reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Utility/DataExtractor.h"

#include "lldb/lldb-defines.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"

#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/UUID.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"

#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <string>

#include <ctype.h>
#include <inttypes.h>
#include <string.h>

using namespace lldb;
using namespace lldb_private;

static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
  uint16_t value;
  memcpy(&value, ptr + offset, 2);
  return value;
}

static inline uint32_t ReadInt32(const unsigned char *ptr,
                                 offset_t offset = 0) {
  uint32_t value;
  memcpy(&value, ptr + offset, 4);
  return value;
}

static inline uint64_t ReadInt64(const unsigned char *ptr,
                                 offset_t offset = 0) {
  uint64_t value;
  memcpy(&value, ptr + offset, 8);
  return value;
}

static inline uint16_t ReadInt16(const void *ptr) {
  uint16_t value;
  memcpy(&value, ptr, 2);
  return value;
}

static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
                                     offset_t offset) {
  uint16_t value;
  memcpy(&value, ptr + offset, 2);
  return llvm::ByteSwap_16(value);
}

static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
                                     offset_t offset) {
  uint32_t value;
  memcpy(&value, ptr + offset, 4);
  return llvm::ByteSwap_32(value);
}

static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
                                     offset_t offset) {
  uint64_t value;
  memcpy(&value, ptr + offset, 8);
  return llvm::ByteSwap_64(value);
}

static inline uint16_t ReadSwapInt16(const void *ptr) {
  uint16_t value;
  memcpy(&value, ptr, 2);
  return llvm::ByteSwap_16(value);
}

static inline uint32_t ReadSwapInt32(const void *ptr) {
  uint32_t value;
  memcpy(&value, ptr, 4);
  return llvm::ByteSwap_32(value);
}

static inline uint64_t ReadSwapInt64(const void *ptr) {
  uint64_t value;
  memcpy(&value, ptr, 8);
  return llvm::ByteSwap_64(value);
}

static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
                                    ByteOrder byte_order) {
  uint64_t res = 0;
  if (byte_order == eByteOrderBig)
    for (size_t i = 0; i < byte_size; ++i)
      res = (res << 8) | data[i];
  else {
    assert(byte_order == eByteOrderLittle);
    for (size_t i = 0; i < byte_size; ++i)
      res = (res << 8) | data[byte_size - 1 - i];
  }
  return res;
}

DataExtractor::DataExtractor()
    : m_start(nullptr), m_end(nullptr),
      m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
      m_data_sp(), m_target_byte_size(1) {}

// This constructor allows us to use data that is owned by someone else. The
// data must stay around as long as this object is valid.
DataExtractor::DataExtractor(const void *data, offset_t length,
                             ByteOrder endian, uint32_t addr_size,
                             uint32_t target_byte_size /*=1*/)
    : m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
      m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
            length),
      m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(addr_size == 4 || addr_size == 8);
}

// Make a shared pointer reference to the shared data in "data_sp" and set the
// endian swapping setting to "swap", and the address size to "addr_size". The
// shared data reference will ensure the data lives as long as any
// DataExtractor objects exist that have a reference to this data.
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
                             uint32_t addr_size,
                             uint32_t target_byte_size /*=1*/)
    : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
      m_addr_size(addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(addr_size == 4 || addr_size == 8);
  SetData(data_sp);
}

// Initialize this object with a subset of the data bytes in "data". If "data"
// contains shared data, then a reference to this shared data will added and
// the shared data will stay around as long as any object contains a reference
// to that data. The endian swap and address size settings are copied from
// "data".
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
                             offset_t length, uint32_t target_byte_size /*=1*/)
    : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
      m_addr_size(data.m_addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(m_addr_size == 4 || m_addr_size == 8);
  if (data.ValidOffset(offset)) {
    offset_t bytes_available = data.GetByteSize() - offset;
    if (length > bytes_available)
      length = bytes_available;
    SetData(data, offset, length);
  }
}

DataExtractor::DataExtractor(const DataExtractor &rhs)
    : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
      m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
      m_target_byte_size(rhs.m_target_byte_size) {
  assert(m_addr_size == 4 || m_addr_size == 8);
}

