reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
//===--------- SCEVAffinator.cpp  - Create Scops from LLVM IR -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a SCEV value.
//
//===----------------------------------------------------------------------===//

#include "polly/Support/SCEVAffinator.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/set.h"
#include "isl/val.h"

using namespace llvm;
using namespace polly;

static cl::opt<bool> IgnoreIntegerWrapping(
    "polly-ignore-integer-wrapping",
    cl::desc("Do not build run-time checks to proof absence of integer "
             "wrapping"),
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));

// The maximal number of basic sets we allow during the construction of a
// piecewise affine function. More complex ones will result in very high
// compile time.
static int const MaxDisjunctionsInPwAff = 100;

// The maximal number of bits for which a general expression is modeled
// precisely.
static unsigned const MaxSmallBitWidth = 7;

/// Add the number of basic sets in @p Domain to @p User
static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
                                __isl_take isl_aff *Aff, void *User) {
  auto *NumBasicSets = static_cast<unsigned *>(User);
  *NumBasicSets += isl_set_n_basic_set(Domain);
  isl_set_free(Domain);
  isl_aff_free(Aff);
  return isl_stat_ok;
}

/// Determine if @p PWAC is too complex to continue.
static bool isTooComplex(PWACtx PWAC) {
  unsigned NumBasicSets = 0;
  isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
  if (NumBasicSets <= MaxDisjunctionsInPwAff)
    return false;
  return true;
}

/// Return the flag describing the possible wrapping of @p Expr.
static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    return NAry->getNoWrapFlags();
  return SCEV::NoWrapMask;
}

static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
                      __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
                                                  __isl_take isl_pw_aff *)) {
  PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
  PWAC0.second = PWAC0.second.unite(PWAC1.second);
  return PWAC0;
}

static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
                                                     __isl_take isl_set *Dom) {
  auto *Ctx = isl_set_get_ctx(Dom);
  auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
  auto *ExpVal = isl_val_2exp(WidthVal);
  return isl_pw_aff_val_on_domain(Dom, ExpVal);
}

SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
    : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
      TD(S->getFunction().getParent()->getDataLayout()) {}

Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; }

void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
  auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
  auto *NonNegPWA =
      isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
  auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
  PWAC.first = isl::manage(isl_pw_aff_union_add(
      NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
}

void SCEVAffinator::takeNonNegativeAssumption(PWACtx &PWAC) {
  auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
  auto *NegDom = isl_pw_aff_pos_set(NegPWA);
  PWAC.second =
      isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
  auto *Restriction = BB ? NegDom : isl_set_params(NegDom);
  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->recordAssumption(UNSIGNED, isl::manage(Restriction), DL, AS_RESTRICTION,
                      BB);
}

PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
  return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
}

PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB) {
  this->BB = BB;

  if (BB) {
    auto *DC = S->getDomainConditions(BB).release();
    NumIterators = isl_set_n_dim(DC);
    isl_set_free(DC);
  } else
    NumIterators = 0;

  return visit(Expr);
}

PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
  // If the SCEV flags do contain NSW (no signed wrap) then PWA already
  // represents Expr in modulo semantic (it is not allowed to overflow), thus we
  // are done. Otherwise, we will compute:
  //   PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
  // whereas n is the number of bits of the Expr, hence:
  //   n = bitwidth(ExprType)

  if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
    return PWAC;

  isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());

  isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
  PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();

  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  if (!BB)
    NotEqualSet = NotEqualSet.params();
  NotEqualSet = NotEqualSet.coalesce();

  if (!NotEqualSet.is_empty())
    S->recordAssumption(WRAPPING, NotEqualSet, Loc, AS_RESTRICTION, BB);

  return PWAC;
}

isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
                                             Type *ExprType) const {
  unsigned Width = TD.getTypeSizeInBits(ExprType);

  auto ModVal = isl::val::int_from_ui(Ctx, Width);
  ModVal = ModVal.pow2();

  isl::set Domain = PWA.domain();
  isl::pw_aff AddPW =
      isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));

  return PWA.add(AddPW).mod(ModVal).sub(AddPW);
}

bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
  for (const auto &CachedPair : CachedExpressions) {
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
    if (!AddRec)
      continue;
    if (AddRec->getLoop() != L)
      continue;
    if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
      return true;
  }

  return false;
}

bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
  unsigned Width = TD.getTypeSizeInBits(Expr->getType());
  // We assume nsw expressions never overflow.
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
      return false;
  return Width <= MaxSmallBitWidth;
}

