reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
//===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a hash set that can be used to remove duplication of nodes
// in a graph.  This code was originally created by Chris Lattner for use with
// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_FOLDINGSET_H
#define LLVM_ADT_FOLDINGSET_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Allocator.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>

namespace llvm {

/// This folding set used for two purposes:
///   1. Given information about a node we want to create, look up the unique
///      instance of the node in the set.  If the node already exists, return
///      it, otherwise return the bucket it should be inserted into.
///   2. Given a node that has already been created, remove it from the set.
///
/// This class is implemented as a single-link chained hash table, where the
/// "buckets" are actually the nodes themselves (the next pointer is in the
/// node).  The last node points back to the bucket to simplify node removal.
///
/// Any node that is to be included in the folding set must be a subclass of
/// FoldingSetNode.  The node class must also define a Profile method used to
/// establish the unique bits of data for the node.  The Profile method is
/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
/// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
/// NOTE: That the folding set does not own the nodes and it is the
/// responsibility of the user to dispose of the nodes.
///
/// Eg.
///    class MyNode : public FoldingSetNode {
///    private:
///      std::string Name;
///      unsigned Value;
///    public:
///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
///       ...
///      void Profile(FoldingSetNodeID &ID) const {
///        ID.AddString(Name);
///        ID.AddInteger(Value);
///      }
///      ...
///    };
///
/// To define the folding set itself use the FoldingSet template;
///
/// Eg.
///    FoldingSet<MyNode> MyFoldingSet;
///
/// Four public methods are available to manipulate the folding set;
///
/// 1) If you have an existing node that you want add to the set but unsure
/// that the node might already exist then call;
///
///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
///
/// If The result is equal to the input then the node has been inserted.
/// Otherwise, the result is the node existing in the folding set, and the
/// input can be discarded (use the result instead.)
///
/// 2) If you are ready to construct a node but want to check if it already
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
/// check;
///
///   FoldingSetNodeID ID;
///   ID.AddString(Name);
///   ID.AddInteger(Value);
///   void *InsertPoint;
///
///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
///
/// If found then M with be non-NULL, else InsertPoint will point to where it
/// should be inserted using InsertNode.
///
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
/// node with FindNodeOrInsertPos;
///
///    InsertNode(N, InsertPoint);
///
/// 4) Finally, if you want to remove a node from the folding set call;
///
///    bool WasRemoved = RemoveNode(N);
///
/// The result indicates whether the node existed in the folding set.

class FoldingSetNodeID;
class StringRef;

//===----------------------------------------------------------------------===//
/// FoldingSetBase - Implements the folding set functionality.  The main
/// structure is an array of buckets.  Each bucket is indexed by the hash of
/// the nodes it contains.  The bucket itself points to the nodes contained
/// in the bucket via a singly linked list.  The last node in the list points
/// back to the bucket to facilitate node removal.
///
class FoldingSetBase {
  virtual void anchor(); // Out of line virtual method.

protected:
  /// Buckets - Array of bucket chains.
  void **Buckets;

  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
  unsigned NumBuckets;

  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
  /// is greater than twice the number of buckets.
  unsigned NumNodes;

  explicit FoldingSetBase(unsigned Log2InitSize = 6);
  FoldingSetBase(FoldingSetBase &&Arg);
  FoldingSetBase &operator=(FoldingSetBase &&RHS);
  ~FoldingSetBase();

public:
  //===--------------------------------------------------------------------===//
  /// Node - This class is used to maintain the singly linked bucket list in
  /// a folding set.
  class Node {
  private:
    // NextInFoldingSetBucket - next link in the bucket list.
    void *NextInFoldingSetBucket = nullptr;

  public:
    Node() = default;

    // Accessors
    void *getNextInBucket() const { return NextInFoldingSetBucket; }
    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
  };

  /// clear - Remove all nodes from the folding set.
  void clear();

  /// size - Returns the number of nodes in the folding set.
  unsigned size() const { return NumNodes; }

  /// empty - Returns true if there are no nodes in the folding set.
  bool empty() const { return NumNodes == 0; }

