reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
//===- BitTracker.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// SSA-based bit propagation.
//
// The purpose of this code is, for a given virtual register, to provide
// information about the value of each bit in the register. The values
// of bits are represented by the class BitValue, and take one of four
// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
// "ref" value means that the bit is a copy of another bit (which itself
// cannot be a copy of yet another bit---such chains are not allowed).
// A "ref" value is associated with a BitRef structure, which indicates
// which virtual register, and which bit in that register is the origin
// of the value. For example, given an instruction
//   %2 = ASL %1, 1
// assuming that nothing is known about bits of %1, bit 1 of %2
// will be a "ref" to (%1, 0). If there is a subsequent instruction
//   %3 = ASL %2, 2
// then bit 3 of %3 will be a "ref" to (%1, 0) as well.
// The "bottom" case means that the bit's value cannot be determined,
// and that this virtual register actually defines it. The "bottom" case
// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
// to self", so for the %1 above, the bit 0 of it will be a "ref" to
// (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
//
// The tracker implements the Wegman-Zadeck algorithm, originally developed
// for SSA-based constant propagation. Each register is represented as
// a sequence of bits, with the convention that bit 0 is the least signi-
// ficant bit. Each bit is propagated individually. The class RegisterCell
// implements the register's representation, and is also the subject of
// the lattice operations in the tracker.
//
// The intended usage of the bit tracker is to create a target-specific
// machine instruction evaluator, pass the evaluator to the BitTracker
// object, and run the tracker. The tracker will then collect the bit
// value information for a given machine function. After that, it can be
// queried for the cells for each virtual register.
// Sample code:
//   const TargetSpecificEvaluator TSE(TRI, MRI);
//   BitTracker BT(TSE, MF);
//   BT.run();
//   ...
//   unsigned Reg = interestingRegister();
//   RegisterCell RC = BT.get(Reg);
//   if (RC[3].is(1))
//      Reg0bit3 = 1;
//
// The code below is intended to be fully target-independent.

#include "BitTracker.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

using BT = BitTracker;

namespace {

  // Local trickery to pretty print a register (without the whole "%number"
  // business).
  struct printv {
    printv(unsigned r) : R(r) {}

    unsigned R;
  };

  raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
    if (PV.R)
      OS << 'v' << Register::virtReg2Index(PV.R);
    else
      OS << 's';
    return OS;
  }

} // end anonymous namespace

namespace llvm {

  raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
    switch (BV.Type) {
      case BT::BitValue::Top:
        OS << 'T';
        break;
      case BT::BitValue::Zero:
        OS << '0';
        break;
      case BT::BitValue::One:
        OS << '1';
        break;
      case BT::BitValue::Ref:
        OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
        break;
    }
    return OS;
  }

  raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
    unsigned n = RC.Bits.size();
    OS << "{ w:" << n;
    // Instead of printing each bit value individually, try to group them
    // into logical segments, such as sequences of 0 or 1 bits or references
    // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
    // "Start" will be the index of the beginning of the most recent segment.
    unsigned Start = 0;
    bool SeqRef = false;    // A sequence of refs to consecutive bits.
    bool ConstRef = false;  // A sequence of refs to the same bit.

    for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
      const BT::BitValue &V = RC[i];
      const BT::BitValue &SV = RC[Start];
      bool IsRef = (V.Type == BT::BitValue::Ref);
      // If the current value is the same as Start, skip to the next one.
      if (!IsRef && V == SV)
        continue;
      if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
        if (Start+1 == i) {
          SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
          ConstRef = (V.RefI.Pos == SV.RefI.Pos);
        }
        if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
          continue;
        if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
          continue;
      }

      // The current value is different. Print the previous one and reset
      // the Start.
      OS << " [" << Start;
      unsigned Count = i - Start;
      if (Count == 1) {
        OS << "]:" << SV;
      } else {
        OS << '-' << i-1 << "]:";
        if (SV.Type == BT::BitValue::Ref && SeqRef)
          OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
             << SV.RefI.Pos+(Count-1) << ']';
        else
          OS << SV;
      }
      Start = i;
      SeqRef = ConstRef = false;
    }

