reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
//===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "SystemZRegisterInfo.h"
#include "SystemZInstrInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/VirtRegMap.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "SystemZGenRegisterInfo.inc"

SystemZRegisterInfo::SystemZRegisterInfo()
    : SystemZGenRegisterInfo(SystemZ::R14D) {}

// Given that MO is a GRX32 operand, return either GR32 or GRH32 if MO
// somehow belongs in it. Otherwise, return GRX32.
static const TargetRegisterClass *getRC32(MachineOperand &MO,
                                          const VirtRegMap *VRM,
                                          const MachineRegisterInfo *MRI) {
  const TargetRegisterClass *RC = MRI->getRegClass(MO.getReg());

  if (SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
      MO.getSubReg() == SystemZ::subreg_l32 ||
      MO.getSubReg() == SystemZ::subreg_hl32)
    return &SystemZ::GR32BitRegClass;
  if (SystemZ::GRH32BitRegClass.hasSubClassEq(RC) ||
      MO.getSubReg() == SystemZ::subreg_h32 ||
      MO.getSubReg() == SystemZ::subreg_hh32)
    return &SystemZ::GRH32BitRegClass;

  if (VRM && VRM->hasPhys(MO.getReg())) {
    Register PhysReg = VRM->getPhys(MO.getReg());
    if (SystemZ::GR32BitRegClass.contains(PhysReg))
      return &SystemZ::GR32BitRegClass;
    assert (SystemZ::GRH32BitRegClass.contains(PhysReg) &&
            "Phys reg not in GR32 or GRH32?");
    return &SystemZ::GRH32BitRegClass;
  }

  assert (RC == &SystemZ::GRX32BitRegClass);
  return RC;
}

// Pass the registers of RC as hints while making sure that if any of these
// registers are copy hints (and therefore already in Hints), hint them
// first.
static void addHints(ArrayRef<MCPhysReg> Order,
                     SmallVectorImpl<MCPhysReg> &Hints,
                     const TargetRegisterClass *RC,
                     const MachineRegisterInfo *MRI) {
  SmallSet<unsigned, 4> CopyHints;
  CopyHints.insert(Hints.begin(), Hints.end());
  Hints.clear();
  for (MCPhysReg Reg : Order)
    if (CopyHints.count(Reg) &&
        RC->contains(Reg) && !MRI->isReserved(Reg))
      Hints.push_back(Reg);
  for (MCPhysReg Reg : Order)
    if (!CopyHints.count(Reg) &&
        RC->contains(Reg) && !MRI->isReserved(Reg))
      Hints.push_back(Reg);
}

bool
SystemZRegisterInfo::getRegAllocationHints(unsigned VirtReg,
                                           ArrayRef<MCPhysReg> Order,
                                           SmallVectorImpl<MCPhysReg> &Hints,
                                           const MachineFunction &MF,
                                           const VirtRegMap *VRM,
                                           const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();
  const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();

  bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
      VirtReg, Order, Hints, MF, VRM, Matrix);

  if (MRI->getRegClass(VirtReg) == &SystemZ::GRX32BitRegClass) {
    SmallVector<unsigned, 8> Worklist;
    SmallSet<unsigned, 4> DoneRegs;
    Worklist.push_back(VirtReg);
    while (Worklist.size()) {
      unsigned Reg = Worklist.pop_back_val();
      if (!DoneRegs.insert(Reg).second)
        continue;

      for (auto &Use : MRI->reg_instructions(Reg)) {
        // For LOCRMux, see if the other operand is already a high or low
        // register, and in that case give the corresponding hints for
        // VirtReg. LOCR instructions need both operands in either high or
        // low parts. Same handling for SELRMux.
        if (Use.getOpcode() == SystemZ::LOCRMux ||
            Use.getOpcode() == SystemZ::SELRMux) {
          MachineOperand &TrueMO = Use.getOperand(1);
          MachineOperand &FalseMO = Use.getOperand(2);
          const TargetRegisterClass *RC =
            TRI->getCommonSubClass(getRC32(FalseMO, VRM, MRI),
                                   getRC32(TrueMO, VRM, MRI));
          if (Use.getOpcode() == SystemZ::SELRMux)
            RC = TRI->getCommonSubClass(RC,
                                        getRC32(Use.getOperand(0), VRM, MRI));
          if (RC && RC != &SystemZ::GRX32BitRegClass) {
            addHints(Order, Hints, RC, MRI);
            // Return true to make these hints the only regs available to
            // RA. This may mean extra spilling but since the alternative is
            // a jump sequence expansion of the LOCRMux, it is preferred.
            return true;
          }