PWACtx SCEVAffinator::visit(const SCEV *Expr) {

  auto Key = std::make_pair(Expr, BB);
  PWACtx PWAC = CachedExpressions[Key];
  if (PWAC.first)
    return PWAC;

  auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
  auto *Factor = ConstantAndLeftOverPair.first;
  Expr = ConstantAndLeftOverPair.second;

  auto *Scope = getScope();
  S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));

  // In case the scev is a valid parameter, we do not further analyze this
  // expression, but create a new parameter in the isl_pw_aff. This allows us
  // to treat subexpressions that we cannot translate into an piecewise affine
  // expression, as constant parameters of the piecewise affine expression.
  if (isl_id *Id = S->getIdForParam(Expr).release()) {
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
    Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);

    isl_set *Domain = isl_set_universe(isl_space_copy(Space));
    isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
    Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);

    PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
  } else {
    PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
    if (computeModuloForExpr(Expr))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
    else
      PWAC = checkForWrapping(Expr, PWAC);
  }

  if (!Factor->getType()->isIntegerTy(1)) {
    PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
    if (computeModuloForExpr(Key.first))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
  }

  // For compile time reasons we need to simplify the PWAC before we cache and
  // return it.
  PWAC.first = PWAC.first.coalesce();
  if (!computeModuloForExpr(Key.first))
    PWAC = checkForWrapping(Key.first, PWAC);

  CachedExpressions[Key] = PWAC;
  return PWAC;
}

PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
  ConstantInt *Value = Expr->getValue();
  isl_val *v;

  // LLVM does not define if an integer value is interpreted as a signed or
  // unsigned value. Hence, without further information, it is unknown how
  // this value needs to be converted to GMP. At the moment, we only support
  // signed operations. So we just interpret it as signed. Later, there are
  // two options:
  //
  // 1. We always interpret any value as signed and convert the values on
  //    demand.
  // 2. We pass down the signedness of the calculation and use it to interpret
  //    this constant correctly.
  v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);

  isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
  isl_local_space *ls = isl_local_space_from_space(Space);
  return getPWACtxFromPWA(
      isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
}

PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
  // Truncate operations are basically modulo operations, thus we can
  // model them that way. However, for large types we assume the operand
  // to fit in the new type size instead of introducing a modulo with a very
  // large constant.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  unsigned Width = TD.getTypeSizeInBits(Expr->getType());

  if (computeModuloForExpr(Expr))
    return OpPWAC;

  auto *Dom = OpPWAC.first.domain().release();
  auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
  auto *GreaterDom =
      isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
  auto *SmallerDom =
      isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
  auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
  OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));

  if (!BB) {
    assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
           "Expected a zero dimensional set for non-basic-block domains");
    OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
  }

  S->recordAssumption(UNSIGNED, isl::manage(OutOfBoundsDom), DebugLoc(),
                      AS_RESTRICTION, BB);

  return OpPWAC;
}

PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
  // A zero-extended value can be interpreted as a piecewise defined signed
  // value. If the value was non-negative it stays the same, otherwise it
  // is the sum of the original value and 2^n where n is the bit-width of
  // the original (or operand) type. Examples:
  //   zext i8 127 to i32 -> { [127] }
  //   zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
  //   zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
  //
  // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  // truncate) to represent some forms of modulo computation. The left-hand side
  // of the condition in the code below would result in the SCEV
  // "zext i1 <false, +, true>for.body" which is just another description
  // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
  //
  //   for (i = 0; i < N; i++)
  //     if (i & 1 != 0 /* == i % 2 */)
  //       /* do something */
  //
  // If we do not make the modulo explicit but only use the mechanism described
  // above we will get the very restrictive assumption "N < 3", because for all
  // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  // Alternatively, we can make the modulo in the operand explicit in the
  // resulting piecewise function and thereby avoid the assumption on N. For the
  // example this would result in the following piecewise affine function:
  // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
  //   [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  // To this end we can first determine if the (immediate) operand of the
  // zero-extend can wrap and, in case it might, we will use explicit modulo
  // semantic to compute the result instead of emitting non-wrapping
  // assumptions.
  //
  // Note that operands with large bit-widths are less likely to be negative
  // because it would result in a very large access offset or loop bound after
  // the zero-extend. To this end one can optimistically assume the operand to
  // be positive and avoid the piecewise definition if the bit-width is bigger
  // than some threshold (here MaxZextSmallBitWidth).
  //
  // We choose to go with a hybrid solution of all modeling techniques described
  // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  // wrapping explicitly and use a piecewise defined function. However, if the
  // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  // assumptions and assume the "former negative" piece will not exist.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  // If the width is to big we assume the negative part does not occur.
  if (!computeModuloForExpr(Op)) {
    takeNonNegativeAssumption(OpPWAC);
    return OpPWAC;
  }

