reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
//===- HexagonBitTracker.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HexagonBitTracker.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <utility>
#include <vector>

using namespace llvm;

using BT = BitTracker;

HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
                                   MachineRegisterInfo &mri,
                                   const HexagonInstrInfo &tii,
                                   MachineFunction &mf)
    : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
  // Populate the VRX map (VR to extension-type).
  // Go over all the formal parameters of the function. If a given parameter
  // P is sign- or zero-extended, locate the virtual register holding that
  // parameter and create an entry in the VRX map indicating the type of ex-
  // tension (and the source type).
  // This is a bit complicated to do accurately, since the memory layout in-
  // formation is necessary to precisely determine whether an aggregate para-
  // meter will be passed in a register or in memory. What is given in MRI
  // is the association between the physical register that is live-in (i.e.
  // holds an argument), and the virtual register that this value will be
  // copied into. This, by itself, is not sufficient to map back the virtual
  // register to a formal parameter from Function (since consecutive live-ins
  // from MRI may not correspond to consecutive formal parameters from Func-
  // tion). To avoid the complications with in-memory arguments, only consi-
  // der the initial sequence of formal parameters that are known to be
  // passed via registers.
  unsigned InVirtReg, InPhysReg = 0;

  for (const Argument &Arg : MF.getFunction().args()) {
    Type *ATy = Arg.getType();
    unsigned Width = 0;
    if (ATy->isIntegerTy())
      Width = ATy->getIntegerBitWidth();
    else if (ATy->isPointerTy())
      Width = 32;
    // If pointer size is not set through target data, it will default to
    // Module::AnyPointerSize.
    if (Width == 0 || Width > 64)
      break;
    if (Arg.hasAttribute(Attribute::ByVal))
      continue;
    InPhysReg = getNextPhysReg(InPhysReg, Width);
    if (!InPhysReg)
      break;
    InVirtReg = getVirtRegFor(InPhysReg);
    if (!InVirtReg)
      continue;
    if (Arg.hasAttribute(Attribute::SExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
    else if (Arg.hasAttribute(Attribute::ZExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
  }
}

BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
  if (Sub == 0)
    return MachineEvaluator::mask(Reg, 0);
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
  unsigned ID = RC.getID();
  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  switch (ID) {
    case Hexagon::DoubleRegsRegClassID:
    case Hexagon::HvxWRRegClassID:
    case Hexagon::HvxVQRRegClassID:
      return IsSubLo ? BT::BitMask(0, RW-1)
                     : BT::BitMask(RW, 2*RW-1);
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
         << TRI.getRegClassName(&RC) << '\n';
#endif
  llvm_unreachable("Unexpected register/subregister");
}

uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
  assert(Register::isPhysicalRegister(Reg));

  using namespace Hexagon;
  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
  if (HST.useHVXOps()) {
    for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
                     HvxVQRRegClass})
      if (RC.contains(Reg))
        return TRI.getRegSizeInBits(RC);
  }
  // Default treatment for other physical registers.
  if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
    return TRI.getRegSizeInBits(*RC);

  llvm_unreachable(
      (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
}

const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
      const TargetRegisterClass &RC, unsigned Idx) const {
  if (Idx == 0)
    return RC;

#ifndef NDEBUG
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
  assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
#endif

  switch (RC.getID()) {
    case Hexagon::DoubleRegsRegClassID:
      return Hexagon::IntRegsRegClass;
    case Hexagon::HvxWRRegClassID:
      return Hexagon::HvxVRRegClass;
    case Hexagon::HvxVQRRegClassID:
      return Hexagon::HvxWRRegClass;
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
#endif
  llvm_unreachable("Unimplemented combination of reg class/subreg idx");
}

namespace {

class RegisterRefs {
  std::vector<BT::RegisterRef> Vector;

public:
  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
      const MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg())
        Vector[i] = BT::RegisterRef(MO);
      // For indices that don't correspond to registers, the entry will
      // remain constructed via the default constructor.
    }
  }

  size_t size() const { return Vector.size(); }

  const BT::RegisterRef &operator[](unsigned n) const {
    // The main purpose of this operator is to assert with bad argument.
    assert(n < Vector.size());
    return Vector[n];
  }
};

