reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief
/// This file declares a class to represent arbitrary precision floating point
/// values and provide a variety of arithmetic operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorHandling.h"
#include <memory>

#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
  do {                                                                         \
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
      return U.IEEE.METHOD_CALL;                                               \
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
      return U.Double.METHOD_CALL;                                             \
    llvm_unreachable("Unexpected semantics");                                  \
  } while (false)

namespace llvm {

struct fltSemantics;
class APSInt;
class StringRef;
class APFloat;
class raw_ostream;

template <typename T> class SmallVectorImpl;

/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
enum lostFraction { // Example of truncated bits:
  lfExactlyZero,    // 000000
  lfLessThanHalf,   // 0xxxxx  x's not all zero
  lfExactlyHalf,    // 100000
  lfMoreThanHalf    // 1xxxxx  x's not all zero
};

/// A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// APFloat uses bignum integer arithmetic as provided by static functions in
/// the APInt class.  The library will work with bignum integers whose parts are
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host.  Performance should nonetheless be reasonable,
/// particularly for its intended use.  It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations.  Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer.  New rounding modes
/// (e.g. away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision).  Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.  It also converts
/// floating point numbers to hexadecimal text as per the C99 %a and %A
/// conversions.  The output precision (or alternatively the natural minimal
/// precision) can be specified; if the requested precision is less than the
/// natural precision the output is correctly rounded for the specified rounding
/// mode.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Conversion to decimal text is not currently implemented.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer parts.  After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit.  For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set.  The sign of zeroes and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
///
/// APFloat does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand as
/// 0.
///
/// TODO
/// ====
///
/// Some features that may or may not be worth adding:
///
/// Binary to decimal conversion (hard).
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
///

// This is the common type definitions shared by APFloat and its internal
// implementation classes. This struct should not define any non-static data
// members.
struct APFloatBase {
  typedef APInt::WordType integerPart;
  static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;

  /// A signed type to represent a floating point numbers unbiased exponent.
  typedef signed short ExponentType;

  /// \name Floating Point Semantics.
  /// @{
  enum Semantics {
    S_IEEEhalf,
    S_IEEEsingle,
    S_IEEEdouble,
    S_x87DoubleExtended,
    S_IEEEquad,
    S_PPCDoubleDouble
  };

  static const llvm::fltSemantics &EnumToSemantics(Semantics S);
  static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);

  static const fltSemantics &IEEEhalf() LLVM_READNONE;
  static const fltSemantics &IEEEsingle() LLVM_READNONE;
  static const fltSemantics &IEEEdouble() LLVM_READNONE;
  static const fltSemantics &IEEEquad() LLVM_READNONE;
  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;

  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
  /// anything real.
  static const fltSemantics &Bogus() LLVM_READNONE;

  /// @}

  /// IEEE-754R 5.11: Floating Point Comparison Relations.
  enum cmpResult {
    cmpLessThan,
    cmpEqual,
    cmpGreaterThan,
    cmpUnordered
  };

  /// IEEE-754R 4.3: Rounding-direction attributes.
  enum roundingMode {
    rmNearestTiesToEven,
    rmTowardPositive,
    rmTowardNegative,
    rmTowardZero,
    rmNearestTiesToAway
  };

  /// IEEE-754R 7: Default exception handling.
  ///
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
  ///
  /// APFloat models this behavior specified by IEEE-754:
  ///   "For operations producing results in floating-point format, the default
  ///    result of an operation that signals the invalid operation exception
  ///    shall be a quiet NaN."
  enum opStatus {
    opOK = 0x00,
    opInvalidOp = 0x01,
    opDivByZero = 0x02,
    opOverflow = 0x04,
    opUnderflow = 0x08,
    opInexact = 0x10
  };

  /// Category of internally-represented number.
  enum fltCategory {
    fcInfinity,
    fcNaN,
    fcNormal,
    fcZero
  };

  /// Convenience enum used to construct an uninitialized APFloat.
  enum uninitializedTag {
    uninitialized
  };

  /// Enumeration of \c ilogb error results.
  enum IlogbErrorKinds {
    IEK_Zero = INT_MIN + 1,
    IEK_NaN = INT_MIN,
    IEK_Inf = INT_MAX
  };

  static unsigned int semanticsPrecision(const fltSemantics &);
  static ExponentType semanticsMinExponent(const fltSemantics &);
  static ExponentType semanticsMaxExponent(const fltSemantics &);
  static unsigned int semanticsSizeInBits(const fltSemantics &);

