bitfields in the
/// MCInstrDesc::Flags field.
enum Flag {
  PreISelOpcode = 0,
  Variadic,
  HasOptionalDef,
  Pseudo,
  Return,
  EHScopeReturn,
  Call,
  Barrier,
  Terminator,
  Branch,
  IndirectBranch,
  Compare,
  MoveImm,
  MoveReg,
  Bitcast,
  Select,
  DelaySlot,
  FoldableAsLoad,
  MayLoad,
  MayStore,
  MayRaiseFPException,
  Predicable,
  NotDuplicable,
  UnmodeledSideEffects,
  Commutable,
  ConvertibleTo3Addr,
  UsesCustomInserter,
  HasPostISelHook,
  Rematerializable,
  CheapAsAMove,
  ExtraSrcRegAllocReq,
  ExtraDefRegAllocReq,
  RegSequence,
  ExtractSubreg,
  InsertSubreg,
  Convergent,
  Add,
  Trap,
  VariadicOpsAreDefs,
};
}

/// Describe properties that are true of each instruction in the target
/// description file.  This captures information about side effects, register
/// use and many other things.  There is one instance of this struct for each
/// target instruction class, and the MachineInstr class points to this struct
/// directly to describe itself.
class MCInstrDesc {
public:
  unsigned short Opcode;         // The opcode number
  unsigned short NumOperands;    // Num of args (may be more if variable_ops)
  unsigned char NumDefs;         // Num of args that are definitions
  unsigned char Size;            // Number of bytes in encoding.
  unsigned short SchedClass;     // enum identifying instr sched class
  uint64_t Flags;                // Flags identifying machine instr class
  uint64_t TSFlags;              // Target Specific Flag values
  const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
  const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
  const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
  // Subtarget feature that this is deprecated on, if any
  // -1 implies this is not deprecated by any single feature. It may still be
  // deprecated due to a "complex" reason, below.
  int64_t DeprecatedFeature;

  // A complex method to determine if a certain instruction is deprecated or
  // not, and return the reason for deprecation.
  bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
                                 std::string &);

  /// Returns the value of the specific constraint if
  /// it is set. Returns -1 if it is not set.
  int getOperandConstraint(unsigned OpNum,
                           MCOI::OperandConstraint Constraint) const {
    if (OpNum < NumOperands &&
        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
      unsigned Pos = 16 + Constraint * 4;
      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    }
    return -1;
  }

  /// Returns true if a certain instruction is deprecated and if so
  /// returns the reason in \p Info.
  bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
                         std::string &Info) const;

  /// Return the opcode number for this descriptor.
  unsigned getOpcode() const { return Opcode; }

  /// Return the number of declared MachineOperands for this
  /// MachineInstruction.  Note that variadic (isVariadic() returns true)
  /// instructions may have additional operands at the end of the list, and note
  /// that the machine instruction may include implicit register def/uses as
  /// well.
  unsigned getNumOperands() const { return NumOperands; }

  using const_opInfo_iterator = const MCOperandInfo *;

  const_opInfo_iterator opInfo_begin() const { return OpInfo; }
  const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }

  iterator_range<const_opInfo_iterator> operands() const {
    return make_range(opInfo_begin(), opInfo_end());
  }

  /// Return the number of MachineOperands that are register
  /// definitions.  Register definitions always occur at the start of the
  /// machine operand list.  This is the number of "outs" in the .td file,
  /// and does not include implicit defs.
  unsigned getNumDefs() const { return NumDefs; }

  /// Return flags of this instruction.
  uint64_t getFlags() const { return Flags; }

  /// \returns true if this instruction is emitted before instruction selection
  /// and should be legalized/regbankselected/selected.
  bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); }

  /// Return true if this instruction can have a variable number of
  /// operands.  In this case, the variable operands will be after the normal
  /// operands but before the implicit definitions and uses (if any are
  /// present).
  bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }

  /// Set if this instruction has an optional definition, e.g.
  /// ARM instructions which can set condition code if 's' bit is set.
  bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }

  /// Return true if this is a pseudo instruction that doesn't
  /// correspond to a real machine instruction.
  bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }

  /// Return true if the instruction is a return.
  bool isReturn() const { return Flags & (1ULL << MCID::Return); }

  /// Return true if the instruction is an add instruction.
  bool isAdd() const { return Flags & (1ULL << MCID::Add); }

  /// Return true if this instruction is a trap.
  bool isTrap() const { return Flags & (1ULL << MCID::Trap); }

  /// Return true if the instruction is a register to register move.
  bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }

  ///  Return true if the instruction is a call.
  bool isCall() const { return Flags & (1ULL << MCID::Call); }

  /// Returns true if the specified instruction stops control flow
  /// from executing the instruction immediately following it.  Examples include
  /// unconditional branches and return instructions.
  bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }

  /// Returns true if this instruction part of the terminator for
  /// a basic block.  Typically this is things like return and branch
  /// instructions.
  ///
  /// Various passes use this to insert code into the bottom of a basic block,
  /// but before control flow occurs.
  bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }

  /// Returns true if this is a conditional, unconditional, or
  /// indirect branch.  Predicates below can be used to discriminate between
  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
  /// get more information.
  bool isBranch() const { return Flags & (1ULL << MCID::Branch); }

  /// Return true if this is an indirect branch, such as a
  /// branch through a register.
  bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }

  /// Return true if this is a branch which may fall
  /// through to the next instruction or may transfer control flow to some other
  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
  /// information about this branch.
  bool isConditionalBranch() const {
    return isBranch() & !isBarrier() & !isIndirectBranch();
  }

  /// Return true if this is a branch which always
  /// transfers control flow to some other block.  The
  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
  /// about this branch.
  bool isUnconditionalBranch() const {
    return isBranch() & isBarrier() & !isIndirectBranch();
  }

  /// Return true if this is a branch or an instruction which directly
  /// writes to the program counter. Considered 'may' affect rather than
  /// 'does' affect as things like predication are not taken into account.
  bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;

  /// Return true if this instruction has a predicate operand
  /// that controls execution. It may be set to 'always', or may be set to other
  /// values. There are various methods in TargetInstrInfo that can be used to
  /// control and modify the predicate in this instruction.
  bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }

  /// Return true if this instruction is a comparison.
  bool isCompare() const { return Flags & (1ULL << MCID::Compare); }

  /// Return true if this instruction is a move immediate
  /// (including conditional moves) instruction.
  bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }

  /// Return true if this instruction is a bitcast instruction.
  bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }

  /// Return true if this is a select instruction.
  bool isSelect() const { return Flags & (1ULL << MCID::Select); }

  /// Return true if this instruction cannot be safely
  /// duplicated.  For example, if the instruction has a unique labels attached
  /// to it, duplicating it would cause multiple definition errors.
  bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }

  /// Returns true if the specified instruction has a delay slot which
  /// must be filled by the code generator.
  bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }

  /// Return true for instructions that can be folded as memory operands
  /// in other instructions. The most common use for this is instructions that
  /// are simple loads from memory that don't modify the loaded value in any
  /// way, but it can also be used for instructions that can be expressed as
  /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
  /// folded when it is beneficial.  This should only be set on instructions
  /// that return a value in their only virtual register definition.
  bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }

  /// Return true if this instruction behaves
  /// the same way as the generic REG_SEQUENCE instructions.
  /// E.g., on ARM,
  /// dX VMOVDRR rY, rZ
  /// is equivalent to
  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
  ///
  /// Note that for the optimizers to be able to take advantage of
  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
  /// override accordingly.
  bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }

  /// Return true if this instruction behaves
  /// the same way as the generic EXTRACT_SUBREG instructions.
  /// E.g., on ARM,
  /// rX, rY VMOVRRD dZ
  /// is equivalent to two EXTRACT_SUBREG:
  /// rX = EXTRACT_SUBREG dZ, ssub_0
  /// rY = EXTRACT_SUBREG dZ, ssub_1
  ///
  /// Note that for the optimizers to be able to take advantage of
  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
  /// override accordingly.
  bool isExtractSubregLike() const {
    return Flags & (1ULL << MCID::ExtractSubreg);
  }