} // end anonymous namespace

bool HexagonEvaluator::evaluate(const MachineInstr &MI,
                                const CellMapType &Inputs,
                                CellMapType &Outputs) const {
  using namespace Hexagon;

  unsigned NumDefs = 0;

  // Sanity verification: there should not be any defs with subregisters.
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    NumDefs++;
    assert(MO.getSubReg() == 0);
  }

  if (NumDefs == 0)
    return false;

  unsigned Opc = MI.getOpcode();

  if (MI.mayLoad()) {
    switch (Opc) {
      // These instructions may be marked as mayLoad, but they are generating
      // immediate values, so skip them.
      case CONST32:
      case CONST64:
        break;
      default:
        return evaluateLoad(MI, Inputs, Outputs);
    }
  }

  // Check COPY instructions that copy formal parameters into virtual
  // registers. Such parameters can be sign- or zero-extended at the
  // call site, and we should take advantage of this knowledge. The MRI
  // keeps a list of pairs of live-in physical and virtual registers,
  // which provides information about which virtual registers will hold
  // the argument values. The function will still contain instructions
  // defining those virtual registers, and in practice those are COPY
  // instructions from a physical to a virtual register. In such cases,
  // applying the argument extension to the virtual register can be seen
  // as simply mirroring the extension that had already been applied to
  // the physical register at the call site. If the defining instruction
  // was not a COPY, it would not be clear how to mirror that extension
  // on the callee's side. For that reason, only check COPY instructions
  // for potential extensions.
  if (MI.isCopy()) {
    if (evaluateFormalCopy(MI, Inputs, Outputs))
      return true;
  }

  // Beyond this point, if any operand is a global, skip that instruction.
  // The reason is that certain instructions that can take an immediate
  // operand can also have a global symbol in that operand. To avoid
  // checking what kind of operand a given instruction has individually
  // for each instruction, do it here. Global symbols as operands gene-
  // rally do not provide any useful information.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
        MO.isCPI())
      return false;
  }

  RegisterRefs Reg(MI);
#define op(i) MI.getOperand(i)
#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
#define im(i) MI.getOperand(i).getImm()

  // If the instruction has no register operands, skip it.
  if (Reg.size() == 0)
    return false;

  // Record result for register in operand 0.
  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
        -> bool {
    putCell(Reg[0], Val, Outputs);
    return true;
  };
  // Get the cell corresponding to the N-th operand.
  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
                                        uint16_t W) -> BT::RegisterCell {
    const MachineOperand &Op = MI.getOperand(N);
    if (Op.isImm())
      return eIMM(Op.getImm(), W);
    if (!Op.isReg())
      return RegisterCell::self(0, W);
    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
    return rc(N);
  };
  // Extract RW low bits of the cell.
  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    assert(RW <= RC.width());
    return eXTR(RC, 0, RW);
  };
  // Extract RW high bits of the cell.
  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    uint16_t W = RC.width();
    assert(RW <= W);
    return eXTR(RC, W-RW, W);
  };
  // Extract N-th halfword (counting from the least significant position).
  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
        -> BT::RegisterCell {
    assert(N*16+16 <= RC.width());
    return eXTR(RC, N*16, N*16+16);
  };
  // Shuffle bits (pick even/odd from cells and merge into result).
  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
                         uint16_t BW, bool Odd) -> BT::RegisterCell {
    uint16_t I = Odd, Ws = Rs.width();
    assert(Ws == Rt.width());
    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
    I += 2;
    while (I*BW < Ws) {
      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
      I += 2;
    }
    return RC;
  };

  // The bitwidth of the 0th operand. In most (if not all) of the
  // instructions below, the 0th operand is the defined register.
  // Pre-compute the bitwidth here, because it is needed in many cases
  // cases below.
  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;