  /// Returns the size of the floating point number (in bits) in the given
  /// semantics.
  static unsigned getSizeInBits(const fltSemantics &Sem);
};

namespace detail {

class IEEEFloat final : public APFloatBase {
public:
  /// \name Constructors
  /// @{

  IEEEFloat(const fltSemantics &); // Default construct to 0.0
  IEEEFloat(const fltSemantics &, integerPart);
  IEEEFloat(const fltSemantics &, uninitializedTag);
  IEEEFloat(const fltSemantics &, const APInt &);
  explicit IEEEFloat(double d);
  explicit IEEEFloat(float f);
  IEEEFloat(const IEEEFloat &);
  IEEEFloat(IEEEFloat &&);
  ~IEEEFloat();

  /// @}

  /// Returns whether this instance allocated memory.
  bool needsCleanup() const { return partCount() > 1; }

  /// \name Convenience "constructors"
  /// @{

  /// @}

  /// \name Arithmetic
  /// @{

  opStatus add(const IEEEFloat &, roundingMode);
  opStatus subtract(const IEEEFloat &, roundingMode);
  opStatus multiply(const IEEEFloat &, roundingMode);
  opStatus divide(const IEEEFloat &, roundingMode);
  /// IEEE remainder.
  opStatus remainder(const IEEEFloat &);
  /// C fmod, or llvm frem.
  opStatus mod(const IEEEFloat &);
  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
  opStatus roundToIntegral(roundingMode);
  /// IEEE-754R 5.3.1: nextUp/nextDown.
  opStatus next(bool nextDown);

  /// @}

  /// \name Sign operations.
  /// @{

  void changeSign();

  /// @}

  /// \name Conversions
  /// @{

  opStatus convert(const fltSemantics &, roundingMode, bool *);
  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
                            roundingMode, bool *) const;
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const;
  double convertToDouble() const;
  float convertToFloat() const;

  /// @}

  /// The definition of equality is not straightforward for floating point, so
  /// we won't use operator==.  Use one of the following, or write whatever it
  /// is you really mean.
  bool operator==(const IEEEFloat &) const = delete;

  /// IEEE comparison with another floating point number (NaNs compare
  /// unordered, 0==-0).
  cmpResult compare(const IEEEFloat &) const;

  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
  bool bitwiseIsEqual(const IEEEFloat &) const;

  /// Write out a hexadecimal representation of the floating point value to DST,
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
  /// Return the number of characters written, excluding the terminating NUL.
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
                                  bool upperCase, roundingMode) const;

  /// \name IEEE-754R 5.7.2 General operations.
  /// @{

  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
  /// negative.
  ///
  /// This applies to zeros and NaNs as well.
  bool isNegative() const { return sign; }

  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
  ///
  /// This implies that the current value of the float is not zero, subnormal,
  /// infinite, or NaN following the definition of normality from IEEE-754R.
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }

  /// Returns true if and only if the current value is zero, subnormal, or
  /// normal.
  ///
  /// This means that the value is not infinite or NaN.
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  /// Returns true if and only if the float is plus or minus zero.
  bool isZero() const { return category == fcZero; }

  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
  /// denormal.
  bool isDenormal() const;

  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
  bool isInfinity() const { return category == fcInfinity; }

  /// Returns true if and only if the float is a quiet or signaling NaN.
  bool isNaN() const { return category == fcNaN; }

  /// Returns true if and only if the float is a signaling NaN.
  bool isSignaling() const;

  /// @}

  /// \name Simple Queries
  /// @{

  fltCategory getCategory() const { return category; }
  const fltSemantics &getSemantics() const { return *semantics; }
  bool isNonZero() const { return category != fcZero; }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }

  /// Returns true if and only if the number has the smallest possible non-zero
  /// magnitude in the current semantics.
  bool isSmallest() const;

  /// Returns true if and only if the number has the largest possible finite
  /// magnitude in the current semantics.
  bool isLargest() const;

  /// Returns true if and only if the number is an exact integer.
  bool isInteger() const;

  /// @}

  IEEEFloat &operator=(const IEEEFloat &);
  IEEEFloat &operator=(IEEEFloat &&);