// Assignment operator
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
  if (this != &rhs) {
    m_start = rhs.m_start;
    m_end = rhs.m_end;
    m_byte_order = rhs.m_byte_order;
    m_addr_size = rhs.m_addr_size;
    m_data_sp = rhs.m_data_sp;
  }
  return *this;
}

DataExtractor::~DataExtractor() = default;

// Clears the object contents back to a default invalid state, and release any
// references to shared data that this object may contain.
void DataExtractor::Clear() {
  m_start = nullptr;
  m_end = nullptr;
  m_byte_order = endian::InlHostByteOrder();
  m_addr_size = sizeof(void *);
  m_data_sp.reset();
}

// If this object contains shared data, this function returns the offset into
// that shared data. Else zero is returned.
size_t DataExtractor::GetSharedDataOffset() const {
  if (m_start != nullptr) {
    const DataBuffer *data = m_data_sp.get();
    if (data != nullptr) {
      const uint8_t *data_bytes = data->GetBytes();
      if (data_bytes != nullptr) {
        assert(m_start >= data_bytes);
        return m_start - data_bytes;
      }
    }
  }
  return 0;
}

// Set the data with which this object will extract from to data starting at
// BYTES and set the length of the data to LENGTH bytes long. The data is
// externally owned must be around at least as long as this object points to
// the data. No copy of the data is made, this object just refers to this data
// and can extract from it. If this object refers to any shared data upon
// entry, the reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
                                      ByteOrder endian) {
  m_byte_order = endian;
  m_data_sp.reset();
  if (bytes == nullptr || length == 0) {
    m_start = nullptr;
    m_end = nullptr;
  } else {
    m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
    m_end = m_start + length;
  }
  return GetByteSize();
}

// Assign the data for this object to be a subrange in "data" starting
// "data_offset" bytes into "data" and ending "data_length" bytes later. If
// "data_offset" is not a valid offset into "data", then this object will
// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
// large, the length will be capped at the number of bytes remaining in "data".
// If "data" contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data" doesn't contain
// a shared pointer to data, then the bytes referred to in "data" will need to
// exist at least as long as this object refers to those bytes. The address
// size and endian swap settings are copied from the current values in "data".
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
                                      offset_t data_offset,
                                      offset_t data_length) {
  m_addr_size = data.m_addr_size;
  assert(m_addr_size == 4 || m_addr_size == 8);
  // If "data" contains shared pointer to data, then we can use that
  if (data.m_data_sp) {
    m_byte_order = data.m_byte_order;
    return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
                   data_length);
  }

  // We have a DataExtractor object that just has a pointer to bytes
  if (data.ValidOffset(data_offset)) {
    if (data_length > data.GetByteSize() - data_offset)
      data_length = data.GetByteSize() - data_offset;
    return SetData(data.GetDataStart() + data_offset, data_length,
                   data.GetByteOrder());
  }
  return 0;
}

// Assign the data for this object to be a subrange of the shared data in
// "data_sp" starting "data_offset" bytes into "data_sp" and ending
// "data_length" bytes later. If "data_offset" is not a valid offset into
// "data_sp", then this object will contain no bytes. If "data_offset" is
// within "data_sp" yet "data_length" is too large, the length will be capped
// at the number of bytes remaining in "data_sp". A ref counted pointer to the
// data in "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was available
// starting at "data_offset") to ensure the data stays around as long as it is
// needed. The address size and endian swap settings will remain unchanged from
// their current settings.
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
                                      offset_t data_offset,
                                      offset_t data_length) {
  m_start = m_end = nullptr;

  if (data_length > 0) {
    m_data_sp = data_sp;
    if (data_sp) {
      const size_t data_size = data_sp->GetByteSize();
      if (data_offset < data_size) {
        m_start = data_sp->GetBytes() + data_offset;
        const size_t bytes_left = data_size - data_offset;
        // Cap the length of we asked for too many
        if (data_length <= bytes_left)
          m_end = m_start + data_length; // We got all the bytes we wanted
        else
          m_end = m_start + bytes_left; // Not all the bytes requested were
                                        // available in the shared data
      }
    }
  }

  size_t new_size = GetByteSize();