    OS << " [" << Start;
    unsigned Count = n - Start;
    if (n-Start == 1) {
      OS << "]:" << RC[Start];
    } else {
      OS << '-' << n-1 << "]:";
      const BT::BitValue &SV = RC[Start];
      if (SV.Type == BT::BitValue::Ref && SeqRef)
        OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
           << SV.RefI.Pos+(Count-1) << ']';
      else
        OS << SV;
    }
    OS << " }";

    return OS;
  }

} // end namespace llvm

void BitTracker::print_cells(raw_ostream &OS) const {
  for (const std::pair<unsigned, RegisterCell> P : Map)
    dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
}

BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
    : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
}

BitTracker::~BitTracker() {
  delete &Map;
}

// If we were allowed to update a cell for a part of a register, the meet
// operation would need to be parametrized by the register number and the
// exact part of the register, so that the computer BitRefs correspond to
// the actual bits of the "self" register.
// While this cannot happen in the current implementation, I'm not sure
// if this should be ruled out in the future.
bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
  // An example when "meet" can be invoked with SelfR == 0 is a phi node
  // with a physical register as an operand.
  assert(SelfR == 0 || Register::isVirtualRegister(SelfR));
  bool Changed = false;
  for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
    const BitValue &RCV = RC[i];
    Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
  }
  return Changed;
}

// Insert the entire cell RC into the current cell at position given by M.
BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
      const BitMask &M) {
  uint16_t B = M.first(), E = M.last(), W = width();
  // Sanity: M must be a valid mask for *this.
  assert(B < W && E < W);
  // Sanity: the masked part of *this must have the same number of bits
  // as the source.
  assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
  assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
  if (B <= E) {
    for (uint16_t i = 0; i <= E-B; ++i)
      Bits[i+B] = RC[i];
  } else {
    for (uint16_t i = 0; i < W-B; ++i)
      Bits[i+B] = RC[i];
    for (uint16_t i = 0; i <= E; ++i)
      Bits[i] = RC[i+(W-B)];
  }
  return *this;
}

BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
  uint16_t B = M.first(), E = M.last(), W = width();
  assert(B < W && E < W);
  if (B <= E) {
    RegisterCell RC(E-B+1);
    for (uint16_t i = B; i <= E; ++i)
      RC.Bits[i-B] = Bits[i];
    return RC;
  }

  RegisterCell RC(E+(W-B)+1);
  for (uint16_t i = 0; i < W-B; ++i)
    RC.Bits[i] = Bits[i+B];
  for (uint16_t i = 0; i <= E; ++i)
    RC.Bits[i+(W-B)] = Bits[i];
  return RC;
}

BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
  // Rotate left (i.e. towards increasing bit indices).
  // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
  uint16_t W = width();
  Sh = Sh % W;
  if (Sh == 0)
    return *this;

  RegisterCell Tmp(W-Sh);
  // Tmp = [0..W-Sh-1].
  for (uint16_t i = 0; i < W-Sh; ++i)
    Tmp[i] = Bits[i];
  // Shift [W-Sh..W-1] to [0..Sh-1].
  for (uint16_t i = 0; i < Sh; ++i)
    Bits[i] = Bits[W-Sh+i];
  // Copy Tmp to [Sh..W-1].
  for (uint16_t i = 0; i < W-Sh; ++i)
    Bits[i+Sh] = Tmp.Bits[i];
  return *this;
}

BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
      const BitValue &V) {
  assert(B <= E);
  while (B < E)
    Bits[B++] = V;
  return *this;
}

BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
  // Append the cell given as the argument to the "this" cell.
  // Bit 0 of RC becomes bit W of the result, where W is this->width().
  uint16_t W = width(), WRC = RC.width();
  Bits.resize(W+WRC);
  for (uint16_t i = 0; i < WRC; ++i)
    Bits[i+W] = RC.Bits[i];
  return *this;
}

uint16_t BT::RegisterCell::ct(bool B) const {
  uint16_t W = width();
  uint16_t C = 0;
  BitValue V = B;
  while (C < W && Bits[C] == V)
    C++;
  return C;
}

uint16_t BT::RegisterCell::cl(bool B) const {
  uint16_t W = width();
  uint16_t C = 0;
  BitValue V = B;
  while (C < W && Bits[W-(C+1)] == V)
    C++;
  return C;
}

bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
  uint16_t W = Bits.size();
  if (RC.Bits.size() != W)
    return false;
  for (uint16_t i = 0; i < W; ++i)
    if (Bits[i] != RC[i])
      return false;
  return true;
}

BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
  for (unsigned i = 0, n = width(); i < n; ++i) {
    const BitValue &V = Bits[i];
    if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
      Bits[i].RefI = BitRef(R, i);
  }
  return *this;
}

uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
  // The general problem is with finding a register class that corresponds
  // to a given reference reg:sub. There can be several such classes, and
  // since we only care about the register size, it does not matter which
  // such class we would find.
  // The easiest way to accomplish what we want is to
  // 1. find a physical register PhysR from the same class as RR.Reg,
  // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
  // 3. find a register class that contains PhysS.
  if (Register::isVirtualRegister(RR.Reg)) {
    const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
    return TRI.getRegSizeInBits(VC);
  }
  assert(Register::isPhysicalRegister(RR.Reg));
  Register PhysR =
      (RR.Sub == 0) ? Register(RR.Reg) : TRI.getSubReg(RR.Reg, RR.Sub);
  return getPhysRegBitWidth(PhysR);
}

BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
      const CellMapType &M) const {
  uint16_t BW = getRegBitWidth(RR);

  // Physical registers are assumed to be present in the map with an unknown
  // value. Don't actually insert anything in the map, just return the cell.
  if (Register::isPhysicalRegister(RR.Reg))
    return RegisterCell::self(0, BW);

  assert(Register::isVirtualRegister(RR.Reg));
  // For virtual registers that belong to a class that is not tracked,
  // generate an "unknown" value as well.
  const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
  if (!track(C))
    return RegisterCell::self(0, BW);

  CellMapType::const_iterator F = M.find(RR.Reg);
  if (F != M.end()) {
    if (!RR.Sub)
      return F->second;
    BitMask M = mask(RR.Reg, RR.Sub);
    return F->second.extract(M);
  }
  // If not found, create a "top" entry, but do not insert it in the map.
  return RegisterCell::top(BW);
}

void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
      CellMapType &M) const {
  // While updating the cell map can be done in a meaningful way for
  // a part of a register, it makes little sense to implement it as the
  // SSA representation would never contain such "partial definitions".
  if (!Register::isVirtualRegister(RR.Reg))
    return;
  assert(RR.Sub == 0 && "Unexpected sub-register in definition");
  // Eliminate all ref-to-reg-0 bit values: replace them with "self".
  M[RR.Reg] = RC.regify(RR.Reg);
}

// Check if the cell represents a compile-time integer value.
bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
  uint16_t W = A.width();
  for (uint16_t i = 0; i < W; ++i)
    if (!A[i].is(0) && !A[i].is(1))
      return false;
  return true;
}

// Convert a cell to the integer value. The result must fit in uint64_t.
uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
  assert(isInt(A));
  uint64_t Val = 0;
  uint16_t W = A.width();
  for (uint16_t i = 0; i < W; ++i) {
    Val <<= 1;
    Val |= A[i].is(1);
  }
  return Val;
}

// Evaluator helper functions. These implement some common operation on
// register cells that can be used to implement target-specific instructions
// in a target-specific evaluator.

BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
  RegisterCell Res(W);
  // For bits beyond the 63rd, this will generate the sign bit of V.
  for (uint16_t i = 0; i < W; ++i) {
    Res[i] = BitValue(V & 1);
    V >>= 1;
  }
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
  const APInt &A = CI->getValue();
  uint16_t BW = A.getBitWidth();
  assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
  RegisterCell Res(BW);
  for (uint16_t i = 0; i < BW; ++i)
    Res[i] = A[i];
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width();
  assert(W == A2.width());
  RegisterCell Res(W);
  bool Carry = false;
  uint16_t I;
  for (I = 0; I < W; ++I) {
    const BitValue &V1 = A1[I];
    const BitValue &V2 = A2[I];
    if (!V1.num() || !V2.num())
      break;
    unsigned S = bool(V1) + bool(V2) + Carry;
    Res[I] = BitValue(S & 1);
    Carry = (S > 1);
  }
  for (; I < W; ++I) {
    const BitValue &V1 = A1[I];
    const BitValue &V2 = A2[I];
    // If the next bit is same as Carry, the result will be 0 plus the
    // other bit. The Carry bit will remain unchanged.
    if (V1.is(Carry))
      Res[I] = BitValue::ref(V2);
    else if (V2.is(Carry))
      Res[I] = BitValue::ref(V1);
    else
      break;
  }
  for (; I < W; ++I)
    Res[I] = BitValue::self();
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width();
  assert(W == A2.width());
  RegisterCell Res(W);
  bool Borrow = false;
  uint16_t I;
  for (I = 0; I < W; ++I) {
    const BitValue &V1 = A1[I];
    const BitValue &V2 = A2[I];
    if (!V1.num() || !V2.num())
      break;
    unsigned S = bool(V1) - bool(V2) - Borrow;
    Res[I] = BitValue(S & 1);
    Borrow = (S > 1);
  }
  for (; I < W; ++I) {
    const BitValue &V1 = A1[I];
    const BitValue &V2 = A2[I];
    if (V1.is(Borrow)) {
      Res[I] = BitValue::ref(V2);
      break;
    }
    if (V2.is(Borrow))
      Res[I] = BitValue::ref(V1);
    else
      break;
  }
  for (; I < W; ++I)
    Res[I] = BitValue::self();
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width() + A2.width();
  uint16_t Z = A1.ct(false) + A2.ct(false);
  RegisterCell Res(W);
  Res.fill(0, Z, BitValue::Zero);
  Res.fill(Z, W, BitValue::self());
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width() + A2.width();
  uint16_t Z = A1.ct(false) + A2.ct(false);
  RegisterCell Res(W);
  Res.fill(0, Z, BitValue::Zero);
  Res.fill(Z, W, BitValue::self());
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
      uint16_t Sh) const {
  assert(Sh <= A1.width());
  RegisterCell Res = RegisterCell::ref(A1);
  Res.rol(Sh);
  Res.fill(0, Sh, BitValue::Zero);
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
      uint16_t Sh) const {
  uint16_t W = A1.width();
  assert(Sh <= W);
  RegisterCell Res = RegisterCell::ref(A1);
  Res.rol(W-Sh);
  Res.fill(W-Sh, W, BitValue::Zero);
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
      uint16_t Sh) const {
  uint16_t W = A1.width();
  assert(Sh <= W);
  RegisterCell Res = RegisterCell::ref(A1);
  BitValue Sign = Res[W-1];
  Res.rol(W-Sh);
  Res.fill(W-Sh, W, Sign);
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width();
  assert(W == A2.width());
  RegisterCell Res(W);
  for (uint16_t i = 0; i < W; ++i) {
    const BitValue &V1 = A1[i];
    const BitValue &V2 = A2[i];
    if (V1.is(1))
      Res[i] = BitValue::ref(V2);
    else if (V2.is(1))
      Res[i] = BitValue::ref(V1);
    else if (V1.is(0) || V2.is(0))
      Res[i] = BitValue::Zero;
    else if (V1 == V2)
      Res[i] = V1;
    else
      Res[i] = BitValue::self();
  }
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width();
  assert(W == A2.width());
  RegisterCell Res(W);
  for (uint16_t i = 0; i < W; ++i) {
    const BitValue &V1 = A1[i];
    const BitValue &V2 = A2[i];
    if (V1.is(1) || V2.is(1))
      Res[i] = BitValue::One;
    else if (V1.is(0))
      Res[i] = BitValue::ref(V2);
    else if (V2.is(0))
      Res[i] = BitValue::ref(V1);
    else if (V1 == V2)
      Res[i] = V1;
    else
      Res[i] = BitValue::self();
  }
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
      const RegisterCell &A2) const {
  uint16_t W = A1.width();
  assert(W == A2.width());
  RegisterCell Res(W);
  for (uint16_t i = 0; i < W; ++i) {
    const BitValue &V1 = A1[i];
    const BitValue &V2 = A2[i];
    if (V1.is(0))
      Res[i] = BitValue::ref(V2);
    else if (V2.is(0))
      Res[i] = BitValue::ref(V1);
    else if (V1 == V2)
      Res[i] = BitValue::Zero;
    else
      Res[i] = BitValue::self();
  }
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
  uint16_t W = A1.width();
  RegisterCell Res(W);
  for (uint16_t i = 0; i < W; ++i) {
    const BitValue &V = A1[i];
    if (V.is(0))
      Res[i] = BitValue::One;
    else if (V.is(1))
      Res[i] = BitValue::Zero;
    else
      Res[i] = BitValue::self();
  }
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
      uint16_t BitN) const {
  assert(BitN < A1.width());
  RegisterCell Res = RegisterCell::ref(A1);
  Res[BitN] = BitValue::One;
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
      uint16_t BitN) const {
  assert(BitN < A1.width());
  RegisterCell Res = RegisterCell::ref(A1);
  Res[BitN] = BitValue::Zero;
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
      uint16_t W) const {
  uint16_t C = A1.cl(B), AW = A1.width();
  // If the last leading non-B bit is not a constant, then we don't know
  // the real count.
  if ((C < AW && A1[AW-1-C].num()) || C == AW)
    return eIMM(C, W);
  return RegisterCell::self(0, W);
}

BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
      uint16_t W) const {
  uint16_t C = A1.ct(B), AW = A1.width();
  // If the last trailing non-B bit is not a constant, then we don't know
  // the real count.
  if ((C < AW && A1[C].num()) || C == AW)
    return eIMM(C, W);
  return RegisterCell::self(0, W);
}

BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
      uint16_t FromN) const {
  uint16_t W = A1.width();
  assert(FromN <= W);
  RegisterCell Res = RegisterCell::ref(A1);
  BitValue Sign = Res[FromN-1];
  // Sign-extend "inreg".
  Res.fill(FromN, W, Sign);
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
      uint16_t FromN) const {
  uint16_t W = A1.width();
  assert(FromN <= W);
  RegisterCell Res = RegisterCell::ref(A1);
  Res.fill(FromN, W, BitValue::Zero);
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
      uint16_t B, uint16_t E) const {
  uint16_t W = A1.width();
  assert(B < W && E <= W);
  if (B == E)
    return RegisterCell(0);
  uint16_t Last = (E > 0) ? E-1 : W-1;
  RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
  // Return shorter cell.
  return Res;
}

BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
      const RegisterCell &A2, uint16_t AtN) const {
  uint16_t W1 = A1.width(), W2 = A2.width();
  (void)W1;
  assert(AtN < W1 && AtN+W2 <= W1);
  // Copy bits from A1, insert A2 at position AtN.
  RegisterCell Res = RegisterCell::ref(A1);
  if (W2 > 0)
    Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
  return Res;
}

BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
  assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
  uint16_t W = getRegBitWidth(Reg);
  assert(W > 0 && "Cannot generate mask for empty register");
  return BitMask(0, W-1);
}

uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
  assert(Register::isPhysicalRegister(Reg));
  const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
  return TRI.getRegSizeInBits(PC);
}

bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
                                    const CellMapType &Inputs,
                                    CellMapType &Outputs) const {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case TargetOpcode::REG_SEQUENCE: {
      RegisterRef RD = MI.getOperand(0);
      assert(RD.Sub == 0);
      RegisterRef RS = MI.getOperand(1);
      unsigned SS = MI.getOperand(2).getImm();
      RegisterRef RT = MI.getOperand(3);
      unsigned ST = MI.getOperand(4).getImm();
      assert(SS != ST);

      uint16_t W = getRegBitWidth(RD);
      RegisterCell Res(W);
      Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
      Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
      putCell(RD, Res, Outputs);
      break;
    }

