reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
//===- ObjectFile.h - File format independent object file -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares a file format independent ObjectFile class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_OBJECT_OBJECTFILE_H
#define LLVM_OBJECT_OBJECTFILE_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <system_error>

namespace llvm {

class ARMAttributeParser;

namespace object {

class COFFObjectFile;
class MachOObjectFile;
class ObjectFile;
class SectionRef;
class SymbolRef;
class symbol_iterator;
class WasmObjectFile;

using section_iterator = content_iterator<SectionRef>;

/// This is a value type class that represents a single relocation in the list
/// of relocations in the object file.
class RelocationRef {
  DataRefImpl RelocationPimpl;
  const ObjectFile *OwningObject = nullptr;

public:
  RelocationRef() = default;
  RelocationRef(DataRefImpl RelocationP, const ObjectFile *Owner);

  bool operator==(const RelocationRef &Other) const;

  void moveNext();

  uint64_t getOffset() const;
  symbol_iterator getSymbol() const;
  uint64_t getType() const;

  /// Get a string that represents the type of this relocation.
  ///
  /// This is for display purposes only.
  void getTypeName(SmallVectorImpl<char> &Result) const;

  DataRefImpl getRawDataRefImpl() const;
  const ObjectFile *getObject() const;
};

using relocation_iterator = content_iterator<RelocationRef>;

/// This is a value type class that represents a single section in the list of
/// sections in the object file.
class SectionRef {
  friend class SymbolRef;

  DataRefImpl SectionPimpl;
  const ObjectFile *OwningObject = nullptr;

public:
  SectionRef() = default;
  SectionRef(DataRefImpl SectionP, const ObjectFile *Owner);

  bool operator==(const SectionRef &Other) const;
  bool operator!=(const SectionRef &Other) const;
  bool operator<(const SectionRef &Other) const;

  void moveNext();

  Expected<StringRef> getName() const;
  uint64_t getAddress() const;
  uint64_t getIndex() const;
  uint64_t getSize() const;
  Expected<StringRef> getContents() const;

  /// Get the alignment of this section as the actual value (not log 2).
  uint64_t getAlignment() const;

  bool isCompressed() const;
  /// Whether this section contains instructions.
  bool isText() const;
  /// Whether this section contains data, not instructions.
  bool isData() const;
  /// Whether this section contains BSS uninitialized data.
  bool isBSS() const;
  bool isVirtual() const;
  bool isBitcode() const;
  bool isStripped() const;

  /// Whether this section will be placed in the text segment, according to the
  /// Berkeley size format. This is true if the section is allocatable, and
  /// contains either code or readonly data.
  bool isBerkeleyText() const;
  /// Whether this section will be placed in the data segment, according to the
  /// Berkeley size format. This is true if the section is allocatable and
  /// contains data (e.g. PROGBITS), but is not text.
  bool isBerkeleyData() const;

  bool containsSymbol(SymbolRef S) const;

  relocation_iterator relocation_begin() const;
  relocation_iterator relocation_end() const;
  iterator_range<relocation_iterator> relocations() const {
    return make_range(relocation_begin(), relocation_end());
  }
  Expected<section_iterator> getRelocatedSection() const;

  DataRefImpl getRawDataRefImpl() const;
  const ObjectFile *getObject() const;
};

struct SectionedAddress {
  const static uint64_t UndefSection = UINT64_MAX;

  uint64_t Address = 0;
  uint64_t SectionIndex = UndefSection;
};

inline bool operator<(const SectionedAddress &LHS,
                      const SectionedAddress &RHS) {
  return std::tie(LHS.SectionIndex, LHS.Address) <
         std::tie(RHS.SectionIndex, RHS.Address);
}

inline bool operator==(const SectionedAddress &LHS,
                       const SectionedAddress &RHS) {
  return std::tie(LHS.SectionIndex, LHS.Address) ==
         std::tie(RHS.SectionIndex, RHS.Address);
}