  // Don't hold a shared pointer to the data buffer if we don't share any valid
  // bytes in the shared buffer.
  if (new_size == 0)
    m_data_sp.reset();

  return new_size;
}

// Extract a single unsigned char from the binary data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
  const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
  if (data)
    return *data;
  return 0;
}

// Extract "count" unsigned chars from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
                           uint32_t count) const {
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, count));
  if (data) {
    // Copy the data into the buffer
    memcpy(dst, data, count);
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return dst;
  }
  return nullptr;
}

// Extract a single uint16_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
  uint16_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder())
      val = ReadSwapInt16(data);
    else
      val = ReadInt16(data);
  }
  return val;
}

uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
  uint16_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt16(m_start, *offset_ptr);
  else
    val = ReadSwapInt16(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
  uint32_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt32(m_start, *offset_ptr);
  else
    val = ReadSwapInt32(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
  uint64_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt64(m_start, *offset_ptr);
  else
    val = ReadSwapInt64(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

// Extract "count" uint16_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint16_t) * count;
  const uint16_t *src =
      static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
      uint16_t *dst_end = dst_pos + count;
      const uint16_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt16(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

// Extract a single uint32_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
  uint32_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      val = ReadSwapInt32(data);
    } else {
      memcpy(&val, data, 4);
    }
  }
  return val;
}

// Extract "count" uint32_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint32_t) * count;
  const uint32_t *src =
      static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
      uint32_t *dst_end = dst_pos + count;
      const uint32_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt32(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

// Extract a single uint64_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
  uint64_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      val = ReadSwapInt64(data);
    } else {
      memcpy(&val, data, 8);
    }
  }
  return val;
}

// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire read
// succeeds and increment the offset pointed to by offset_ptr, else return
// false and leave the offset pointed to by offset_ptr unchanged.
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint64_t) * count;
  const uint64_t *src =
      static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
      uint64_t *dst_end = dst_pos + count;
      const uint64_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt64(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
                                  size_t byte_size) const {
  lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
  return GetMaxU64(offset_ptr, byte_size);
}

uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
                                  size_t byte_size) const {
  lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
  switch (byte_size) {
  case 1:
    return GetU8(offset_ptr);
  case 2:
    return GetU16(offset_ptr);
  case 4:
    return GetU32(offset_ptr);
  case 8:
    return GetU64(offset_ptr);
  default: {
    // General case.
    const uint8_t *data =
        static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
    if (data == nullptr)
      return 0;
    return ReadMaxInt64(data, byte_size, m_byte_order);
  }
  }
  return 0;
}

uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
                                            size_t byte_size) const {
  switch (byte_size) {
  case 1:
    return GetU8_unchecked(offset_ptr);
  case 2:
    return GetU16_unchecked(offset_ptr);
  case 4:
    return GetU32_unchecked(offset_ptr);
  case 8:
    return GetU64_unchecked(offset_ptr);
  default: {
    uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
    *offset_ptr += byte_size;
    return res;
  }
  }
  return 0;
}

int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
  uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
  return llvm::SignExtend64(u64, 8 * byte_size);
}

uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
                                          uint32_t bitfield_bit_size,
                                          uint32_t bitfield_bit_offset) const {
  uint64_t uval64 = GetMaxU64(offset_ptr, size);
  if (bitfield_bit_size > 0) {
    int32_t lsbcount = bitfield_bit_offset;
    if (m_byte_order == eByteOrderBig)
      lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
    if (lsbcount > 0)
      uval64 >>= lsbcount;
    uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
    if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
      return uval64;
    uval64 &= bitfield_mask;
  }
  return uval64;
}