  // Register id of the 0th operand. It can be 0.
  unsigned Reg0 = Reg[0].Reg;

  switch (Opc) {
    // Transfer immediate:

    case A2_tfrsi:
    case A2_tfrpi:
    case CONST32:
    case CONST64:
      return rr0(eIMM(im(1), W0), Outputs);
    case PS_false:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
    case PS_true:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
    case PS_fi: {
      int FI = op(1).getIndex();
      int Off = op(2).getImm();
      unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
      unsigned L = countTrailingZeros(A);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
      RC.fill(0, L, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }

    // Transfer register:

    case A2_tfr:
    case A2_tfrp:
    case C2_pxfer_map:
      return rr0(rc(1), Outputs);
    case C2_tfrpr: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(PW <= RW);
      RegisterCell PC = eXTR(rc(1), 0, PW);
      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }
    case C2_tfrrp: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
    }

    // Arithmetic:

    case A2_abs:
    case A2_absp:
      // TODO
      break;

    case A2_addsp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
      return rr0(RC, Outputs);
    }
    case A2_add:
    case A2_addp:
      return rr0(eADD(rc(1), rc(2)), Outputs);
    case A2_addi:
      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
    case S4_addi_asl_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addi_lsr_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addaddi: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addi: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addi: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr_u2: {
      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addr: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case S4_subaddi: {
      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_accii: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_acci: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_subacc: {
      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case S2_addasl_rrri: {
      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case C4_addipc: {
      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
      RPC.fill(0, 2, BT::BitValue::Zero);
      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
    }
    case A2_sub:
    case A2_subp:
      return rr0(eSUB(rc(1), rc(2)), Outputs);
    case A2_subri:
      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
    case S4_subi_asl_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_subi_lsr_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M2_naccii: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_nacci: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
    case A2_negp:
      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);

    case M2_mpy_up: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyss_s0:
      return rr0(eMLS(rc(1), rc(2)), Outputs);
    case M2_dpmpyss_acc_s0:
      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_dpmpyss_nac_s0:
      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_mpyi: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(lo(M, W0), Outputs);
    }
    case M2_macsip: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_macsin: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eSUB(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_maci: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_mpysmi: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysin: {
      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysip: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpyu_up: {
      RegisterCell M = eMLU(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyuu_s0:
      return rr0(eMLU(rc(1), rc(2)), Outputs);
    case M2_dpmpyuu_acc_s0:
      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
    case M2_dpmpyuu_nac_s0:
      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
    //case M2_mpysu_up:

    // Logical/bitwise:

    case A2_andir:
      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_and:
    case A2_andp:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case A4_andn:
    case A4_andnp:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case S4_andi_asl_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_andi_lsr_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_and_xor:
      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_orir:
      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_or:
    case A2_orp:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case A4_orn:
    case A4_ornp:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case S4_ori_asl_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_ori_lsr_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case S4_or_andi:
    case S4_or_andix: {
      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case S4_or_ori: {
      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_or_xor:
      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_xor:
    case A2_xorp:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case M4_xor_and:
      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_xor_andn:
      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_xor_or:
      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_xor_xacc:
      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_not:
    case A2_notp:
      return rr0(eNOT(rc(1)), Outputs);

    case S2_asl_i_r:
    case S2_asl_i_p:
      return rr0(eASL(rc(1), im(2)), Outputs);
    case A2_aslh:
      return rr0(eASL(rc(1), 16), Outputs);
    case S2_asl_i_r_acc:
    case S2_asl_i_p_acc:
      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_nac:
    case S2_asl_i_p_nac:
      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_and:
    case S2_asl_i_p_and:
      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_or:
    case S2_asl_i_p_or:
      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_xacc:
    case S2_asl_i_p_xacc:
      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_vh:
    case S2_asl_i_vw:
      // TODO
      break;