  /// Overload to compute a hash code for an APFloat value.
  ///
  /// Note that the use of hash codes for floating point values is in general
  /// frought with peril. Equality is hard to define for these values. For
  /// example, should negative and positive zero hash to different codes? Are
  /// they equal or not? This hash value implementation specifically
  /// emphasizes producing different codes for different inputs in order to
  /// be used in canonicalization and memoization. As such, equality is
  /// bitwiseIsEqual, and 0 != -0.
  friend hash_code hash_value(const IEEEFloat &Arg);

  /// Converts this value into a decimal string.
  ///
  /// \param FormatPrecision The maximum number of digits of
  ///   precision to output.  If there are fewer digits available,
  ///   zero padding will not be used unless the value is
  ///   integral and small enough to be expressed in
  ///   FormatPrecision digits.  0 means to use the natural
  ///   precision of the number.
  /// \param FormatMaxPadding The maximum number of zeros to
  ///   consider inserting before falling back to scientific
  ///   notation.  0 means to always use scientific notation.
  ///
  /// \param TruncateZero Indicate whether to remove the trailing zero in
  ///   fraction part or not. Also setting this parameter to false forcing
  ///   producing of output more similar to default printf behavior.
  ///   Specifically the lower e is used as exponent delimiter and exponent
  ///   always contains no less than two digits.
  ///
  /// Number       Precision    MaxPadding      Result
  /// ------       ---------    ----------      ------
  /// 1.01E+4              5             2       10100
  /// 1.01E+4              4             2       1.01E+4
  /// 1.01E+4              5             1       1.01E+4
  /// 1.01E-2              5             2       0.0101
  /// 1.01E-2              4             2       0.0101
  /// 1.01E-2              4             1       1.01E-2
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;

  /// If this value has an exact multiplicative inverse, store it in inv and
  /// return true.
  bool getExactInverse(APFloat *inv) const;

  /// Returns the exponent of the internal representation of the APFloat.
  ///
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
  /// For special APFloat values, this returns special error codes:
  ///
  ///   NaN -> \c IEK_NaN
  ///   0   -> \c IEK_Zero
  ///   Inf -> \c IEK_Inf
  ///
  friend int ilogb(const IEEEFloat &Arg);

  /// Returns: X * 2^Exp for integral exponents.
  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);

  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);

  /// \name Special value setters.
  /// @{

  void makeLargest(bool Neg = false);
  void makeSmallest(bool Neg = false);
  void makeNaN(bool SNaN = false, bool Neg = false,
               const APInt *fill = nullptr);
  void makeInf(bool Neg = false);
  void makeZero(bool Neg = false);
  void makeQuiet();

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  void makeSmallestNormalized(bool Negative = false);

  /// @}

  cmpResult compareAbsoluteValue(const IEEEFloat &) const;

private:
  /// \name Simple Queries
  /// @{

  integerPart *significandParts();
  const integerPart *significandParts() const;
  unsigned int partCount() const;

  /// @}

  /// \name Significand operations.
  /// @{

  integerPart addSignificand(const IEEEFloat &);
  integerPart subtractSignificand(const IEEEFloat &, integerPart);
  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
  lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
  lostFraction divideSignificand(const IEEEFloat &);
  void incrementSignificand();
  void initialize(const fltSemantics *);
  void shiftSignificandLeft(unsigned int);
  lostFraction shiftSignificandRight(unsigned int);
  unsigned int significandLSB() const;
  unsigned int significandMSB() const;
  void zeroSignificand();
  /// Return true if the significand excluding the integral bit is all ones.
  bool isSignificandAllOnes() const;
  /// Return true if the significand excluding the integral bit is all zeros.
  bool isSignificandAllZeros() const;

  /// @}

  /// \name Arithmetic on special values.
  /// @{

  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
  opStatus divideSpecials(const IEEEFloat &);
  opStatus multiplySpecials(const IEEEFloat &);
  opStatus modSpecials(const IEEEFloat &);

  /// @}

  /// \name Miscellany
  /// @{

  bool convertFromStringSpecials(StringRef str);
  opStatus normalize(roundingMode, lostFraction);
  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
  opStatus handleOverflow(roundingMode);
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
                                        unsigned int, bool, roundingMode,
                                        bool *) const;
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
                                    roundingMode);
  opStatus convertFromHexadecimalString(StringRef, roundingMode);
  opStatus convertFromDecimalString(StringRef, roundingMode);
  char *convertNormalToHexString(char *, unsigned int, bool,
                                 roundingMode) const;
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
                                        roundingMode);