    case TargetOpcode::COPY: {
      // COPY can transfer a smaller register into a wider one.
      // If that is the case, fill the remaining high bits with 0.
      RegisterRef RD = MI.getOperand(0);
      RegisterRef RS = MI.getOperand(1);
      assert(RD.Sub == 0);
      uint16_t WD = getRegBitWidth(RD);
      uint16_t WS = getRegBitWidth(RS);
      assert(WD >= WS);
      RegisterCell Src = getCell(RS, Inputs);
      RegisterCell Res(WD);
      Res.insert(Src, BitMask(0, WS-1));
      Res.fill(WS, WD, BitValue::Zero);
      putCell(RD, Res, Outputs);
      break;
    }

    default:
      return false;
  }

  return true;
}

bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
                                       const MachineInstr *InstB) const {
  // This is a comparison function for a priority queue: give higher priority
  // to earlier instructions.
  // This operator is used as "less", so returning "true" gives InstB higher
  // priority (because then InstA < InstB).
  if (InstA == InstB)
    return false;
  const MachineBasicBlock *BA = InstA->getParent();
  const MachineBasicBlock *BB = InstB->getParent();
  if (BA != BB) {
    // If the blocks are different, ideally the dominating block would
    // have a higher priority, but it may be too expensive to check.
    return BA->getNumber() > BB->getNumber();
  }

  auto getDist = [this] (const MachineInstr *MI) {
    auto F = Dist.find(MI);
    if (F != Dist.end())
      return F->second;
    MachineBasicBlock::const_iterator I = MI->getParent()->begin();
    MachineBasicBlock::const_iterator E = MI->getIterator();
    unsigned D = std::distance(I, E);
    Dist.insert(std::make_pair(MI, D));
    return D;
  };

  return getDist(InstA) > getDist(InstB);
}

// Main W-Z implementation.

void BT::visitPHI(const MachineInstr &PI) {
  int ThisN = PI.getParent()->getNumber();
  if (Trace)
    dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;

  const MachineOperand &MD = PI.getOperand(0);
  assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
  RegisterRef DefRR(MD);
  uint16_t DefBW = ME.getRegBitWidth(DefRR);

  RegisterCell DefC = ME.getCell(DefRR, Map);
  if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
    return;

  bool Changed = false;

  for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
    const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
    int PredN = PB->getNumber();
    if (Trace)
      dbgs() << "  edge " << printMBBReference(*PB) << "->"
             << printMBBReference(*PI.getParent());
    if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
      if (Trace)
        dbgs() << " not executable\n";
      continue;
    }

    RegisterRef RU = PI.getOperand(i);
    RegisterCell ResC = ME.getCell(RU, Map);
    if (Trace)
      dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
             << " cell: " << ResC << "\n";
    Changed |= DefC.meet(ResC, DefRR.Reg);
  }

  if (Changed) {
    if (Trace)
      dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
             << " cell: " << DefC << "\n";
    ME.putCell(DefRR, DefC, Map);
    visitUsesOf(DefRR.Reg);
  }
}

void BT::visitNonBranch(const MachineInstr &MI) {
  if (Trace)
    dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
  if (MI.isDebugInstr())
    return;
  assert(!MI.isBranch() && "Unexpected branch instruction");

  CellMapType ResMap;
  bool Eval = ME.evaluate(MI, Map, ResMap);

  if (Trace && Eval) {
    for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
      const MachineOperand &MO = MI.getOperand(i);
      if (!MO.isReg() || !MO.isUse())
        continue;
      RegisterRef RU(MO);
      dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
             << " cell: " << ME.getCell(RU, Map) << "\n";
    }
    dbgs() << "Outputs:\n";
    for (const std::pair<unsigned, RegisterCell> &P : ResMap) {
      RegisterRef RD(P.first);
      dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: "
             << ME.getCell(RD, ResMap) << "\n";
    }
  }