    case S2_asr_i_r:
    case S2_asr_i_p:
      return rr0(eASR(rc(1), im(2)), Outputs);
    case A2_asrh:
      return rr0(eASR(rc(1), 16), Outputs);
    case S2_asr_i_r_acc:
    case S2_asr_i_p_acc:
      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_nac:
    case S2_asr_i_p_nac:
      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_and:
    case S2_asr_i_p_and:
      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_or:
    case S2_asr_i_p_or:
      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_rnd: {
      // The input is first sign-extended to 64 bits, then the output
      // is truncated back to 32 bits.
      assert(W0 == 32);
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_i_r_rnd_goodsyntax: {
      int64_t S = im(2);
      if (S == 0)
        return rr0(rc(1), Outputs);
      // Result: S2_asr_i_r_rnd Rs, u5-1
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_r_vh:
    case S2_asr_i_vw:
    case S2_asr_i_svw_trun:
      // TODO
      break;

    case S2_lsr_i_r:
    case S2_lsr_i_p:
      return rr0(eLSR(rc(1), im(2)), Outputs);
    case S2_lsr_i_r_acc:
    case S2_lsr_i_p_acc:
      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_nac:
    case S2_lsr_i_p_nac:
      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_and:
    case S2_lsr_i_p_and:
      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_or:
    case S2_lsr_i_p_or:
      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_xacc:
    case S2_lsr_i_p_xacc:
      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);

    case S2_clrbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::Zero;
      return rr0(RC, Outputs);
    }
    case S2_setbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::One;
      return rr0(RC, Outputs);
    }
    case S2_togglebit_i: {
      RegisterCell RC = rc(1);
      uint16_t BX = im(2);
      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
                            : RC[BX].is(1) ? BT::BitValue::Zero
                                           : BT::BitValue::self();
      return rr0(RC, Outputs);
    }

    case A4_bitspliti: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      uint16_t BX = im(2);
      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
      const BT::BitValue Zero = BT::BitValue::Zero;
      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
                                        .fill(W1+(W1-BX), W0, Zero);
      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
      return rr0(RC, Outputs);
    }
    case S4_extract:
    case S4_extractp:
    case S2_extractu:
    case S2_extractup: {
      uint16_t Wd = im(2), Of = im(3);
      assert(Wd <= W0);
      if (Wd == 0)
        return rr0(eIMM(0, W0), Outputs);
      // If the width extends beyond the register size, pad the register
      // with 0 bits.
      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
      // Ext is short, need to extend it with 0s or sign bit.
      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
      if (Opc == S2_extractu || Opc == S2_extractup)
        return rr0(eZXT(RC, Wd), Outputs);
      return rr0(eSXT(RC, Wd), Outputs);
    }
    case S2_insert:
    case S2_insertp: {
      uint16_t Wd = im(3), Of = im(4);
      assert(Wd < W0 && Of < W0);
      // If Wd+Of exceeds W0, the inserted bits are truncated.
      if (Wd+Of > W0)
        Wd = W0-Of;
      if (Wd == 0)
        return rr0(rc(1), Outputs);
      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
    }

    // Bit permutations:

    case A2_combineii:
    case A4_combineii:
    case A4_combineir:
    case A4_combineri:
    case A2_combinew:
    case V6_vcombine:
      assert(W0 % 2 == 0);
      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
    case A2_combine_ll:
    case A2_combine_lh:
    case A2_combine_hl:
    case A2_combine_hh: {
      assert(W0 == 32);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
      // High half in the output is 0 for _ll and _lh, 1 otherwise:
      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
      return rr0(RC, Outputs);
    }
    case S2_packhl: {
      assert(W0 == 64);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
                                   .cat(half(R1, 1));
      return rr0(RC, Outputs);
    }
    case S2_shuffeb: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffeh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffob: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
      return rr0(RC, Outputs);
    }
    case S2_shuffoh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
      return rr0(RC, Outputs);
    }
    case C2_mask: {
      uint16_t WR = W0;
      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(WR == 64 && WP == 8);
      RegisterCell R1 = rc(1);
      RegisterCell RC(WR);
      for (uint16_t i = 0; i < WP; ++i) {
        const BT::BitValue &V = R1[i];
        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
        RC.fill(i*8, i*8+8, F);
      }
      return rr0(RC, Outputs);
    }