  // If the width is small build the piece for the non-negative part and
  // the one for the negative part and unify them.
  unsigned Width = TD.getTypeSizeInBits(Op->getType());
  interpretAsUnsigned(OpPWAC, Width);
  return OpPWAC;
}

PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
  // As all values are represented as signed, a sign extension is a noop.
  return visit(Expr->getOperand());
}

PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
  PWACtx Sum = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
    if (isTooComplex(Sum))
      return complexityBailout();
  }

  return Sum;
}

PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
  PWACtx Prod = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
    if (isTooComplex(Prod))
      return complexityBailout();
  }

  return Prod;
}

PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
  assert(Expr->isAffine() && "Only affine AddRecurrences allowed");

  auto Flags = Expr->getNoWrapFlags();

  // Directly generate isl_pw_aff for Expr if 'start' is zero.
  if (Expr->getStart()->isZero()) {
    assert(S->contains(Expr->getLoop()) &&
           "Scop does not contain the loop referenced in this AddRec");

    PWACtx Step = visit(Expr->getOperand(1));
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
    isl_local_space *LocalSpace = isl_local_space_from_space(Space);

    unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());

    isl_aff *LAff = isl_aff_set_coefficient_si(
        isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
    isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);

    Step.first = Step.first.mul(isl::manage(LPwAff));
    return Step;
  }

  // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
  // if 'start' is not zero.
  // TODO: Using the original SCEV no-wrap flags is not always safe, however
  //       as our code generation is reordering the expression anyway it doesn't
  //       really matter.
  const SCEV *ZeroStartExpr =
      SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
                       Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);

  PWACtx Result = visit(ZeroStartExpr);
  PWACtx Start = visit(Expr->getStart());
  Result = combine(Result, Start, isl_pw_aff_add);
  return Result;
}

PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
  PWACtx Max = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
    if (isTooComplex(Max))
      return complexityBailout();
  }

  return Max;
}

PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) {
  PWACtx Min = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Min = combine(Min, visit(Expr->getOperand(i)), isl_pw_aff_min);
    if (isTooComplex(Min))
      return complexityBailout();
  }

  return Min;
}

PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
  llvm_unreachable("SCEVUMaxExpr not yet supported");
}

PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) {
  llvm_unreachable("SCEVUMinExpr not yet supported");
}

PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
  // The handling of unsigned division is basically the same as for signed
  // division, except the interpretation of the operands. As the divisor
  // has to be constant in both cases we can simply interpret it as an
  // unsigned value without additional complexity in the representation.
  // For the dividend we could choose from the different representation
  // schemes introduced for zero-extend operations but for now we will
  // simply use an assumption.
  auto *Dividend = Expr->getLHS();
  auto *Divisor = Expr->getRHS();
  assert(isa<SCEVConstant>(Divisor) &&
         "UDiv is no parameter but has a non-constant RHS.");

  auto DividendPWAC = visit(Dividend);
  auto DivisorPWAC = visit(Divisor);

  if (SE.isKnownNegative(Divisor)) {
    // Interpret negative divisors unsigned. This is a special case of the
    // piece-wise defined value described for zero-extends as we already know
    // the actual value of the constant divisor.
    unsigned Width = TD.getTypeSizeInBits(Expr->getType());
    auto *DivisorDom = DivisorPWAC.first.domain().release();
    auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
    DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
  }

  // TODO: One can represent the dividend as piece-wise function to be more
  //       precise but therefor a heuristic is needed.

  // Assume a non-negative dividend.
  takeNonNegativeAssumption(DividendPWAC);

  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
  DividendPWAC.first = DividendPWAC.first.floor();

  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
  assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");

  auto *Scope = getScope();
  auto *Divisor = SDiv->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<SCEVConstant>(DivisorSCEV) &&
         "SDiv is no parameter but has a non-constant RHS.");

  auto *Dividend = SDiv->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
  assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");

  auto *Scope = getScope();
  auto *Divisor = SRem->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<ConstantInt>(Divisor) &&
         "SRem is no parameter but has a non-constant RHS.");

  auto *Dividend = SRem->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
  if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
    switch (I->getOpcode()) {
    case Instruction::IntToPtr:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::PtrToInt:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::SDiv:
      return visitSDivInstruction(I);
    case Instruction::SRem:
      return visitSRemInstruction(I);
    default:
      break; // Fall through.
    }
  }

  llvm_unreachable(
      "Unknowns SCEV was neither parameter nor a valid instruction.");
}

PWACtx SCEVAffinator::complexityBailout() {
  // We hit the complexity limit for affine expressions; invalidate the scop
  // and return a constant zero.
  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->invalidate(COMPLEXITY, Loc);
  return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
}