reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
//==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64PromoteConstant pass which promotes constants
// to global variables when this is likely to be more efficient. Currently only
// types related to constant vector (i.e., constant vector, array of constant
// vectors, constant structure with a constant vector field, etc.) are promoted
// to global variables. Constant vectors are likely to be lowered in target
// constant pool during instruction selection already; therefore, the access
// will remain the same (memory load), but the structure types are not split
// into different constant pool accesses for each field. A bonus side effect is
// that created globals may be merged by the global merge pass.
//
// FIXME: This pass may be useful for other targets too.
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "aarch64-promote-const"

// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
                            cl::desc("Promote all vector constants"));

STATISTIC(NumPromoted, "Number of promoted constants");
STATISTIC(NumPromotedUses, "Number of promoted constants uses");

//===----------------------------------------------------------------------===//
//                       AArch64PromoteConstant
//===----------------------------------------------------------------------===//

namespace {

/// Promotes interesting constant into global variables.
/// The motivating example is:
/// static const uint16_t TableA[32] = {
///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
/// };
///
/// uint8x16x4_t LoadStatic(void) {
///   uint8x16x4_t ret;
///   ret.val[0] = vld1q_u16(TableA +  0);
///   ret.val[1] = vld1q_u16(TableA +  8);
///   ret.val[2] = vld1q_u16(TableA + 16);
///   ret.val[3] = vld1q_u16(TableA + 24);
///   return ret;
/// }
///
/// The constants in this example are folded into the uses. Thus, 4 different
/// constants are created.
///
/// As their type is vector the cheapest way to create them is to load them
/// for the memory.
///
/// Therefore the final assembly final has 4 different loads. With this pass
/// enabled, only one load is issued for the constants.
class AArch64PromoteConstant : public ModulePass {
public:
  struct PromotedConstant {
    bool ShouldConvert = false;
    GlobalVariable *GV = nullptr;
  };
  using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;

  struct UpdateRecord {
    Constant *C;
    Instruction *User;
    unsigned Op;

    UpdateRecord(Constant *C, Instruction *User, unsigned Op)
        : C(C), User(User), Op(Op) {}
  };

  static char ID;

  AArch64PromoteConstant() : ModulePass(ID) {
    initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "AArch64 Promote Constant"; }

  /// Iterate over the functions and promote the interesting constants into
  /// global variables with module scope.
  bool runOnModule(Module &M) override {
    LLVM_DEBUG(dbgs() << getPassName() << '\n');
    if (skipModule(M))
      return false;
    bool Changed = false;
    PromotionCacheTy PromotionCache;
    for (auto &MF : M) {
      Changed |= runOnFunction(MF, PromotionCache);
    }
    return Changed;
  }

private:
  /// Look for interesting constants used within the given function.
  /// Promote them into global variables, load these global variables within
  /// the related function, so that the number of inserted load is minimal.
  bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);

  // This transformation requires dominator info
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

  /// Type to store a list of Uses.
  using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
  /// Map an insertion point to all the uses it dominates.
  using InsertionPoints = DenseMap<Instruction *, Uses>;

  /// Find the closest point that dominates the given Use.
  Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);

  /// Check if the given insertion point is dominated by an existing
  /// insertion point.
  /// If true, the given use is added to the list of dominated uses for
  /// the related existing point.
  /// \param NewPt the insertion point to be checked
  /// \param User the user of the constant
  /// \param OpNo the operand number of the use
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \return true if one of the insertion point in InsertPts dominates NewPt,
  ///         false otherwise
  bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
                   InsertionPoints &InsertPts);

  /// Check if the given insertion point can be merged with an existing
  /// insertion point in a common dominator.
  /// If true, the given use is added to the list of the created insertion
  /// point.
  /// \param NewPt the insertion point to be checked
  /// \param User the user of the constant
  /// \param OpNo the operand number of the use
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \pre isDominated returns false for the exact same parameters.
  /// \return true if it exists an insertion point in InsertPts that could
  ///         have been merged with NewPt in a common dominator,
  ///         false otherwise
  bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
                   InsertionPoints &InsertPts);