  /// @}

  APInt convertHalfAPFloatToAPInt() const;
  APInt convertFloatAPFloatToAPInt() const;
  APInt convertDoubleAPFloatToAPInt() const;
  APInt convertQuadrupleAPFloatToAPInt() const;
  APInt convertF80LongDoubleAPFloatToAPInt() const;
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
  void initFromHalfAPInt(const APInt &api);
  void initFromFloatAPInt(const APInt &api);
  void initFromDoubleAPInt(const APInt &api);
  void initFromQuadrupleAPInt(const APInt &api);
  void initFromF80LongDoubleAPInt(const APInt &api);
  void initFromPPCDoubleDoubleAPInt(const APInt &api);

  void assign(const IEEEFloat &);
  void copySignificand(const IEEEFloat &);
  void freeSignificand();

  /// Note: this must be the first data member.
  /// The semantics that this value obeys.
  const fltSemantics *semantics;

  /// A binary fraction with an explicit integer bit.
  ///
  /// The significand must be at least one bit wider than the target precision.
  union Significand {
    integerPart part;
    integerPart *parts;
  } significand;

  /// The signed unbiased exponent of the value.
  ExponentType exponent;

  /// What kind of floating point number this is.
  ///
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
  /// Using the extra bit keeps it from failing under VisualStudio.
  fltCategory category : 3;

  /// Sign bit of the number.
  unsigned int sign : 1;
};

hash_code hash_value(const IEEEFloat &Arg);
int ilogb(const IEEEFloat &Arg);
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);

// This mode implements more precise float in terms of two APFloats.
// The interface and layout is designed for arbitray underlying semantics,
// though currently only PPCDoubleDouble semantics are supported, whose
// corresponding underlying semantics are IEEEdouble.
class DoubleAPFloat final : public APFloatBase {
  // Note: this must be the first data member.
  const fltSemantics *Semantics;
  std::unique_ptr<APFloat[]> Floats;

  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
                   const APFloat &cc, roundingMode RM);

  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
                          DoubleAPFloat &Out, roundingMode RM);

public:
  DoubleAPFloat(const fltSemantics &S);
  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
  DoubleAPFloat(const fltSemantics &S, integerPart);
  DoubleAPFloat(const fltSemantics &S, const APInt &I);
  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
  DoubleAPFloat(const DoubleAPFloat &RHS);
  DoubleAPFloat(DoubleAPFloat &&RHS);

  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);

  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
    if (this != &RHS) {
      this->~DoubleAPFloat();
      new (this) DoubleAPFloat(std::move(RHS));
    }
    return *this;
  }

  bool needsCleanup() const { return Floats != nullptr; }

  APFloat &getFirst() { return Floats[0]; }
  const APFloat &getFirst() const { return Floats[0]; }
  APFloat &getSecond() { return Floats[1]; }
  const APFloat &getSecond() const { return Floats[1]; }

  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus remainder(const DoubleAPFloat &RHS);
  opStatus mod(const DoubleAPFloat &RHS);
  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
                            const DoubleAPFloat &Addend, roundingMode RM);
  opStatus roundToIntegral(roundingMode RM);
  void changeSign();
  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;

  fltCategory getCategory() const;
  bool isNegative() const;

  void makeInf(bool Neg);
  void makeZero(bool Neg);
  void makeLargest(bool Neg);
  void makeSmallest(bool Neg);
  void makeSmallestNormalized(bool Neg);
  void makeNaN(bool SNaN, bool Neg, const APInt *fill);

  cmpResult compare(const DoubleAPFloat &RHS) const;
  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
  APInt bitcastToAPInt() const;
  opStatus convertFromString(StringRef, roundingMode);
  opStatus next(bool nextDown);

  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
                            unsigned int Width, bool IsSigned, roundingMode RM,
                            bool *IsExact) const;
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM);
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM);
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
                                  bool UpperCase, roundingMode RM) const;

  bool isDenormal() const;
  bool isSmallest() const;
  bool isLargest() const;
  bool isInteger() const;

  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
                unsigned FormatMaxPadding, bool TruncateZero = true) const;

  bool getExactInverse(APFloat *inv) const;

  friend int ilogb(const DoubleAPFloat &Arg);
  friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
  friend hash_code hash_value(const DoubleAPFloat &Arg);
};

hash_code hash_value(const DoubleAPFloat &Arg);