/// This is a value type class that represents a single symbol in the list of
/// symbols in the object file.
class SymbolRef : public BasicSymbolRef {
  friend class SectionRef;

public:
  enum Type {
    ST_Unknown, // Type not specified
    ST_Data,
    ST_Debug,
    ST_File,
    ST_Function,
    ST_Other
  };

  SymbolRef() = default;
  SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner);
  SymbolRef(const BasicSymbolRef &B) : BasicSymbolRef(B) {
    assert(isa<ObjectFile>(BasicSymbolRef::getObject()));
  }

  Expected<StringRef> getName() const;
  /// Returns the symbol virtual address (i.e. address at which it will be
  /// mapped).
  Expected<uint64_t> getAddress() const;

  /// Return the value of the symbol depending on the object this can be an
  /// offset or a virtual address.
  uint64_t getValue() const;

  /// Get the alignment of this symbol as the actual value (not log 2).
  uint32_t getAlignment() const;
  uint64_t getCommonSize() const;
  Expected<SymbolRef::Type> getType() const;

  /// Get section this symbol is defined in reference to. Result is
  /// end_sections() if it is undefined or is an absolute symbol.
  Expected<section_iterator> getSection() const;

  const ObjectFile *getObject() const;
};

class symbol_iterator : public basic_symbol_iterator {
public:
  symbol_iterator(SymbolRef Sym) : basic_symbol_iterator(Sym) {}
  symbol_iterator(const basic_symbol_iterator &B)
      : basic_symbol_iterator(SymbolRef(B->getRawDataRefImpl(),
                                        cast<ObjectFile>(B->getObject()))) {}

  const SymbolRef *operator->() const {
    const BasicSymbolRef &P = basic_symbol_iterator::operator *();
    return static_cast<const SymbolRef*>(&P);
  }

  const SymbolRef &operator*() const {
    const BasicSymbolRef &P = basic_symbol_iterator::operator *();
    return static_cast<const SymbolRef&>(P);
  }
};

/// This class is the base class for all object file types. Concrete instances
/// of this object are created by createObjectFile, which figures out which type
/// to create.
class ObjectFile : public SymbolicFile {
  virtual void anchor();

protected:
  ObjectFile(unsigned int Type, MemoryBufferRef Source);

  const uint8_t *base() const {
    return reinterpret_cast<const uint8_t *>(Data.getBufferStart());
  }

  // These functions are for SymbolRef to call internally. The main goal of
  // this is to allow SymbolRef::SymbolPimpl to point directly to the symbol
  // entry in the memory mapped object file. SymbolPimpl cannot contain any
  // virtual functions because then it could not point into the memory mapped
  // file.
  //
  // Implementations assume that the DataRefImpl is valid and has not been
  // modified externally. It's UB otherwise.
  friend class SymbolRef;

  virtual Expected<StringRef> getSymbolName(DataRefImpl Symb) const = 0;
  Error printSymbolName(raw_ostream &OS,
                                  DataRefImpl Symb) const override;
  virtual Expected<uint64_t> getSymbolAddress(DataRefImpl Symb) const = 0;
  virtual uint64_t getSymbolValueImpl(DataRefImpl Symb) const = 0;
  virtual uint32_t getSymbolAlignment(DataRefImpl Symb) const;
  virtual uint64_t getCommonSymbolSizeImpl(DataRefImpl Symb) const = 0;
  virtual Expected<SymbolRef::Type> getSymbolType(DataRefImpl Symb) const = 0;
  virtual Expected<section_iterator>
  getSymbolSection(DataRefImpl Symb) const = 0;