int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
                                         uint32_t bitfield_bit_size,
                                         uint32_t bitfield_bit_offset) const {
  int64_t sval64 = GetMaxS64(offset_ptr, size);
  if (bitfield_bit_size > 0) {
    int32_t lsbcount = bitfield_bit_offset;
    if (m_byte_order == eByteOrderBig)
      lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
    if (lsbcount > 0)
      sval64 >>= lsbcount;
    uint64_t bitfield_mask =
        ((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
    sval64 &= bitfield_mask;
    // sign extend if needed
    if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
      sval64 |= ~bitfield_mask;
  }
  return sval64;
}

float DataExtractor::GetFloat(offset_t *offset_ptr) const {
  typedef float float_type;
  float_type val = 0.0;
  const size_t src_size = sizeof(float_type);
  const float_type *src =
      static_cast<const float_type *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
      for (size_t i = 0; i < sizeof(float_type); ++i)
        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    } else {
      val = *src;
    }
  }
  return val;
}

double DataExtractor::GetDouble(offset_t *offset_ptr) const {
  typedef double float_type;
  float_type val = 0.0;
  const size_t src_size = sizeof(float_type);
  const float_type *src =
      static_cast<const float_type *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
      for (size_t i = 0; i < sizeof(float_type); ++i)
        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    } else {
      val = *src;
    }
  }
  return val;
}

long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
  long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
    defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
  *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
                                     endian::InlHostByteOrder());
#else
  *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
                                     sizeof(val), endian::InlHostByteOrder());
#endif
  return val;
}

// Extract a single address from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted address comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64(offset_ptr, m_addr_size);
}

uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}

// Extract a single pointer from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted pointer comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64(offset_ptr, m_addr_size);
}

size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
                                   ByteOrder dst_byte_order, void *dst) const {
  const uint8_t *src = PeekData(offset, length);
  if (src) {
    if (dst_byte_order != GetByteOrder()) {
      // Validate that only a word- or register-sized dst is byte swapped
      assert(length == 1 || length == 2 || length == 4 || length == 8 ||
             length == 10 || length == 16 || length == 32);

      for (uint32_t i = 0; i < length; ++i)
        (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
    } else
      ::memcpy(dst, src, length);
    return length;
  }
  return 0;
}

// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
                                       void *dst) const {
  const uint8_t *src = PeekData(offset, length);
  if (src) {
    ::memcpy(dst, src, length);
    return length;
  }
  return 0;
}

// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
                                   void *dst_void_ptr, offset_t dst_len,
                                   ByteOrder dst_byte_order) const {
  // Validate the source info
  if (!ValidOffsetForDataOfSize(src_offset, src_len))
    assert(ValidOffsetForDataOfSize(src_offset, src_len));
  assert(src_len > 0);
  assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);

  // Validate the destination info
  assert(dst_void_ptr != nullptr);
  assert(dst_len > 0);
  assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);

  // Validate that only a word- or register-sized dst is byte swapped
  assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
         dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
         dst_len == 32);

  // Must have valid byte orders set in this object and for destination
  if (!(dst_byte_order == eByteOrderBig ||
        dst_byte_order == eByteOrderLittle) ||
      !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
    return 0;

  uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
  const uint8_t *src = PeekData(src_offset, src_len);
  if (src) {
    if (dst_len >= src_len) {
      // We are copying the entire value from src into dst. Calculate how many,
      // if any, zeroes we need for the most significant bytes if "dst_len" is
      // greater than "src_len"...
      const size_t num_zeroes = dst_len - src_len;
      if (dst_byte_order == eByteOrderBig) {
        // Big endian, so we lead with zeroes...
        if (num_zeroes > 0)
          ::memset(dst, 0, num_zeroes);
        // Then either copy or swap the rest
        if (m_byte_order == eByteOrderBig) {
          ::memcpy(dst + num_zeroes, src, src_len);
        } else {
          for (uint32_t i = 0; i < src_len; ++i)
            dst[i + num_zeroes] = src[src_len - 1 - i];
        }
      } else {
        // Little endian destination, so we lead the value bytes
        if (m_byte_order == eByteOrderBig) {
          for (uint32_t i = 0; i < src_len; ++i)
            dst[i] = src[src_len - 1 - i];
        } else {
          ::memcpy(dst, src, src_len);
        }
        // And zero the rest...
        if (num_zeroes > 0)
          ::memset(dst + src_len, 0, num_zeroes);
      }
      return src_len;
    } else {
      // We are only copying some of the value from src into dst..