} // End detail namespace

// This is a interface class that is currently forwarding functionalities from
// detail::IEEEFloat.
class APFloat : public APFloatBase {
  typedef detail::IEEEFloat IEEEFloat;
  typedef detail::DoubleAPFloat DoubleAPFloat;

  static_assert(std::is_standard_layout<IEEEFloat>::value, "");

  union Storage {
    const fltSemantics *semantics;
    IEEEFloat IEEE;
    DoubleAPFloat Double;

    explicit Storage(IEEEFloat F, const fltSemantics &S);
    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
        : Double(std::move(F)) {
      assert(&S == &PPCDoubleDouble());
    }

    template <typename... ArgTypes>
    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
      if (usesLayout<IEEEFloat>(Semantics)) {
        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      if (usesLayout<DoubleAPFloat>(Semantics)) {
        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    ~Storage() {
      if (usesLayout<IEEEFloat>(*semantics)) {
        IEEE.~IEEEFloat();
        return;
      }
      if (usesLayout<DoubleAPFloat>(*semantics)) {
        Double.~DoubleAPFloat();
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(RHS.IEEE);
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(RHS.Double);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(std::move(RHS.IEEE));
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(std::move(RHS.Double));
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage &operator=(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = RHS.IEEE;
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = RHS.Double;
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(RHS);
      }
      return *this;
    }

    Storage &operator=(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = std::move(RHS.IEEE);
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = std::move(RHS.Double);
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(std::move(RHS));
      }
      return *this;
    }
  } U;

  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
    static_assert(std::is_same<T, IEEEFloat>::value ||
                  std::is_same<T, DoubleAPFloat>::value, "");
    if (std::is_same<T, DoubleAPFloat>::value) {
      return &Semantics == &PPCDoubleDouble();
    }
    return &Semantics != &PPCDoubleDouble();
  }

  IEEEFloat &getIEEE() {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  const IEEEFloat &getIEEE() const {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }

  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }

  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
  }

  void makeLargest(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
  }

  void makeSmallest(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
  }

  void makeSmallestNormalized(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
  }

  // FIXME: This is due to clang 3.3 (or older version) always checks for the
  // default constructor in an array aggregate initialization, even if no
  // elements in the array is default initialized.
  APFloat() : U(IEEEdouble()) {
    llvm_unreachable("This is a workaround for old clang.");
  }

  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
      : U(std::move(F), S) {}

  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only compare APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.compareAbsoluteValue(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

public:
  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
  APFloat(const fltSemantics &Semantics, StringRef S);
  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
  // TODO: Remove this constructor. This isn't faster than the first one.
  APFloat(const fltSemantics &Semantics, uninitializedTag)
      : U(Semantics, uninitialized) {}
  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
  APFloat(const APFloat &RHS) = default;
  APFloat(APFloat &&RHS) = default;

  ~APFloat() = default;

  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }

  /// Factory for Positive and Negative Zero.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeZero(Negative);
    return Val;
  }

  /// Factory for Positive and Negative Infinity.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeInf(Negative);
    return Val;
  }

  /// Factory for NaN values.
  ///
  /// \param Negative - True iff the NaN generated should be negative.
  /// \param payload - The unspecified fill bits for creating the NaN, 0 by
  /// default.  The value is truncated as necessary.
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
                        uint64_t payload = 0) {
    if (payload) {
      APInt intPayload(64, payload);
      return getQNaN(Sem, Negative, &intPayload);
    } else {
      return getQNaN(Sem, Negative, nullptr);
    }
  }

  /// Factory for QNaN values.
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(false, Negative, payload);
    return Val;
  }

  /// Factory for SNaN values.
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(true, Negative, payload);
    return Val;
  }

  /// Returns the largest finite number in the given semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeLargest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) finite number in the given semantics.
  /// Might be denormalized, which implies a relative loss of precision.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
                                       bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallestNormalized(Negative);
    return Val;
  }

  /// Returns a float which is bitcasted from an all one value int.
  ///
  /// \param BitWidth - Select float type
  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);

  /// Used to insert APFloat objects, or objects that contain APFloat objects,
  /// into FoldingSets.
  void Profile(FoldingSetNodeID &NID) const;

  opStatus add(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.add(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.add(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus subtract(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.subtract(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.subtract(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus multiply(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.multiply(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.multiply(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus divide(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.divide(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.divide(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus remainder(const APFloat &RHS) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.remainder(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.remainder(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus mod(const APFloat &RHS) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.mod(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.mod(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
                            roundingMode RM) {
    assert(&getSemantics() == &Multiplicand.getSemantics() &&
           "Should only call on APFloats with the same semantics");
    assert(&getSemantics() == &Addend.getSemantics() &&
           "Should only call on APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
                                       RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus roundToIntegral(roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
  }