  // Same as above for SectionRef.
  friend class SectionRef;

  virtual void moveSectionNext(DataRefImpl &Sec) const = 0;
  virtual Expected<StringRef> getSectionName(DataRefImpl Sec) const = 0;
  virtual uint64_t getSectionAddress(DataRefImpl Sec) const = 0;
  virtual uint64_t getSectionIndex(DataRefImpl Sec) const = 0;
  virtual uint64_t getSectionSize(DataRefImpl Sec) const = 0;
  virtual Expected<ArrayRef<uint8_t>>
  getSectionContents(DataRefImpl Sec) const = 0;
  virtual uint64_t getSectionAlignment(DataRefImpl Sec) const = 0;
  virtual bool isSectionCompressed(DataRefImpl Sec) const = 0;
  virtual bool isSectionText(DataRefImpl Sec) const = 0;
  virtual bool isSectionData(DataRefImpl Sec) const = 0;
  virtual bool isSectionBSS(DataRefImpl Sec) const = 0;
  // A section is 'virtual' if its contents aren't present in the object image.
  virtual bool isSectionVirtual(DataRefImpl Sec) const = 0;
  virtual bool isSectionBitcode(DataRefImpl Sec) const;
  virtual bool isSectionStripped(DataRefImpl Sec) const;
  virtual bool isBerkeleyText(DataRefImpl Sec) const;
  virtual bool isBerkeleyData(DataRefImpl Sec) const;
  virtual relocation_iterator section_rel_begin(DataRefImpl Sec) const = 0;
  virtual relocation_iterator section_rel_end(DataRefImpl Sec) const = 0;
  virtual Expected<section_iterator> getRelocatedSection(DataRefImpl Sec) const;

  // Same as above for RelocationRef.
  friend class RelocationRef;
  virtual void moveRelocationNext(DataRefImpl &Rel) const = 0;
  virtual uint64_t getRelocationOffset(DataRefImpl Rel) const = 0;
  virtual symbol_iterator getRelocationSymbol(DataRefImpl Rel) const = 0;
  virtual uint64_t getRelocationType(DataRefImpl Rel) const = 0;
  virtual void getRelocationTypeName(DataRefImpl Rel,
                                     SmallVectorImpl<char> &Result) const = 0;

  uint64_t getSymbolValue(DataRefImpl Symb) const;

public:
  ObjectFile() = delete;
  ObjectFile(const ObjectFile &other) = delete;

  uint64_t getCommonSymbolSize(DataRefImpl Symb) const {
    assert(getSymbolFlags(Symb) & SymbolRef::SF_Common);
    return getCommonSymbolSizeImpl(Symb);
  }

  virtual std::vector<SectionRef> dynamic_relocation_sections() const {
    return std::vector<SectionRef>();
  }

  using symbol_iterator_range = iterator_range<symbol_iterator>;
  symbol_iterator_range symbols() const {
    return symbol_iterator_range(symbol_begin(), symbol_end());
  }

  virtual section_iterator section_begin() const = 0;
  virtual section_iterator section_end() const = 0;

  using section_iterator_range = iterator_range<section_iterator>;
  section_iterator_range sections() const {
    return section_iterator_range(section_begin(), section_end());
  }

  /// The number of bytes used to represent an address in this object
  ///        file format.
  virtual uint8_t getBytesInAddress() const = 0;

  virtual StringRef getFileFormatName() const = 0;
  virtual Triple::ArchType getArch() const = 0;
  virtual SubtargetFeatures getFeatures() const = 0;
  virtual void setARMSubArch(Triple &TheTriple) const { }
  virtual Expected<uint64_t> getStartAddress() const {
    return errorCodeToError(object_error::parse_failed);
  };

  /// Create a triple from the data in this object file.
  Triple makeTriple() const;

  /// Maps a debug section name to a standard DWARF section name.
  virtual StringRef mapDebugSectionName(StringRef Name) const { return Name; }

  /// True if this is a relocatable object (.o/.obj).
  virtual bool isRelocatableObject() const = 0;