  /// Return true if this instruction behaves
  /// the same way as the generic INSERT_SUBREG instructions.
  /// E.g., on ARM,
  /// dX = VSETLNi32 dY, rZ, Imm
  /// is equivalent to a INSERT_SUBREG:
  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
  ///
  /// Note that for the optimizers to be able to take advantage of
  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
  /// override accordingly.
  bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }


  /// Return true if this instruction is convergent.
  ///
  /// Convergent instructions may not be made control-dependent on any
  /// additional values.
  bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }

  /// Return true if variadic operands of this instruction are definitions.
  bool variadicOpsAreDefs() const {
    return Flags & (1ULL << MCID::VariadicOpsAreDefs);
  }

  //===--------------------------------------------------------------------===//
  // Side Effect Analysis
  //===--------------------------------------------------------------------===//

  /// Return true if this instruction could possibly read memory.
  /// Instructions with this flag set are not necessarily simple load
  /// instructions, they may load a value and modify it, for example.
  bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }

  /// Return true if this instruction could possibly modify memory.
  /// Instructions with this flag set are not necessarily simple store
  /// instructions, they may store a modified value based on their operands, or
  /// may not actually modify anything, for example.
  bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }

  /// Return true if this instruction may raise a floating-point exception.
  bool mayRaiseFPException() const {
    return Flags & (1ULL << MCID::MayRaiseFPException);
  }

  /// Return true if this instruction has side
  /// effects that are not modeled by other flags.  This does not return true
  /// for instructions whose effects are captured by:
  ///
  ///  1. Their operand list and implicit definition/use list.  Register use/def
  ///     info is explicit for instructions.
  ///  2. Memory accesses.  Use mayLoad/mayStore.
  ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
  ///
  /// Examples of side effects would be modifying 'invisible' machine state like
  /// a control register, flushing a cache, modifying a register invisible to
  /// LLVM, etc.
  bool hasUnmodeledSideEffects() const {
    return Flags & (1ULL << MCID::UnmodeledSideEffects);
  }

  //===--------------------------------------------------------------------===//
  // Flags that indicate whether an instruction can be modified by a method.
  //===--------------------------------------------------------------------===//

  /// Return true if this may be a 2- or 3-address instruction (of the
  /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
  /// exchanged.  If this flag is set, then the
  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
  /// instruction.
  ///
  /// Note that this flag may be set on instructions that are only commutable
  /// sometimes.  In these cases, the call to commuteInstruction will fail.
  /// Also note that some instructions require non-trivial modification to
  /// commute them.
  bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }

  /// Return true if this is a 2-address instruction which can be changed
  /// into a 3-address instruction if needed.  Doing this transformation can be
  /// profitable in the register allocator, because it means that the
  /// instruction can use a 2-address form if possible, but degrade into a less
  /// efficient form if the source and dest register cannot be assigned to the
  /// same register.  For example, this allows the x86 backend to turn a "shl
  /// reg, 3" instruction into an LEA instruction, which is the same speed as
  /// the shift but has bigger code size.
  ///
  /// If this returns true, then the target must implement the
  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
  /// is allowed to fail if the transformation isn't valid for this specific
  /// instruction (e.g. shl reg, 4 on x86).
  ///
  bool isConvertibleTo3Addr() const {
    return Flags & (1ULL << MCID::ConvertibleTo3Addr);
  }

  /// Return true if this instruction requires custom insertion support
  /// when the DAG scheduler is inserting it into a machine basic block.  If
  /// this is true for the instruction, it basically means that it is a pseudo
  /// instruction used at SelectionDAG time that is expanded out into magic code
  /// by the target when MachineInstrs are formed.
  ///
  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
  /// is used to insert this into the MachineBasicBlock.
  bool usesCustomInsertionHook() const {
    return Flags & (1ULL << MCID::UsesCustomInserter);
  }

  /// Return true if this instruction requires *adjustment* after
  /// instruction selection by calling a target hook. For example, this can be
  /// used to fill in ARM 's' optional operand depending on whether the
  /// conditional flag register is used.
  bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }

  /// Returns true if this instruction is a candidate for remat. This
  /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
  ///
  /// If this flag is set, the isReallyTriviallyReMaterializable()
  /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
  /// the instruction is really rematable.
  bool isRematerializable() const {
    return Flags & (1ULL << MCID::Rematerializable);
  }