  /// Compute the minimal insertion points to dominates all the interesting
  /// uses of value.
  /// Insertion points are group per function and each insertion point
  /// contains a list of all the uses it dominates within the related function
  /// \param User the user of the constant
  /// \param OpNo the operand number of the constant
  /// \param[out] InsertPts output storage of the analysis
  void computeInsertionPoint(Instruction *User, unsigned OpNo,
                             InsertionPoints &InsertPts);

  /// Insert a definition of a new global variable at each point contained in
  /// InsPtsPerFunc and update the related uses (also contained in
  /// InsPtsPerFunc).
  void insertDefinitions(Function &F, GlobalVariable &GV,
                         InsertionPoints &InsertPts);

  /// Do the constant promotion indicated by the Updates records, keeping track
  /// of globals in PromotionCache.
  void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
                        PromotionCacheTy &PromotionCache);

  /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
  /// Append Use to this list and delete the entry of IPI in InsertPts.
  static void appendAndTransferDominatedUses(Instruction *NewPt,
                                             Instruction *User, unsigned OpNo,
                                             InsertionPoints::iterator &IPI,
                                             InsertionPoints &InsertPts) {
    // Record the dominated use.
    IPI->second.emplace_back(User, OpNo);
    // Transfer the dominated uses of IPI to NewPt
    // Inserting into the DenseMap may invalidate existing iterator.
    // Keep a copy of the key to find the iterator to erase.  Keep a copy of the
    // value so that we don't have to dereference IPI->second.
    Instruction *OldInstr = IPI->first;
    Uses OldUses = std::move(IPI->second);
    InsertPts[NewPt] = std::move(OldUses);
    // Erase IPI.
    InsertPts.erase(OldInstr);
  }
};

} // end anonymous namespace

char AArch64PromoteConstant::ID = 0;

INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
                      "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
                    "AArch64 Promote Constant Pass", false, false)

ModulePass *llvm::createAArch64PromoteConstantPass() {
  return new AArch64PromoteConstant();
}

/// Check if the given type uses a vector type.
static bool isConstantUsingVectorTy(const Type *CstTy) {
  if (CstTy->isVectorTy())
    return true;
  if (CstTy->isStructTy()) {
    for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
         EltIdx < EndEltIdx; ++EltIdx)
      if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
        return true;
  } else if (CstTy->isArrayTy())
    return isConstantUsingVectorTy(CstTy->getArrayElementType());
  return false;
}

/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A use should be converted if it is legal to do so.
/// For instance, it is not legal to turn the mask operand of a shuffle vector
/// into a load of a global variable.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
                             unsigned OpIdx) {
  // shufflevector instruction expects a const for the mask argument, i.e., the
  // third argument. Do not promote this use in that case.
  if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
    return false;

  if (isa<const AllocaInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const LoadInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const StoreInst>(Instr) && OpIdx > 1)
    return false;

  // Index must be constant.
  if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
    return false;

  // Personality function and filters must be constant.
  // Give up on that instruction.
  if (isa<const LandingPadInst>(Instr))
    return false;

  // Switch instruction expects constants to compare to.
  if (isa<const SwitchInst>(Instr))
    return false;

  // Expected address must be a constant.
  if (isa<const IndirectBrInst>(Instr))
    return false;

  // Do not mess with intrinsics.
  if (isa<const IntrinsicInst>(Instr))
    return false;

  // Do not mess with inline asm.
  const CallInst *CI = dyn_cast<const CallInst>(Instr);
  return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
}