      if (dst_byte_order == eByteOrderBig) {
        // Big endian dst
        if (m_byte_order == eByteOrderBig) {
          // Big endian dst, with big endian src
          ::memcpy(dst, src + (src_len - dst_len), dst_len);
        } else {
          // Big endian dst, with little endian src
          for (uint32_t i = 0; i < dst_len; ++i)
            dst[i] = src[dst_len - 1 - i];
        }
      } else {
        // Little endian dst
        if (m_byte_order == eByteOrderBig) {
          // Little endian dst, with big endian src
          for (uint32_t i = 0; i < dst_len; ++i)
            dst[i] = src[src_len - 1 - i];
        } else {
          // Little endian dst, with big endian src
          ::memcpy(dst, src, dst_len);
        }
      }
      return dst_len;
    }
  }
  return 0;
}

// Extracts a variable length NULL terminated C string from the data at the
// offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
// the offset of the byte that follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
// non-zero and there aren't enough available bytes, nullptr will be returned
// and "offset_ptr" will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
  const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
  // Already at the end of the data.
  if (!start)
    return nullptr;

  const char *end = reinterpret_cast<const char *>(m_end);

  // Check all bytes for a null terminator that terminates a C string.
  const char *terminator_or_end = std::find(start, end, '\0');

  // We didn't find a null terminator, so return nullptr to indicate that there
  // is no valid C string at that offset.
  if (terminator_or_end == end)
    return nullptr;

  // Update offset_ptr for the caller to point to the data behind the
  // terminator (which is 1 byte long).
  *offset_ptr += (terminator_or_end - start + 1UL);
  return start;
}

// Extracts a NULL terminated C string from the fixed length field of length
// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
// updated with the offset of the byte that follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
// plus the length of the field is out of bounds, or if the field does not
// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
// will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
  const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
  if (cstr != nullptr) {
    if (memchr(cstr, '\0', len) == nullptr) {
      return nullptr;
    }
    *offset_ptr += len;
    return cstr;
  }
  return nullptr;
}

// Peeks at a string in the contained data. No verification is done to make
// sure the entire string lies within the bounds of this object's data, only
// "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in this
// object's data, else nullptr is returned.
const char *DataExtractor::PeekCStr(offset_t offset) const {
  return reinterpret_cast<const char *>(PeekData(offset, 1));
}

// Extracts an unsigned LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    uint64_t result = *src++;
    if (result >= 0x80) {
      result &= 0x7f;
      int shift = 7;
      while (src < end) {
        uint8_t byte = *src++;
        result |= static_cast<uint64_t>(byte & 0x7f) << shift;
        if ((byte & 0x80) == 0)
          break;
        shift += 7;
      }
    }
    *offset_ptr = src - m_start;
    return result;
  }

  return 0;
}

// Extracts an signed LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    int64_t result = 0;
    int shift = 0;
    int size = sizeof(int64_t) * 8;

    uint8_t byte = 0;
    int bytecount = 0;

    while (src < end) {
      bytecount++;
      byte = *src++;
      result |= static_cast<int64_t>(byte & 0x7f) << shift;
      shift += 7;
      if ((byte & 0x80) == 0)
        break;
    }

    // Sign bit of byte is 2nd high order bit (0x40)
    if (shift < size && (byte & 0x40))
      result |= -(1 << shift);

    *offset_ptr += bytecount;
    return result;
  }
  return 0;
}

// Skips a ULEB128 number (signed or unsigned) from this object's data starting
// at the offset pointed to by "offset_ptr". The offset pointed to by
// "offset_ptr" will be updated with the offset of the byte following the last
// extracted byte.
//
// Returns the number of bytes consumed during the extraction.
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
  uint32_t bytes_consumed = 0;
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    const uint8_t *src_pos = src;
    while ((src_pos < end) && (*src_pos++ & 0x80))
      ++bytes_consumed;
    *offset_ptr += src_pos - src;
  }
  return bytes_consumed;
}

// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte before
// "end_offset". "base_addr" will be added to the offset into the dumped data
// when showing the offset into the data in the output information.
// "num_per_line" objects of type "type" will be dumped with the option to
// override the format for each object with "type_format". "type_format" is a
// printf style formatting string. If "type_format" is nullptr, then an
// appropriate format string will be used for the supplied "type". If the
// stream "s" is nullptr, then the output will be send to Log().
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
                                       offset_t length, uint64_t base_addr,
                                       uint32_t num_per_line,
                                       DataExtractor::Type type,
                                       const char *format) const {
  if (log == nullptr)
    return start_offset;

  offset_t offset;
  offset_t end_offset;
  uint32_t count;
  StreamString sstr;
  for (offset = start_offset, end_offset = offset + length, count = 0;
       ValidOffset(offset) && offset < end_offset; ++count) {
    if ((count % num_per_line) == 0) {
      // Print out any previous string
      if (sstr.GetSize() > 0) {
        log->PutString(sstr.GetString());
        sstr.Clear();
      }
      // Reset string offset and fill the current line string with address:
      if (base_addr != LLDB_INVALID_ADDRESS)
        sstr.Printf("0x%8.8" PRIx64 ":",
                    static_cast<uint64_t>(base_addr + (offset - start_offset)));
    }

    switch (type) {
    case TypeUInt8:
      sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
      break;
    case TypeChar: {
      char ch = GetU8(&offset);
      sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
    } break;
    case TypeUInt16:
      sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
      break;
    case TypeUInt32:
      sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
      break;
    case TypeUInt64:
      sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
      break;
    case TypePointer:
      sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
      break;
    case TypeULEB128:
      sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
      break;
    case TypeSLEB128:
      sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
      break;
    }
  }

  if (!sstr.Empty())
    log->PutString(sstr.GetString());

  return offset; // Return the offset at which we ended up
}

size_t DataExtractor::Copy(DataExtractor &dest_data) const {
  if (m_data_sp) {
    // we can pass along the SP to the data
    dest_data.SetData(m_data_sp);
  } else {
    const uint8_t *base_ptr = m_start;
    size_t data_size = GetByteSize();
    dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
  }
  return GetByteSize();
}

bool DataExtractor::Append(DataExtractor &rhs) {
  if (rhs.GetByteOrder() != GetByteOrder())
    return false;

  if (rhs.GetByteSize() == 0)
    return true;

  if (GetByteSize() == 0)
    return (rhs.Copy(*this) > 0);

  size_t bytes = GetByteSize() + rhs.GetByteSize();

  DataBufferHeap *buffer_heap_ptr = nullptr;
  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));

  if (!buffer_sp || buffer_heap_ptr == nullptr)
    return false;

  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();

  memcpy(bytes_ptr, GetDataStart(), GetByteSize());
  memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());

  SetData(buffer_sp);

  return true;
}

bool DataExtractor::Append(void *buf, offset_t length) {
  if (buf == nullptr)
    return false;

  if (length == 0)
    return true;

  size_t bytes = GetByteSize() + length;

  DataBufferHeap *buffer_heap_ptr = nullptr;
  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));

  if (!buffer_sp || buffer_heap_ptr == nullptr)
    return false;

  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();

  if (GetByteSize() > 0)
    memcpy(bytes_ptr, GetDataStart(), GetByteSize());

  memcpy(bytes_ptr + GetByteSize(), buf, length);

  SetData(buffer_sp);

  return true;
}

void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
                             uint64_t max_data) {
  if (max_data == 0)
    max_data = GetByteSize();
  else
    max_data = std::min(max_data, GetByteSize());

  llvm::MD5 md5;

  const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
  md5.update(data);

  llvm::MD5::MD5Result result;
  md5.final(result);

  dest.clear();
  dest.append(result.Bytes.begin(), result.Bytes.end());
}