  /// Returns true if this instruction has the same cost (or less) than a
  /// move instruction. This is useful during certain types of optimizations
  /// (e.g., remat during two-address conversion or machine licm) where we would
  /// like to remat or hoist the instruction, but not if it costs more than
  /// moving the instruction into the appropriate register. Note, we are not
  /// marking copies from and to the same register class with this flag.
  ///
  /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
  /// for different subtargets.
  bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }

  /// Returns true if this instruction source operands have special
  /// register allocation requirements that are not captured by the operand
  /// register classes. e.g. ARM::STRD's two source registers must be an even /
  /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
  /// allocation passes should not attempt to change allocations for sources of
  /// instructions with this flag.
  bool hasExtraSrcRegAllocReq() const {
    return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
  }

  /// Returns true if this instruction def operands have special register
  /// allocation requirements that are not captured by the operand register
  /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
  /// ARM::LDM registers have to be in ascending order.  Post-register
  /// allocation passes should not attempt to change allocations for definitions
  /// of instructions with this flag.
  bool hasExtraDefRegAllocReq() const {
    return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
  }

  /// Return a list of registers that are potentially read by any
  /// instance of this machine instruction.  For example, on X86, the "adc"
  /// instruction adds two register operands and adds the carry bit in from the
  /// flags register.  In this case, the instruction is marked as implicitly
  /// reading the flags.  Likewise, the variable shift instruction on X86 is
  /// marked as implicitly reading the 'CL' register, which it always does.
  ///
  /// This method returns null if the instruction has no implicit uses.
  const MCPhysReg *getImplicitUses() const { return ImplicitUses; }

  /// Return the number of implicit uses this instruction has.
  unsigned getNumImplicitUses() const {
    if (!ImplicitUses)
      return 0;
    unsigned i = 0;
    for (; ImplicitUses[i]; ++i) /*empty*/
      ;
    return i;
  }

  /// Return a list of registers that are potentially written by any
  /// instance of this machine instruction.  For example, on X86, many
  /// instructions implicitly set the flags register.  In this case, they are
  /// marked as setting the FLAGS.  Likewise, many instructions always deposit
  /// their result in a physical register.  For example, the X86 divide
  /// instruction always deposits the quotient and remainder in the EAX/EDX
  /// registers.  For that instruction, this will return a list containing the
  /// EAX/EDX/EFLAGS registers.
  ///
  /// This method returns null if the instruction has no implicit defs.
  const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }

  /// Return the number of implicit defs this instruct has.
  unsigned getNumImplicitDefs() const {
    if (!ImplicitDefs)
      return 0;
    unsigned i = 0;
    for (; ImplicitDefs[i]; ++i) /*empty*/
      ;
    return i;
  }

  /// Return true if this instruction implicitly
  /// uses the specified physical register.
  bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    if (const MCPhysReg *ImpUses = ImplicitUses)
      for (; *ImpUses; ++ImpUses)
        if (*ImpUses == Reg)
          return true;
    return false;
  }

  /// Return true if this instruction implicitly
  /// defines the specified physical register.
  bool hasImplicitDefOfPhysReg(unsigned Reg,
                               const MCRegisterInfo *MRI = nullptr) const;

  /// Return the scheduling class for this instruction.  The
  /// scheduling class is an index into the InstrItineraryData table.  This
  /// returns zero if there is no known scheduling information for the
  /// instruction.
  unsigned getSchedClass() const { return SchedClass; }

  /// Return the number of bytes in the encoding of this instruction,
  /// or zero if the encoding size cannot be known from the opcode.
  unsigned getSize() const { return Size; }

  /// Find the index of the first operand in the
  /// operand list that is used to represent the predicate. It returns -1 if
  /// none is found.
  int findFirstPredOperandIdx() const {
    if (isPredicable()) {
      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
        if (OpInfo[i].isPredicate())
          return i;
    }
    return -1;
  }

  /// Return true if this instruction defines the specified physical
  /// register, either explicitly or implicitly.
  bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
                       const MCRegisterInfo &RI) const;
};

} // end namespace llvm

#endif