    // Mux:

    case C2_muxii:
    case C2_muxir:
    case C2_muxri:
    case C2_mux: {
      BT::BitValue PC0 = rc(1)[0];
      RegisterCell R2 = cop(2, W0);
      RegisterCell R3 = cop(3, W0);
      if (PC0.is(0) || PC0.is(1))
        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
      R2.meet(R3, Reg[0].Reg);
      return rr0(R2, Outputs);
    }
    case C2_vmux:
      // TODO
      break;

    // Sign- and zero-extension:

    case A2_sxtb:
      return rr0(eSXT(rc(1), 8), Outputs);
    case A2_sxth:
      return rr0(eSXT(rc(1), 16), Outputs);
    case A2_sxtw: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
      return rr0(RC, Outputs);
    }
    case A2_zxtb:
      return rr0(eZXT(rc(1), 8), Outputs);
    case A2_zxth:
      return rr0(eZXT(rc(1), 16), Outputs);

    // Saturations

    case A2_satb:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_sath:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
    case A2_satub:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_satuh:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);

    // Bit count:

    case S2_cl0:
    case S2_cl0p:
      // Always produce a 32-bit result.
      return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
    case S2_cl1:
    case S2_cl1p:
      return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
    case S2_clb:
    case S2_clbp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      RegisterCell R1 = rc(1);
      BT::BitValue TV = R1[W1-1];
      if (TV.is(0) || TV.is(1))
        return rr0(eCLB(R1, TV, 32), Outputs);
      break;
    }
    case S2_ct0:
    case S2_ct0p:
      return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
    case S2_ct1:
    case S2_ct1p:
      return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
    case S5_popcountp:
      // TODO
      break;

    case C2_all8: {
      RegisterCell P1 = rc(1);
      bool Has0 = false, All1 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(1))
          All1 = false;
        if (!P1[i].is(0))
          continue;
        Has0 = true;
        break;
      }
      if (!Has0 && !All1)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_any8: {
      RegisterCell P1 = rc(1);
      bool Has1 = false, All0 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(0))
          All0 = false;
        if (!P1[i].is(1))
          continue;
        Has1 = true;
        break;
      }
      if (!Has1 && !All0)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_and:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case C2_andn:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case C2_not:
      return rr0(eNOT(rc(1)), Outputs);
    case C2_or:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case C2_orn:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case C2_xor:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case C4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_and_orn:
      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_or_orn:
      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C2_bitsclr:
    case C2_bitsclri:
    case C2_bitsset:
    case C4_nbitsclr:
    case C4_nbitsclri:
    case C4_nbitsset:
      // TODO
      break;
    case S2_tstbit_i:
    case S4_ntstbit_i: {
      BT::BitValue V = rc(1)[im(2)];
      if (V.is(0) || V.is(1)) {
        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
        bool TV = (Opc == S2_tstbit_i);
        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
      }
      break;
    }

    default:
      // For instructions that define a single predicate registers, store
      // the low 8 bits of the register only.
      if (unsigned DefR = getUniqueDefVReg(MI)) {
        if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
          BT::RegisterRef PD(DefR, 0);
          uint16_t RW = getRegBitWidth(PD);
          uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
          RegisterCell RC = RegisterCell::self(DefR, RW);
          RC.fill(PW, RW, BT::BitValue::Zero);
          putCell(PD, RC, Outputs);
          return true;
        }
      }
      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
  }
  #undef im
  #undef rc
  #undef op
  return false;
}

bool HexagonEvaluator::evaluate(const MachineInstr &BI,
                                const CellMapType &Inputs,
                                BranchTargetList &Targets,
                                bool &FallsThru) const {
  // We need to evaluate one branch at a time. TII::analyzeBranch checks
  // all the branches in a basic block at once, so we cannot use it.
  unsigned Opc = BI.getOpcode();
  bool SimpleBranch = false;
  bool Negated = false;
  switch (Opc) {
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfpt:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumpfnewpt:
      Negated = true;
      LLVM_FALLTHROUGH;
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumptnewpt:
      // Simple branch:  if([!]Pn) jump ...
      // i.e. Op0 = predicate, Op1 = branch target.
      SimpleBranch = true;
      break;
    case Hexagon::J2_jump:
      Targets.insert(BI.getOperand(0).getMBB());
      FallsThru = false;
      return true;
    default:
      // If the branch is of unknown type, assume that all successors are
      // executable.
      return false;
  }

  if (!SimpleBranch)
    return false;