  // Iterate over all definitions of the instruction, and update the
  // cells accordingly.
  for (const MachineOperand &MO : MI.operands()) {
    // Visit register defs only.
    if (!MO.isReg() || !MO.isDef())
      continue;
    RegisterRef RD(MO);
    assert(RD.Sub == 0 && "Unexpected sub-register in definition");
    if (!Register::isVirtualRegister(RD.Reg))
      continue;

    bool Changed = false;
    if (!Eval || ResMap.count(RD.Reg) == 0) {
      // Set to "ref" (aka "bottom").
      uint16_t DefBW = ME.getRegBitWidth(RD);
      RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
      if (RefC != ME.getCell(RD, Map)) {
        ME.putCell(RD, RefC, Map);
        Changed = true;
      }
    } else {
      RegisterCell DefC = ME.getCell(RD, Map);
      RegisterCell ResC = ME.getCell(RD, ResMap);
      // This is a non-phi instruction, so the values of the inputs come
      // from the same registers each time this instruction is evaluated.
      // During the propagation, the values of the inputs can become lowered
      // in the sense of the lattice operation, which may cause different
      // results to be calculated in subsequent evaluations. This should
      // not cause the bottoming of the result in the map, since the new
      // result is already reflecting the lowered inputs.
      for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
        BitValue &V = DefC[i];
        // Bits that are already "bottom" should not be updated.
        if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
          continue;
        // Same for those that are identical in DefC and ResC.
        if (V == ResC[i])
          continue;
        V = ResC[i];
        Changed = true;
      }
      if (Changed)
        ME.putCell(RD, DefC, Map);
    }
    if (Changed)
      visitUsesOf(RD.Reg);
  }
}

void BT::visitBranchesFrom(const MachineInstr &BI) {
  const MachineBasicBlock &B = *BI.getParent();
  MachineBasicBlock::const_iterator It = BI, End = B.end();
  BranchTargetList Targets, BTs;
  bool FallsThrough = true, DefaultToAll = false;
  int ThisN = B.getNumber();

  do {
    BTs.clear();
    const MachineInstr &MI = *It;
    if (Trace)
      dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
    assert(MI.isBranch() && "Expecting branch instruction");
    InstrExec.insert(&MI);
    bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
    if (!Eval) {
      // If the evaluation failed, we will add all targets. Keep going in
      // the loop to mark all executable branches as such.
      DefaultToAll = true;
      FallsThrough = true;
      if (Trace)
        dbgs() << "  failed to evaluate: will add all CFG successors\n";
    } else if (!DefaultToAll) {
      // If evaluated successfully add the targets to the cumulative list.
      if (Trace) {
        dbgs() << "  adding targets:";
        for (unsigned i = 0, n = BTs.size(); i < n; ++i)
          dbgs() << " " << printMBBReference(*BTs[i]);
        if (FallsThrough)
          dbgs() << "\n  falls through\n";
        else
          dbgs() << "\n  does not fall through\n";
      }
      Targets.insert(BTs.begin(), BTs.end());
    }
    ++It;
  } while (FallsThrough && It != End);

  if (!DefaultToAll) {
    // Need to add all CFG successors that lead to EH landing pads.
    // There won't be explicit branches to these blocks, but they must
    // be processed.
    for (const MachineBasicBlock *SB : B.successors()) {
      if (SB->isEHPad())
        Targets.insert(SB);
    }
    if (FallsThrough) {
      MachineFunction::const_iterator BIt = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BIt);
      if (Next != MF.end())
        Targets.insert(&*Next);
    }
  } else {
    for (const MachineBasicBlock *SB : B.successors())
      Targets.insert(SB);
  }

  for (const MachineBasicBlock *TB : Targets)
    FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
}

void BT::visitUsesOf(unsigned Reg) {
  if (Trace)
    dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
           << " cell: " << ME.getCell(Reg, Map) << '\n';

  for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
    UseQ.push(&UseI);
}

BT::RegisterCell BT::get(RegisterRef RR) const {
  return ME.getCell(RR, Map);
}

void BT::put(RegisterRef RR, const RegisterCell &RC) {
  ME.putCell(RR, RC, Map);
}

// Replace all references to bits from OldRR with the corresponding bits
// in NewRR.
void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
  assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
  BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
  BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
  uint16_t OMB = OM.first(), OME = OM.last();
  uint16_t NMB = NM.first(), NME = NM.last();
  (void)NME;
  assert((OME-OMB == NME-NMB) &&
         "Substituting registers of different lengths");
  for (std::pair<const unsigned, RegisterCell> &P : Map) {
    RegisterCell &RC = P.second;
    for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
      BitValue &V = RC[i];
      if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
        continue;
      if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
        continue;
      V.RefI.Reg = NewRR.Reg;
      V.RefI.Pos += NMB-OMB;
    }
  }
}