/// Check if the given Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A constant should be converted if it is likely that the materialization of
/// the constant will be tricky. Thus, we give up on zero or undef values.
///
/// \todo Currently, accept only vector related types.
/// Also we give up on all simple vector type to keep the existing
/// behavior. Otherwise, we should push here all the check of the lowering of
/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
/// constant via global merge and the fact that the same constant is stored
/// only once with this method (versus, as many function that uses the constant
/// for the regular approach, even for float).
/// Again, the simplest solution would be to promote every
/// constant and rematerialize them when they are actually cheap to create.
static bool shouldConvertImpl(const Constant *Cst) {
  if (isa<const UndefValue>(Cst))
    return false;

  // FIXME: In some cases, it may be interesting to promote in memory
  // a zero initialized constant.
  // E.g., when the type of Cst require more instructions than the
  // adrp/add/load sequence or when this sequence can be shared by several
  // instances of Cst.
  // Ideally, we could promote this into a global and rematerialize the constant
  // when it was a bad idea.
  if (Cst->isZeroValue())
    return false;

  if (Stress)
    return true;

  // FIXME: see function \todo
  if (Cst->getType()->isVectorTy())
    return false;
  return isConstantUsingVectorTy(Cst->getType());
}

static bool
shouldConvert(Constant &C,
              AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
  auto Converted = PromotionCache.insert(
      std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
  if (Converted.second)
    Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
  return Converted.first->second.ShouldConvert;
}

Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
                                                        unsigned OpNo) {
  // If this user is a phi, the insertion point is in the related
  // incoming basic block.
  if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
    return PhiInst->getIncomingBlock(OpNo)->getTerminator();

  return &User;
}

bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
                                         unsigned OpNo,
                                         InsertionPoints &InsertPts) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();

  // Traverse all the existing insertion points and check if one is dominating
  // NewPt. If it is, remember that.
  for (auto &IPI : InsertPts) {
    if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
        // When IPI.first is a terminator instruction, DT may think that
        // the result is defined on the edge.
        // Here we are testing the insertion point, not the definition.
        (IPI.first->getParent() != NewPt->getParent() &&
         DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
      // No need to insert this point. Just record the dominated use.
      LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
      LLVM_DEBUG(IPI.first->print(dbgs()));
      LLVM_DEBUG(dbgs() << '\n');
      IPI.second.emplace_back(User, OpNo);
      return true;
    }
  }
  return false;
}

bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
                                         unsigned OpNo,
                                         InsertionPoints &InsertPts) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();
  BasicBlock *NewBB = NewPt->getParent();

  // Traverse all the existing insertion point and check if one is dominated by
  // NewPt and thus useless or can be combined with NewPt into a common
  // dominator.
  for (InsertionPoints::iterator IPI = InsertPts.begin(),
                                 EndIPI = InsertPts.end();
       IPI != EndIPI; ++IPI) {
    BasicBlock *CurBB = IPI->first->getParent();
    if (NewBB == CurBB) {
      // Instructions are in the same block.
      // By construction, NewPt is dominating the other.
      // Indeed, isDominated returned false with the exact same arguments.
      LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
      LLVM_DEBUG(IPI->first->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
      appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
      return true;
    }

    // Look for a common dominator
    BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
    // If none exists, we cannot merge these two points.
    if (!CommonDominator)
      continue;

    if (CommonDominator != NewBB) {
      // By construction, the CommonDominator cannot be CurBB.
      assert(CommonDominator != CurBB &&
             "Instruction has not been rejected during isDominated check!");
      // Take the last instruction of the CommonDominator as insertion point
      NewPt = CommonDominator->getTerminator();
    }
    // else, CommonDominator is the block of NewBB, hence NewBB is the last
    // possible insertion point in that block.
    LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
    LLVM_DEBUG(IPI->first->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');
    LLVM_DEBUG(NewPt->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');
    appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
    return true;
  }
  return false;
}

void AArch64PromoteConstant::computeInsertionPoint(
    Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
  LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
  LLVM_DEBUG(User->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');

  Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);

  LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
  LLVM_DEBUG(InsertionPoint->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');

  if (isDominated(InsertionPoint, User, OpNo, InsertPts))
    return;
  // This insertion point is useful, check if we can merge some insertion
  // point in a common dominator or if NewPt dominates an existing one.
  if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
    return;

  LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");

  // It is definitely useful by its own
  InsertPts[InsertionPoint].emplace_back(User, OpNo);
}

static void ensurePromotedGV(Function &F, Constant &C,
                             AArch64PromoteConstant::PromotedConstant &PC) {
  assert(PC.ShouldConvert &&
         "Expected that we should convert this to a global");
  if (PC.GV)
    return;
  PC.GV = new GlobalVariable(
      *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
      "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
  PC.GV->setInitializer(&C);
  LLVM_DEBUG(dbgs() << "Global replacement: ");
  LLVM_DEBUG(PC.GV->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');
  ++NumPromoted;
}

void AArch64PromoteConstant::insertDefinitions(Function &F,
                                               GlobalVariable &PromotedGV,
                                               InsertionPoints &InsertPts) {
#ifndef NDEBUG
  // Do more checking for debug purposes.
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
#endif
  assert(!InsertPts.empty() && "Empty uses does not need a definition");

  for (const auto &IPI : InsertPts) {
    // Create the load of the global variable.
    IRBuilder<> Builder(IPI.first);
    LoadInst *LoadedCst =
        Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV);
    LLVM_DEBUG(dbgs() << "**********\n");
    LLVM_DEBUG(dbgs() << "New def: ");
    LLVM_DEBUG(LoadedCst->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');

    // Update the dominated uses.
    for (auto Use : IPI.second) {
#ifndef NDEBUG
      assert(DT.dominates(LoadedCst,
                          findInsertionPoint(*Use.first, Use.second)) &&
             "Inserted definition does not dominate all its uses!");
#endif
      LLVM_DEBUG({
        dbgs() << "Use to update " << Use.second << ":";
        Use.first->print(dbgs());
        dbgs() << '\n';
      });
      Use.first->setOperand(Use.second, LoadedCst);
      ++NumPromotedUses;
    }
  }
}

void AArch64PromoteConstant::promoteConstants(
    Function &F, SmallVectorImpl<UpdateRecord> &Updates,
    PromotionCacheTy &PromotionCache) {
  // Promote the constants.
  for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
    LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
    auto First = U;
    Constant *C = First->C;
    InsertionPoints InsertPts;
    do {
      computeInsertionPoint(U->User, U->Op, InsertPts);
    } while (++U != E && U->C == C);

    auto &Promotion = PromotionCache[C];
    ensurePromotedGV(F, *C, Promotion);
    insertDefinitions(F, *Promotion.GV, InsertPts);
  }
}

bool AArch64PromoteConstant::runOnFunction(Function &F,
                                           PromotionCacheTy &PromotionCache) {
  // Look for instructions using constant vector. Promote that constant to a
  // global variable. Create as few loads of this variable as possible and
  // update the uses accordingly.
  SmallVector<UpdateRecord, 64> Updates;
  for (Instruction &I : instructions(&F)) {
    // Traverse the operand, looking for constant vectors. Replace them by a
    // load of a global variable of constant vector type.
    for (Use &U : I.operands()) {
      Constant *Cst = dyn_cast<Constant>(U);
      // There is no point in promoting global values as they are already
      // global. Do not promote constant expressions either, as they may
      // require some code expansion.
      if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
        continue;

      // Check if this constant is worth promoting.
      if (!shouldConvert(*Cst, PromotionCache))
        continue;

      // Check if this use should be promoted.
      unsigned OpNo = &U - I.op_begin();
      if (!shouldConvertUse(Cst, &I, OpNo))
        continue;

      Updates.emplace_back(Cst, &I, OpNo);
    }
  }

  if (Updates.empty())
    return false;

  promoteConstants(F, Updates, PromotionCache);
  return true;
}