  // TODO: bool parameters are not readable and a source of bugs.
  // Do something.
  opStatus next(bool nextDown) {
    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
  }

  /// Add two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator+(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.add(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Subtract two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator-(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.subtract(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Multiply two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator*(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.multiply(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Divide the first APFloat by the second, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator/(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.divide(RHS, rmNearestTiesToEven);
    return Result;
  }

  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
  void clearSign() {
    if (isNegative())
      changeSign();
  }
  void copySign(const APFloat &RHS) {
    if (isNegative() != RHS.isNegative())
      changeSign();
  }

  /// A static helper to produce a copy of an APFloat value with its sign
  /// copied from some other APFloat.
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
    Value.copySign(Sign);
    return Value;
  }

  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
                   bool *losesInfo);
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
                            unsigned int Width, bool IsSigned, roundingMode RM,
                            bool *IsExact) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertToInteger(Input, Width, IsSigned, RM, IsExact));
  }
  opStatus convertToInteger(APSInt &Result, roundingMode RM,
                            bool *IsExact) const;
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
                            roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
  }
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
  }
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
  }
  opStatus convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const {
    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
  }
  double convertToDouble() const { return getIEEE().convertToDouble(); }
  float convertToFloat() const { return getIEEE().convertToFloat(); }

  bool operator==(const APFloat &) const = delete;

  cmpResult compare(const APFloat &RHS) const {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only compare APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.compare(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.compare(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

  bool bitwiseIsEqual(const APFloat &RHS) const {
    if (&getSemantics() != &RHS.getSemantics())
      return false;
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.bitwiseIsEqual(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

  /// We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.
  ///
  /// We leave the version with the double argument here because it's just so
  /// convenient to write "2.0" and the like.  Without this function we'd
  /// have to duplicate its logic everywhere it's called.
  bool isExactlyValue(double V) const {
    bool ignored;
    APFloat Tmp(V);
    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
    return bitwiseIsEqual(Tmp);
  }

  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
                                  bool UpperCase, roundingMode RM) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertToHexString(DST, HexDigits, UpperCase, RM));
  }

  bool isZero() const { return getCategory() == fcZero; }
  bool isInfinity() const { return getCategory() == fcInfinity; }
  bool isNaN() const { return getCategory() == fcNaN; }

  bool isNegative() const { return getIEEE().isNegative(); }
  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
  bool isSignaling() const { return getIEEE().isSignaling(); }

  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  fltCategory getCategory() const { return getIEEE().getCategory(); }
  const fltSemantics &getSemantics() const { return *U.semantics; }
  bool isNonZero() const { return !isZero(); }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }
  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }

  APFloat &operator=(const APFloat &RHS) = default;
  APFloat &operator=(APFloat &&RHS) = default;

  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
  }

  void print(raw_ostream &) const;
  void dump() const;

  bool getExactInverse(APFloat *inv) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
  }

  friend hash_code hash_value(const APFloat &Arg);
  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
  friend IEEEFloat;
  friend DoubleAPFloat;
};

/// See friend declarations above.
///
/// These additional declarations are required in order to compile LLVM with IBM
/// xlC compiler.
hash_code hash_value(const APFloat &Arg);
inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
  llvm_unreachable("Unexpected semantics");
}

/// Equivalent of C standard library function.
///
/// While the C standard says Exp is an unspecified value for infinity and nan,
/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
  llvm_unreachable("Unexpected semantics");
}
/// Returns the absolute value of the argument.
inline APFloat abs(APFloat X) {
  X.clearSign();
  return X;
}

/// Returns the negated value of the argument.
inline APFloat neg(APFloat X) {
  X.changeSign();
  return X;
}

/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat minnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
}

/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
}

/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
/// arguments, propagating NaNs and treating -0 as less than +0.
LLVM_READONLY
inline APFloat minimum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return A;
  if (B.isNaN())
    return B;
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
    return A.isNegative() ? A : B;
  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
}

/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
/// arguments, propagating NaNs and treating -0 as less than +0.
LLVM_READONLY
inline APFloat maximum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return A;
  if (B.isNaN())
    return B;
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
    return A.isNegative() ? B : A;
  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
}

} // namespace llvm

#undef APFLOAT_DISPATCH_ON_SEMANTICS
#endif // LLVM_ADT_APFLOAT_H