  /// @returns Pointer to ObjectFile subclass to handle this type of object.
  /// @param ObjectPath The path to the object file. ObjectPath.isObject must
  ///        return true.
  /// Create ObjectFile from path.
  static Expected<OwningBinary<ObjectFile>>
  createObjectFile(StringRef ObjectPath);

  static Expected<std::unique_ptr<ObjectFile>>
  createObjectFile(MemoryBufferRef Object, llvm::file_magic Type);
  static Expected<std::unique_ptr<ObjectFile>>
  createObjectFile(MemoryBufferRef Object) {
    return createObjectFile(Object, llvm::file_magic::unknown);
  }

  static bool classof(const Binary *v) {
    return v->isObject();
  }

  static Expected<std::unique_ptr<COFFObjectFile>>
  createCOFFObjectFile(MemoryBufferRef Object);

  static Expected<std::unique_ptr<ObjectFile>>
  createXCOFFObjectFile(MemoryBufferRef Object, unsigned FileType);

  static Expected<std::unique_ptr<ObjectFile>>
  createELFObjectFile(MemoryBufferRef Object);

  static Expected<std::unique_ptr<MachOObjectFile>>
  createMachOObjectFile(MemoryBufferRef Object,
                        uint32_t UniversalCputype = 0,
                        uint32_t UniversalIndex = 0);

  static Expected<std::unique_ptr<WasmObjectFile>>
  createWasmObjectFile(MemoryBufferRef Object);
};

// Inline function definitions.
inline SymbolRef::SymbolRef(DataRefImpl SymbolP, const ObjectFile *Owner)
    : BasicSymbolRef(SymbolP, Owner) {}

inline Expected<StringRef> SymbolRef::getName() const {
  return getObject()->getSymbolName(getRawDataRefImpl());
}

inline Expected<uint64_t> SymbolRef::getAddress() const {
  return getObject()->getSymbolAddress(getRawDataRefImpl());
}

inline uint64_t SymbolRef::getValue() const {
  return getObject()->getSymbolValue(getRawDataRefImpl());
}

inline uint32_t SymbolRef::getAlignment() const {
  return getObject()->getSymbolAlignment(getRawDataRefImpl());
}

inline uint64_t SymbolRef::getCommonSize() const {
  return getObject()->getCommonSymbolSize(getRawDataRefImpl());
}

inline Expected<section_iterator> SymbolRef::getSection() const {
  return getObject()->getSymbolSection(getRawDataRefImpl());
}

inline Expected<SymbolRef::Type> SymbolRef::getType() const {
  return getObject()->getSymbolType(getRawDataRefImpl());
}

inline const ObjectFile *SymbolRef::getObject() const {
  const SymbolicFile *O = BasicSymbolRef::getObject();
  return cast<ObjectFile>(O);
}

/// SectionRef
inline SectionRef::SectionRef(DataRefImpl SectionP,
                              const ObjectFile *Owner)
  : SectionPimpl(SectionP)
  , OwningObject(Owner) {}

inline bool SectionRef::operator==(const SectionRef &Other) const {
  return OwningObject == Other.OwningObject &&
         SectionPimpl == Other.SectionPimpl;
}

inline bool SectionRef::operator!=(const SectionRef &Other) const {
  return !(*this == Other);
}

inline bool SectionRef::operator<(const SectionRef &Other) const {
  assert(OwningObject == Other.OwningObject);
  return SectionPimpl < Other.SectionPimpl;
}

inline void SectionRef::moveNext() {
  return OwningObject->moveSectionNext(SectionPimpl);
}

inline Expected<StringRef> SectionRef::getName() const {
  return OwningObject->getSectionName(SectionPimpl);
}

inline uint64_t SectionRef::getAddress() const {
  return OwningObject->getSectionAddress(SectionPimpl);
}

inline uint64_t SectionRef::getIndex() const {
  return OwningObject->getSectionIndex(SectionPimpl);
}

inline uint64_t SectionRef::getSize() const {
  return OwningObject->getSectionSize(SectionPimpl);
}

inline Expected<StringRef> SectionRef::getContents() const {
  Expected<ArrayRef<uint8_t>> Res =
      OwningObject->getSectionContents(SectionPimpl);
  if (!Res)
    return Res.takeError();
  return StringRef(reinterpret_cast<const char *>(Res->data()), Res->size());
}