// Check if the block has been "executed" during propagation. (If not, the
// block is dead, but it may still appear to be reachable.)
bool BT::reached(const MachineBasicBlock *B) const {
  int BN = B->getNumber();
  assert(BN >= 0);
  return ReachedBB.count(BN);
}

// Visit an individual instruction. This could be a newly added instruction,
// or one that has been modified by an optimization.
void BT::visit(const MachineInstr &MI) {
  assert(!MI.isBranch() && "Only non-branches are allowed");
  InstrExec.insert(&MI);
  visitNonBranch(MI);
  // Make sure to flush all the pending use updates.
  runUseQueue();
  // The call to visitNonBranch could propagate the changes until a branch
  // is actually visited. This could result in adding CFG edges to the flow
  // queue. Since the queue won't be processed, clear it.
  while (!FlowQ.empty())
    FlowQ.pop();
}

void BT::reset() {
  EdgeExec.clear();
  InstrExec.clear();
  Map.clear();
  ReachedBB.clear();
  ReachedBB.reserve(MF.size());
}

void BT::runEdgeQueue(BitVector &BlockScanned) {
  while (!FlowQ.empty()) {
    CFGEdge Edge = FlowQ.front();
    FlowQ.pop();

    if (EdgeExec.count(Edge))
      return;
    EdgeExec.insert(Edge);
    ReachedBB.insert(Edge.second);

    const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
    MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
    // Visit PHI nodes first.
    while (It != End && It->isPHI()) {
      const MachineInstr &PI = *It++;
      InstrExec.insert(&PI);
      visitPHI(PI);
    }

    // If this block has already been visited through a flow graph edge,
    // then the instructions have already been processed. Any updates to
    // the cells would now only happen through visitUsesOf...
    if (BlockScanned[Edge.second])
      return;
    BlockScanned[Edge.second] = true;

    // Visit non-branch instructions.
    while (It != End && !It->isBranch()) {
      const MachineInstr &MI = *It++;
      InstrExec.insert(&MI);
      visitNonBranch(MI);
    }
    // If block end has been reached, add the fall-through edge to the queue.
    if (It == End) {
      MachineFunction::const_iterator BIt = B.getIterator();
      MachineFunction::const_iterator Next = std::next(BIt);
      if (Next != MF.end() && B.isSuccessor(&*Next)) {
        int ThisN = B.getNumber();
        int NextN = Next->getNumber();
        FlowQ.push(CFGEdge(ThisN, NextN));
      }
    } else {
      // Handle the remaining sequence of branches. This function will update
      // the work queue.
      visitBranchesFrom(*It);
    }
  } // while (!FlowQ->empty())
}

void BT::runUseQueue() {
  while (!UseQ.empty()) {
    MachineInstr &UseI = *UseQ.front();
    UseQ.pop();

    if (!InstrExec.count(&UseI))
      continue;
    if (UseI.isPHI())
      visitPHI(UseI);
    else if (!UseI.isBranch())
      visitNonBranch(UseI);
    else
      visitBranchesFrom(UseI);
  }
}

void BT::run() {
  reset();
  assert(FlowQ.empty());

  using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
  const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);

  unsigned MaxBN = 0;
  for (const MachineBasicBlock &B : MF) {
    assert(B.getNumber() >= 0 && "Disconnected block");
    unsigned BN = B.getNumber();
    if (BN > MaxBN)
      MaxBN = BN;
  }

  // Keep track of visited blocks.
  BitVector BlockScanned(MaxBN+1);

  int EntryN = Entry->getNumber();
  // Generate a fake edge to get something to start with.
  FlowQ.push(CFGEdge(-1, EntryN));

  while (!FlowQ.empty() || !UseQ.empty()) {
    runEdgeQueue(BlockScanned);
    runUseQueue();
  }
  UseQ.reset();

  if (Trace)
    print_cells(dbgs() << "Cells after propagation:\n");
}