  /// reserve - Increase the number of buckets such that adding the
  /// EltCount-th node won't cause a rebucket operation. reserve is permitted
  /// to allocate more space than requested by EltCount.
  void reserve(unsigned EltCount);

  /// capacity - Returns the number of nodes permitted in the folding set
  /// before a rebucket operation is performed.
  unsigned capacity() {
    // We allow a load factor of up to 2.0,
    // so that means our capacity is NumBuckets * 2
    return NumBuckets * 2;
  }

private:
  /// GrowHashTable - Double the size of the hash table and rehash everything.
  void GrowHashTable();

  /// GrowBucketCount - resize the hash table and rehash everything.
  /// NewBucketCount must be a power of two, and must be greater than the old
  /// bucket count.
  void GrowBucketCount(unsigned NewBucketCount);

protected:
  /// GetNodeProfile - Instantiations of the FoldingSet template implement
  /// this function to gather data bits for the given node.
  virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;

  /// NodeEquals - Instantiations of the FoldingSet template implement
  /// this function to compare the given node with the given ID.
  virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
                          FoldingSetNodeID &TempID) const=0;

  /// ComputeNodeHash - Instantiations of the FoldingSet template implement
  /// this function to compute a hash value for the given node.
  virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;

  // The below methods are protected to encourage subclasses to provide a more
  // type-safe API.

  /// RemoveNode - Remove a node from the folding set, returning true if one
  /// was removed or false if the node was not in the folding set.
  bool RemoveNode(Node *N);

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
  /// it instead.
  Node *GetOrInsertNode(Node *N);

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.  InsertPos must be obtained from
  /// FindNodeOrInsertPos.
  void InsertNode(Node *N, void *InsertPos);
};

//===----------------------------------------------------------------------===//

/// DefaultFoldingSetTrait - This class provides default implementations
/// for FoldingSetTrait implementations.
template<typename T> struct DefaultFoldingSetTrait {
  static void Profile(const T &X, FoldingSetNodeID &ID) {
    X.Profile(ID);
  }
  static void Profile(T &X, FoldingSetNodeID &ID) {
    X.Profile(ID);
  }

  // Equals - Test if the profile for X would match ID, using TempID
  // to compute a temporary ID if necessary. The default implementation
  // just calls Profile and does a regular comparison. Implementations
  // can override this to provide more efficient implementations.
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
                            FoldingSetNodeID &TempID);

  // ComputeHash - Compute a hash value for X, using TempID to
  // compute a temporary ID if necessary. The default implementation
  // just calls Profile and does a regular hash computation.
  // Implementations can override this to provide more efficient
  // implementations.
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
};

/// FoldingSetTrait - This trait class is used to define behavior of how
/// to "profile" (in the FoldingSet parlance) an object of a given type.
/// The default behavior is to invoke a 'Profile' method on an object, but
/// through template specialization the behavior can be tailored for specific
/// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
/// to FoldingSets that were not originally designed to have that behavior.
template<typename T> struct FoldingSetTrait
  : public DefaultFoldingSetTrait<T> {};

/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
/// for ContextualFoldingSets.
template<typename T, typename Ctx>
struct DefaultContextualFoldingSetTrait {
  static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    X.Profile(ID, Context);
  }

  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
                            FoldingSetNodeID &TempID, Ctx Context);
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
                                     Ctx Context);
};

/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
/// ContextualFoldingSets.
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
  : public DefaultContextualFoldingSetTrait<T, Ctx> {};

//===--------------------------------------------------------------------===//
/// FoldingSetNodeIDRef - This class describes a reference to an interned
/// FoldingSetNodeID, which can be a useful to store node id data rather
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
/// is often much larger than necessary, and the possibility of heap
/// allocation means it requires a non-trivial destructor call.
class FoldingSetNodeIDRef {
  const unsigned *Data = nullptr;
  size_t Size = 0;

public:
  FoldingSetNodeIDRef() = default;
  FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}

  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
  /// used to lookup the node in the FoldingSetBase.
  unsigned ComputeHash() const;

  bool operator==(FoldingSetNodeIDRef) const;

  bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }

  /// Used to compare the "ordering" of two nodes as defined by the
  /// profiled bits and their ordering defined by memcmp().
  bool operator<(FoldingSetNodeIDRef) const;

  const unsigned *getData() const { return Data; }
  size_t getSize() const { return Size; }
};