inline uint64_t SectionRef::getAlignment() const {
  return OwningObject->getSectionAlignment(SectionPimpl);
}

inline bool SectionRef::isCompressed() const {
  return OwningObject->isSectionCompressed(SectionPimpl);
}

inline bool SectionRef::isText() const {
  return OwningObject->isSectionText(SectionPimpl);
}

inline bool SectionRef::isData() const {
  return OwningObject->isSectionData(SectionPimpl);
}

inline bool SectionRef::isBSS() const {
  return OwningObject->isSectionBSS(SectionPimpl);
}

inline bool SectionRef::isVirtual() const {
  return OwningObject->isSectionVirtual(SectionPimpl);
}

inline bool SectionRef::isBitcode() const {
  return OwningObject->isSectionBitcode(SectionPimpl);
}

inline bool SectionRef::isStripped() const {
  return OwningObject->isSectionStripped(SectionPimpl);
}

inline bool SectionRef::isBerkeleyText() const {
  return OwningObject->isBerkeleyText(SectionPimpl);
}

inline bool SectionRef::isBerkeleyData() const {
  return OwningObject->isBerkeleyData(SectionPimpl);
}

inline relocation_iterator SectionRef::relocation_begin() const {
  return OwningObject->section_rel_begin(SectionPimpl);
}

inline relocation_iterator SectionRef::relocation_end() const {
  return OwningObject->section_rel_end(SectionPimpl);
}

inline Expected<section_iterator> SectionRef::getRelocatedSection() const {
  return OwningObject->getRelocatedSection(SectionPimpl);
}

inline DataRefImpl SectionRef::getRawDataRefImpl() const {
  return SectionPimpl;
}

inline const ObjectFile *SectionRef::getObject() const {
  return OwningObject;
}

/// RelocationRef
inline RelocationRef::RelocationRef(DataRefImpl RelocationP,
                              const ObjectFile *Owner)
  : RelocationPimpl(RelocationP)
  , OwningObject(Owner) {}

inline bool RelocationRef::operator==(const RelocationRef &Other) const {
  return RelocationPimpl == Other.RelocationPimpl;
}

inline void RelocationRef::moveNext() {
  return OwningObject->moveRelocationNext(RelocationPimpl);
}

inline uint64_t RelocationRef::getOffset() const {
  return OwningObject->getRelocationOffset(RelocationPimpl);
}

inline symbol_iterator RelocationRef::getSymbol() const {
  return OwningObject->getRelocationSymbol(RelocationPimpl);
}

inline uint64_t RelocationRef::getType() const {
  return OwningObject->getRelocationType(RelocationPimpl);
}

inline void RelocationRef::getTypeName(SmallVectorImpl<char> &Result) const {
  return OwningObject->getRelocationTypeName(RelocationPimpl, Result);
}

inline DataRefImpl RelocationRef::getRawDataRefImpl() const {
  return RelocationPimpl;
}

inline const ObjectFile *RelocationRef::getObject() const {
  return OwningObject;
}

} // end namespace object

template <> struct DenseMapInfo<object::SectionRef> {
  static bool isEqual(const object::SectionRef &A,
                      const object::SectionRef &B) {
    return A == B;
  }
  static object::SectionRef getEmptyKey() {
    return object::SectionRef({}, nullptr);
  }
  static object::SectionRef getTombstoneKey() {
    object::DataRefImpl TS;
    TS.p = (uintptr_t)-1;
    return object::SectionRef(TS, nullptr);
  }
  static unsigned getHashValue(const object::SectionRef &Sec) {
    object::DataRefImpl Raw = Sec.getRawDataRefImpl();
    return hash_combine(Raw.p, Raw.d.a, Raw.d.b);
  }
};

} // end namespace llvm

#endif // LLVM_OBJECT_OBJECTFILE_H