  // BI is a conditional branch if we got here.
  RegisterRef PR = BI.getOperand(0);
  RegisterCell PC = getCell(PR, Inputs);
  const BT::BitValue &Test = PC[0];

  // If the condition is neither true nor false, then it's unknown.
  if (!Test.is(0) && !Test.is(1))
    return false;

  // "Test.is(!Negated)" means "branch condition is true".
  if (!Test.is(!Negated)) {
    // Condition known to be false.
    FallsThru = true;
    return true;
  }

  Targets.insert(BI.getOperand(1).getMBB());
  FallsThru = false;
  return true;
}

unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
  unsigned DefReg = 0;
  for (const MachineOperand &Op : MI.operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    Register R = Op.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    if (DefReg != 0)
      return 0;
    DefReg = R;
  }
  return DefReg;
}

bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
                                    const CellMapType &Inputs,
                                    CellMapType &Outputs) const {
  using namespace Hexagon;

  if (TII.isPredicated(MI))
    return false;
  assert(MI.mayLoad() && "A load that mayn't?");
  unsigned Opc = MI.getOpcode();

  uint16_t BitNum;
  bool SignEx;

  switch (Opc) {
    default:
      return false;

#if 0
    // memb_fifo
    case L2_loadalignb_pbr:
    case L2_loadalignb_pcr:
    case L2_loadalignb_pi:
    // memh_fifo
    case L2_loadalignh_pbr:
    case L2_loadalignh_pcr:
    case L2_loadalignh_pi:
    // membh
    case L2_loadbsw2_pbr:
    case L2_loadbsw2_pci:
    case L2_loadbsw2_pcr:
    case L2_loadbsw2_pi:
    case L2_loadbsw4_pbr:
    case L2_loadbsw4_pci:
    case L2_loadbsw4_pcr:
    case L2_loadbsw4_pi:
    // memubh
    case L2_loadbzw2_pbr:
    case L2_loadbzw2_pci:
    case L2_loadbzw2_pcr:
    case L2_loadbzw2_pi:
    case L2_loadbzw4_pbr:
    case L2_loadbzw4_pci:
    case L2_loadbzw4_pcr:
    case L2_loadbzw4_pi:
#endif

    case L2_loadrbgp:
    case L2_loadrb_io:
    case L2_loadrb_pbr:
    case L2_loadrb_pci:
    case L2_loadrb_pcr:
    case L2_loadrb_pi:
    case PS_loadrbabs:
    case L4_loadrb_ap:
    case L4_loadrb_rr:
    case L4_loadrb_ur:
      BitNum = 8;
      SignEx = true;
      break;

    case L2_loadrubgp:
    case L2_loadrub_io:
    case L2_loadrub_pbr:
    case L2_loadrub_pci:
    case L2_loadrub_pcr:
    case L2_loadrub_pi:
    case PS_loadrubabs:
    case L4_loadrub_ap:
    case L4_loadrub_rr:
    case L4_loadrub_ur:
      BitNum = 8;
      SignEx = false;
      break;

    case L2_loadrhgp:
    case L2_loadrh_io:
    case L2_loadrh_pbr:
    case L2_loadrh_pci:
    case L2_loadrh_pcr:
    case L2_loadrh_pi:
    case PS_loadrhabs:
    case L4_loadrh_ap:
    case L4_loadrh_rr:
    case L4_loadrh_ur:
      BitNum = 16;
      SignEx = true;
      break;