//===--------------------------------------------------------------------===//
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
/// a node.  When all the bits are gathered this class is used to produce a
/// hash value for the node.
class FoldingSetNodeID {
  /// Bits - Vector of all the data bits that make the node unique.
  /// Use a SmallVector to avoid a heap allocation in the common case.
  SmallVector<unsigned, 32> Bits;

public:
  FoldingSetNodeID() = default;

  FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}

  /// Add* - Add various data types to Bit data.
  void AddPointer(const void *Ptr);
  void AddInteger(signed I);
  void AddInteger(unsigned I);
  void AddInteger(long I);
  void AddInteger(unsigned long I);
  void AddInteger(long long I);
  void AddInteger(unsigned long long I);
  void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
  void AddString(StringRef String);
  void AddNodeID(const FoldingSetNodeID &ID);

  template <typename T>
  inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }

  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
  /// object to be used to compute a new profile.
  inline void clear() { Bits.clear(); }

  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
  /// to lookup the node in the FoldingSetBase.
  unsigned ComputeHash() const;

  /// operator== - Used to compare two nodes to each other.
  bool operator==(const FoldingSetNodeID &RHS) const;
  bool operator==(const FoldingSetNodeIDRef RHS) const;

  bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
  bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}

  /// Used to compare the "ordering" of two nodes as defined by the
  /// profiled bits and their ordering defined by memcmp().
  bool operator<(const FoldingSetNodeID &RHS) const;
  bool operator<(const FoldingSetNodeIDRef RHS) const;

  /// Intern - Copy this node's data to a memory region allocated from the
  /// given allocator and return a FoldingSetNodeIDRef describing the
  /// interned data.
  FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
};

// Convenience type to hide the implementation of the folding set.
using FoldingSetNode = FoldingSetBase::Node;
template<class T> class FoldingSetIterator;
template<class T> class FoldingSetBucketIterator;

// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
// require the definition of FoldingSetNodeID.
template<typename T>
inline bool
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
                                  unsigned /*IDHash*/,
                                  FoldingSetNodeID &TempID) {
  FoldingSetTrait<T>::Profile(X, TempID);
  return TempID == ID;
}
template<typename T>
inline unsigned
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
  FoldingSetTrait<T>::Profile(X, TempID);
  return TempID.ComputeHash();
}
template<typename T, typename Ctx>
inline bool
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
                                                 const FoldingSetNodeID &ID,
                                                 unsigned /*IDHash*/,
                                                 FoldingSetNodeID &TempID,
                                                 Ctx Context) {
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
  return TempID == ID;
}
template<typename T, typename Ctx>
inline unsigned
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
                                                      FoldingSetNodeID &TempID,
                                                      Ctx Context) {
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
  return TempID.ComputeHash();
}

//===----------------------------------------------------------------------===//
/// FoldingSetImpl - An implementation detail that lets us share code between
/// FoldingSet and ContextualFoldingSet.
template <class T> class FoldingSetImpl : public FoldingSetBase {
protected:
  explicit FoldingSetImpl(unsigned Log2InitSize)
      : FoldingSetBase(Log2InitSize) {}

  FoldingSetImpl(FoldingSetImpl &&Arg) = default;
  FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
  ~FoldingSetImpl() = default;

public:
  using iterator = FoldingSetIterator<T>;

  iterator begin() { return iterator(Buckets); }
  iterator end() { return iterator(Buckets+NumBuckets); }

  using const_iterator = FoldingSetIterator<const T>;

  const_iterator begin() const { return const_iterator(Buckets); }
  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }

  using bucket_iterator = FoldingSetBucketIterator<T>;

  bucket_iterator bucket_begin(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
  }

  bucket_iterator bucket_end(unsigned hash) {
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
  }

  /// RemoveNode - Remove a node from the folding set, returning true if one
  /// was removed or false if the node was not in the folding set.
  bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); }

