reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
//===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions for Hexagon specific MCInst queries
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/MathExtras.h"
#include <cstddef>
#include <cstdint>

namespace llvm {

class HexagonMCChecker;
class MCContext;
class MCExpr;
class MCInstrDesc;
class MCInstrInfo;
class MCSubtargetInfo;

class DuplexCandidate {
public:
  unsigned packetIndexI, packetIndexJ, iClass;

  DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
      : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
};

namespace Hexagon {

class PacketIterator {
  MCInstrInfo const &MCII;
  MCInst::const_iterator BundleCurrent;
  MCInst::const_iterator BundleEnd;
  MCInst::const_iterator DuplexCurrent;
  MCInst::const_iterator DuplexEnd;

public:
  PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst);
  PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t);

  PacketIterator &operator++();
  MCInst const &operator*() const;
  bool operator==(PacketIterator const &Other) const;
  bool operator!=(PacketIterator const &Other) const {
    return !(*this == Other);
  }
};

} // end namespace Hexagon

namespace HexagonMCInstrInfo {

size_t const innerLoopOffset = 0;
int64_t const innerLoopMask = 1 << innerLoopOffset;

size_t const outerLoopOffset = 1;
int64_t const outerLoopMask = 1 << outerLoopOffset;

// do not reorder memory load/stores by default load/stores are re-ordered
// and by default loads can be re-ordered
size_t const memReorderDisabledOffset = 2;
int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;

size_t const bundleInstructionsOffset = 1;

void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
                      MCInst const &MCI);

// Returns a iterator range of instructions in this bundle
iterator_range<Hexagon::PacketIterator>
bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI);
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);

// Returns the number of instructions in the bundle
size_t bundleSize(MCInst const &MCI);

// Put the packet in to canonical form, compound, duplex, pad, and shuffle
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
                        MCContext &Context, MCInst &MCB,
                        HexagonMCChecker *Checker);

// Create a duplex instruction given the two subinsts
MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
                     MCInst const &inst1);
MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
                      MCOperand const &MO);

// Convert this instruction in to a duplex subinst
MCInst deriveSubInst(MCInst const &Inst);

// Return the extender for instruction at Index or nullptr if none
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
                    MCInst const &MCI);

// Return memory access size in bytes
unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI);

// Return memory access size
unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI);

MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);

// Return which duplex group this instruction belongs to
unsigned getDuplexCandidateGroup(MCInst const &MI);

// Return a list of all possible instruction duplex combinations
SmallVector<DuplexCandidate, 8>
getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
                      MCInst const &MCB);
unsigned getDuplexRegisterNumbering(unsigned Reg);

MCExpr const &getExpr(MCExpr const &Expr);

// Return the index of the extendable operand
unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);

// Return a reference to the extendable operand
MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
                                      MCInst const &MCI);

// Return the implicit alignment of the extendable operand
unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);

// Return the number of logical bits of the extendable operand
unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);

// Check if the extendable operand is signed.
bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI);

// Return the max value that a constant extendable operand can have
// without being extended.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);

// Return the min value that a constant extendable operand can have
// without being extended.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);

// Return instruction name
StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI);

// Return the operand index for the new value.
unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);

// Return the operand that consumes or produces a new value.
MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
                                     MCInst const &MCI);

// Return the Hexagon ISA class for the insn.
unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);

/// Return the slots used by the insn.
unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
                  MCInst const &MCI);
unsigned getOtherReservedSlots(MCInstrInfo const &MCII,
                               MCSubtargetInfo const &STI, MCInst const &MCI);
bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI);

// Does the packet have an extender for the instruction at Index
bool hasExtenderForIndex(MCInst const &MCB, size_t Index);

bool hasImmExt(MCInst const &MCI);

// Return whether the instruction is a legal new-value producer.
bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI);
unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);

int64_t minConstant(MCInst const &MCI, size_t Index);
template <unsigned N, unsigned S>
bool inRange(MCInst const &MCI, size_t Index) {
  return isShiftedUInt<N, S>(minConstant(MCI, Index));
}
template <unsigned N, unsigned S>
bool inSRange(MCInst const &MCI, size_t Index) {
  return isShiftedInt<N, S>(minConstant(MCI, Index));
}
template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
  return isUInt<N>(minConstant(MCI, Index));
}

// Return the instruction at Index
MCInst const &instruction(MCInst const &MCB, size_t Index);
bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI);

// Returns whether this MCInst is a wellformed bundle
bool isBundle(MCInst const &MCI);

// Return whether the insn is an actual insn.
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);

// Return whether the instruction needs to be constant extended.
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI);

// Is this double register suitable for use in a duplex subinst
bool isDblRegForSubInst(unsigned Reg);

// Is this a duplex instruction
bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);

// Can these instructions be duplexed
bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);

// Can these duplex classes be combine in to a duplex instruction
bool isDuplexPairMatch(unsigned Ga, unsigned Gb);

// Return true if the insn may be extended based on the operand value.
bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);

// Return whether the instruction must be always extended.
bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);

/// Return whether it is a floating-point insn.
bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);

bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI);

// Returns whether this instruction is an immediate extender
bool isImmext(MCInst const &MCI);

// Returns whether this bundle is an endloop0
bool isInnerLoop(MCInst const &MCI);

// Is this an integer register
bool isIntReg(unsigned Reg);

// Is this register suitable for use in a duplex subinst
bool isIntRegForSubInst(unsigned Reg);
bool isMemReorderDisabled(MCInst const &MCI);

// Return whether the insn is a new-value consumer.
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short);

// Can these two instructions be duplexed
bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
                         bool ExtendedA, MCInst const &MIb, bool ExtendedB,
                         bool bisReversable, MCSubtargetInfo const &STI);

// Returns whether this bundle is an endloop1
bool isOuterLoop(MCInst const &MCI);

// Return whether this instruction is predicated
bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);

// Return whether the predicate sense is true
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);

// Is this a predicate register
bool isPredReg(unsigned Reg);

// Return whether the insn is a prefix.
bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);

// Return whether the insn is solo, i.e., cannot be in a packet.
bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);

/// Return whether the insn can be packaged only with A and X-type insns.
bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);

/// Return whether the insn can be packaged only with an A-type insn in slot #1.
bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI);
bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI);
bool isSubInstruction(MCInst const &MCI);
bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
bool mustExtend(MCExpr const &Expr);
bool mustNotExtend(MCExpr const &Expr);

// Pad the bundle with nops to satisfy endloop requirements
void padEndloop(MCInst &MCI, MCContext &Context);
class PredicateInfo {
public:
  PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {}
  PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue)
      : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {}
  bool isPredicated() const;
  unsigned Register;
  unsigned Operand;
  bool PredicatedTrue;
};
PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI);
bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);

// Replace the instructions inside MCB, represented by Candidate
void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate);

bool s27_2_reloc(MCExpr const &Expr);
// Marks a bundle as endloop0
void setInnerLoop(MCInst &MCI);
void setMemReorderDisabled(MCInst &MCI);
void setMustExtend(MCExpr const &Expr, bool Val = true);
void setMustNotExtend(MCExpr const &Expr, bool Val = true);
void setS27_2_reloc(MCExpr const &Expr, bool Val = true);

// Marks a bundle as endloop1
void setOuterLoop(MCInst &MCI);

// Would duplexing this instruction create a requirement to extend
bool subInstWouldBeExtended(MCInst const &potentialDuplex);
unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
                        unsigned Producer2);

// Attempt to find and replace compound pairs
void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
                 MCContext &Context, MCInst &MCI);

} // end namespace HexagonMCInstrInfo

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H