    case L2_loadruhgp:
    case L2_loadruh_io:
    case L2_loadruh_pbr:
    case L2_loadruh_pci:
    case L2_loadruh_pcr:
    case L2_loadruh_pi:
    case L4_loadruh_rr:
    case PS_loadruhabs:
    case L4_loadruh_ap:
    case L4_loadruh_ur:
      BitNum = 16;
      SignEx = false;
      break;

    case L2_loadrigp:
    case L2_loadri_io:
    case L2_loadri_pbr:
    case L2_loadri_pci:
    case L2_loadri_pcr:
    case L2_loadri_pi:
    case L2_loadw_locked:
    case PS_loadriabs:
    case L4_loadri_ap:
    case L4_loadri_rr:
    case L4_loadri_ur:
    case LDriw_pred:
      BitNum = 32;
      SignEx = true;
      break;

    case L2_loadrdgp:
    case L2_loadrd_io:
    case L2_loadrd_pbr:
    case L2_loadrd_pci:
    case L2_loadrd_pcr:
    case L2_loadrd_pi:
    case L4_loadd_locked:
    case PS_loadrdabs:
    case L4_loadrd_ap:
    case L4_loadrd_rr:
    case L4_loadrd_ur:
      BitNum = 64;
      SignEx = true;
      break;
  }

  const MachineOperand &MD = MI.getOperand(0);
  assert(MD.isReg() && MD.isDef());
  RegisterRef RD = MD;

  uint16_t W = getRegBitWidth(RD);
  assert(W >= BitNum && BitNum > 0);
  RegisterCell Res(W);

  for (uint16_t i = 0; i < BitNum; ++i)
    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));

  if (SignEx) {
    const BT::BitValue &Sign = Res[BitNum-1];
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::ref(Sign);
  } else {
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::Zero;
  }

  putCell(RD, Res, Outputs);
  return true;
}

bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
                                          const CellMapType &Inputs,
                                          CellMapType &Outputs) const {
  // If MI defines a formal parameter, but is not a copy (loads are handled
  // in evaluateLoad), then it's not clear what to do.
  assert(MI.isCopy());

  RegisterRef RD = MI.getOperand(0);
  RegisterRef RS = MI.getOperand(1);
  assert(RD.Sub == 0);
  if (!Register::isPhysicalRegister(RS.Reg))
    return false;
  RegExtMap::const_iterator F = VRX.find(RD.Reg);
  if (F == VRX.end())
    return false;

  uint16_t EW = F->second.Width;
  // Store RD's cell into the map. This will associate the cell with a virtual
  // register, and make zero-/sign-extends possible (otherwise we would be ex-
  // tending "self" bit values, which will have no effect, since "self" values
  // cannot be references to anything).
  putCell(RD, getCell(RS, Inputs), Outputs);

  RegisterCell Res;
  // Read RD's cell from the outputs instead of RS's cell from the inputs:
  if (F->second.Type == ExtType::SExt)
    Res = eSXT(getCell(RD, Outputs), EW);
  else if (F->second.Type == ExtType::ZExt)
    Res = eZXT(getCell(RD, Outputs), EW);

  putCell(RD, Res, Outputs);
  return true;
}

unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
  using namespace Hexagon;

  bool Is64 = DoubleRegsRegClass.contains(PReg);
  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));

  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
  static const unsigned Phys64[] = { D0, D1, D2 };
  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);

  // Return the first parameter register of the required width.
  if (PReg == 0)
    return (Width <= 32) ? Phys32[0] : Phys64[0];

  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
  // next register.
  unsigned Idx32 = 0, Idx64 = 0;
  if (!Is64) {
    while (Idx32 < Num32) {
      if (Phys32[Idx32] == PReg)
        break;
      Idx32++;
    }
    Idx64 = Idx32/2;
  } else {
    while (Idx64 < Num64) {
      if (Phys64[Idx64] == PReg)
        break;
      Idx64++;
    }
    Idx32 = Idx64*2+1;
  }

  if (Width <= 32)
    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
}

unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
  for (std::pair<unsigned,unsigned> P : MRI.liveins())
    if (P.first == PReg)
      return P.second;
  return 0;
}