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
  /// return it instead.
  T *GetOrInsertNode(T *N) {
    return static_cast<T *>(FoldingSetBase::GetOrInsertNode(N));
  }

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(ID, InsertPos));
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.  InsertPos must be obtained from
  /// FindNodeOrInsertPos.
  void InsertNode(T *N, void *InsertPos) {
    FoldingSetBase::InsertNode(N, InsertPos);
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.
  void InsertNode(T *N) {
    T *Inserted = GetOrInsertNode(N);
    (void)Inserted;
    assert(Inserted == N && "Node already inserted!");
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSet - This template class is used to instantiate a specialized
/// implementation of the folding set to the node class T.  T must be a
/// subclass of FoldingSetNode and implement a Profile function.
///
/// Note that this set type is movable and move-assignable. However, its
/// moved-from state is not a valid state for anything other than
/// move-assigning and destroying. This is primarily to enable movable APIs
/// that incorporate these objects.
template <class T> class FoldingSet final : public FoldingSetImpl<T> {
  using Super = FoldingSetImpl<T>;
  using Node = typename Super::Node;

  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
  /// way to convert nodes into a unique specifier.
  void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    T *TN = static_cast<T *>(N);
    FoldingSetTrait<T>::Profile(*TN, ID);
  }

  /// NodeEquals - Instantiations may optionally provide a way to compare a
  /// node with a specified ID.
  bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
                  FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
  }

  /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
  /// hash value directly from a node.
  unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
  }

public:
  explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
  FoldingSet(FoldingSet &&Arg) = default;
  FoldingSet &operator=(FoldingSet &&RHS) = default;
};

//===----------------------------------------------------------------------===//
/// ContextualFoldingSet - This template class is a further refinement
/// of FoldingSet which provides a context argument when calling
/// Profile on its nodes.  Currently, that argument is fixed at
/// initialization time.
///
/// T must be a subclass of FoldingSetNode and implement a Profile
/// function with signature
///   void Profile(FoldingSetNodeID &, Ctx);
template <class T, class Ctx>
class ContextualFoldingSet final : public FoldingSetImpl<T> {
  // Unfortunately, this can't derive from FoldingSet<T> because the
  // construction of the vtable for FoldingSet<T> requires
  // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
  // requires a single-argument T::Profile().

  using Super = FoldingSetImpl<T>;
  using Node = typename Super::Node;

  Ctx Context;

  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
  /// way to convert nodes into a unique specifier.
  void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    T *TN = static_cast<T *>(N);
    ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
  }

  bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
                  FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
                                                     Context);
  }

  unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    T *TN = static_cast<T *>(N);
    return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
  }

public:
  explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
      : Super(Log2InitSize), Context(Context) {}

  Ctx getContext() const { return Context; }
};

//===----------------------------------------------------------------------===//
/// FoldingSetVector - This template class combines a FoldingSet and a vector
/// to provide the interface of FoldingSet but with deterministic iteration
/// order based on the insertion order. T must be a subclass of FoldingSetNode
/// and implement a Profile function.
template <class T, class VectorT = SmallVector<T*, 8>>
class FoldingSetVector {
  FoldingSet<T> Set;
  VectorT Vector;

public:
  explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}

  using iterator = pointee_iterator<typename VectorT::iterator>;

  iterator begin() { return Vector.begin(); }
  iterator end()   { return Vector.end(); }

  using const_iterator = pointee_iterator<typename VectorT::const_iterator>;

  const_iterator begin() const { return Vector.begin(); }
  const_iterator end()   const { return Vector.end(); }

  /// clear - Remove all nodes from the folding set.
  void clear() { Set.clear(); Vector.clear(); }

  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
  /// return it.  If not, return the insertion token that will make insertion
  /// faster.
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    return Set.FindNodeOrInsertPos(ID, InsertPos);
  }

  /// GetOrInsertNode - If there is an existing simple Node exactly
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
  /// return it instead.
  T *GetOrInsertNode(T *N) {
    T *Result = Set.GetOrInsertNode(N);
    if (Result == N) Vector.push_back(N);
    return Result;
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.  InsertPos must be obtained from
  /// FindNodeOrInsertPos.
  void InsertNode(T *N, void *InsertPos) {
    Set.InsertNode(N, InsertPos);
    Vector.push_back(N);
  }

  /// InsertNode - Insert the specified node into the folding set, knowing that
  /// it is not already in the folding set.
  void InsertNode(T *N) {
    Set.InsertNode(N);
    Vector.push_back(N);
  }

  /// size - Returns the number of nodes in the folding set.
  unsigned size() const { return Set.size(); }

  /// empty - Returns true if there are no nodes in the folding set.
  bool empty() const { return Set.empty(); }
};

//===----------------------------------------------------------------------===//
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
/// folding sets, which knows how to walk the folding set hash table.
class FoldingSetIteratorImpl {
protected:
  FoldingSetNode *NodePtr;

  FoldingSetIteratorImpl(void **Bucket);

  void advance();

public:
  bool operator==(const FoldingSetIteratorImpl &RHS) const {
    return NodePtr == RHS.NodePtr;
  }
  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    return NodePtr != RHS.NodePtr;
  }
};

template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
public:
  explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}

  T &operator*() const {
    return *static_cast<T*>(NodePtr);
  }

  T *operator->() const {
    return static_cast<T*>(NodePtr);
  }

  inline FoldingSetIterator &operator++() {          // Preincrement
    advance();
    return *this;
  }
  FoldingSetIterator operator++(int) {        // Postincrement
    FoldingSetIterator tmp = *this; ++*this; return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
/// shared by all folding sets, which knows how to walk a particular bucket
/// of a folding set hash table.
class FoldingSetBucketIteratorImpl {
protected:
  void *Ptr;

  explicit FoldingSetBucketIteratorImpl(void **Bucket);

  FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}

  void advance() {
    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    Ptr = reinterpret_cast<void*>(x);
  }

public:
  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    return Ptr == RHS.Ptr;
  }
  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    return Ptr != RHS.Ptr;
  }
};

template <class T>
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
public:
  explicit FoldingSetBucketIterator(void **Bucket) :
    FoldingSetBucketIteratorImpl(Bucket) {}

  FoldingSetBucketIterator(void **Bucket, bool) :
    FoldingSetBucketIteratorImpl(Bucket, true) {}

  T &operator*() const { return *static_cast<T*>(Ptr); }
  T *operator->() const { return static_cast<T*>(Ptr); }

  inline FoldingSetBucketIterator &operator++() { // Preincrement
    advance();
    return *this;
  }
  FoldingSetBucketIterator operator++(int) {      // Postincrement
    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
  }
};

//===----------------------------------------------------------------------===//
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
/// types in an enclosing object so that they can be inserted into FoldingSets.
template <typename T>
class FoldingSetNodeWrapper : public FoldingSetNode {
  T data;

public:
  template <typename... Ts>
  explicit FoldingSetNodeWrapper(Ts &&... Args)
      : data(std::forward<Ts>(Args)...) {}

  void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }

  T &getValue() { return data; }
  const T &getValue() const { return data; }

  operator T&() { return data; }
  operator const T&() const { return data; }
};

//===----------------------------------------------------------------------===//
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
/// a FoldingSetNodeID value rather than requiring the node to recompute it
/// each time it is needed. This trades space for speed (which can be
/// significant if the ID is long), and it also permits nodes to drop
/// information that would otherwise only be required for recomputing an ID.
class FastFoldingSetNode : public FoldingSetNode {
  FoldingSetNodeID FastID;

protected:
  explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}

public:
  void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
};

//===----------------------------------------------------------------------===//
// Partial specializations of FoldingSetTrait.

template<typename T> struct FoldingSetTrait<T*> {
  static inline void Profile(T *X, FoldingSetNodeID &ID) {
    ID.AddPointer(X);
  }
};
template <typename T1, typename T2>
struct FoldingSetTrait<std::pair<T1, T2>> {
  static inline void Profile(const std::pair<T1, T2> &P,
                             FoldingSetNodeID &ID) {
    ID.Add(P.first);
    ID.Add(P.second);
  }
};

} // end namespace llvm

#endif // LLVM_ADT_FOLDINGSET_H