          // Add the other operand of the LOCRMux to the worklist.
          Register OtherReg =
              (TrueMO.getReg() == Reg ? FalseMO.getReg() : TrueMO.getReg());
          if (MRI->getRegClass(OtherReg) == &SystemZ::GRX32BitRegClass)
            Worklist.push_back(OtherReg);
        } // end LOCRMux
        else if (Use.getOpcode() == SystemZ::CHIMux ||
                 Use.getOpcode() == SystemZ::CFIMux) {
          if (Use.getOperand(1).getImm() == 0) {
            bool OnlyLMuxes = true;
            for (MachineInstr &DefMI : MRI->def_instructions(VirtReg))
              if (DefMI.getOpcode() != SystemZ::LMux)
                OnlyLMuxes = false;
            if (OnlyLMuxes) {
              addHints(Order, Hints, &SystemZ::GR32BitRegClass, MRI);
              // Return false to make these hints preferred but not obligatory.
              return false;
            }
          }
        } // end CHIMux / CFIMux
      }
    }
  }

  if (VRM == nullptr)
    return BaseImplRetVal;

  // Add any two address hints after any copy hints.
  SmallSet<unsigned, 4> TwoAddrHints;
  for (auto &Use : MRI->reg_nodbg_instructions(VirtReg))
    if (SystemZ::getTwoOperandOpcode(Use.getOpcode()) != -1) {
      const MachineOperand *VRRegMO = nullptr;
      const MachineOperand *OtherMO = nullptr;
      const MachineOperand *CommuMO = nullptr;
      if (VirtReg == Use.getOperand(0).getReg()) {
        VRRegMO = &Use.getOperand(0);
        OtherMO = &Use.getOperand(1);
        if (Use.isCommutable())
          CommuMO = &Use.getOperand(2);
      } else if (VirtReg == Use.getOperand(1).getReg()) {
        VRRegMO = &Use.getOperand(1);
        OtherMO = &Use.getOperand(0);
      } else if (VirtReg == Use.getOperand(2).getReg() && Use.isCommutable()) {
        VRRegMO = &Use.getOperand(2);
        OtherMO = &Use.getOperand(0);
      } else
        continue;

      auto tryAddHint = [&](const MachineOperand *MO) -> void {
        Register Reg = MO->getReg();
        Register PhysReg =
            Register::isPhysicalRegister(Reg) ? Reg : VRM->getPhys(Reg);
        if (PhysReg) {
          if (MO->getSubReg())
            PhysReg = getSubReg(PhysReg, MO->getSubReg());
          if (VRRegMO->getSubReg())
            PhysReg = getMatchingSuperReg(PhysReg, VRRegMO->getSubReg(),
                                          MRI->getRegClass(VirtReg));
          if (!MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
            TwoAddrHints.insert(PhysReg);
        }
      };
      tryAddHint(OtherMO);
      if (CommuMO)
        tryAddHint(CommuMO);
    }
  for (MCPhysReg OrderReg : Order)
    if (TwoAddrHints.count(OrderReg))
      Hints.push_back(OrderReg);

  return BaseImplRetVal;
}

const MCPhysReg *
SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
    return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_SaveList
                                : CSR_SystemZ_AllRegs_SaveList;
  if (MF->getSubtarget().getTargetLowering()->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_SystemZ_SwiftError_SaveList;
  return CSR_SystemZ_SaveList;
}

const uint32_t *
SystemZRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
  if (CC == CallingConv::AnyReg)
    return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_RegMask
                                : CSR_SystemZ_AllRegs_RegMask;
  if (MF.getSubtarget().getTargetLowering()->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_SystemZ_SwiftError_RegMask;
  return CSR_SystemZ_RegMask;
}

BitVector
SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  BitVector Reserved(getNumRegs());
  const SystemZFrameLowering *TFI = getFrameLowering(MF);

  if (TFI->hasFP(MF)) {
    // R11D is the frame pointer.  Reserve all aliases.
    Reserved.set(SystemZ::R11D);
    Reserved.set(SystemZ::R11L);
    Reserved.set(SystemZ::R11H);
    Reserved.set(SystemZ::R10Q);
  }

  // R15D is the stack pointer.  Reserve all aliases.
  Reserved.set(SystemZ::R15D);
  Reserved.set(SystemZ::R15L);
  Reserved.set(SystemZ::R15H);
  Reserved.set(SystemZ::R14Q);

  // A0 and A1 hold the thread pointer.
  Reserved.set(SystemZ::A0);
  Reserved.set(SystemZ::A1);

  // FPC is the floating-point control register.
  Reserved.set(SystemZ::FPC);

  return Reserved;
}

void
SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
                                         int SPAdj, unsigned FIOperandNum,
                                         RegScavenger *RS) const {
  assert(SPAdj == 0 && "Outgoing arguments should be part of the frame");

  MachineBasicBlock &MBB = *MI->getParent();
  MachineFunction &MF = *MBB.getParent();
  auto *TII =
      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const SystemZFrameLowering *TFI = getFrameLowering(MF);
  DebugLoc DL = MI->getDebugLoc();

  // Decompose the frame index into a base and offset.
  int FrameIndex = MI->getOperand(FIOperandNum).getIndex();
  unsigned BasePtr;
  int64_t Offset = (TFI->getFrameIndexReference(MF, FrameIndex, BasePtr) +
                    MI->getOperand(FIOperandNum + 1).getImm());

  // Special handling of dbg_value instructions.
  if (MI->isDebugValue()) {
    MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false);
    MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
    return;
  }

  // See if the offset is in range, or if an equivalent instruction that
  // accepts the offset exists.
  unsigned Opcode = MI->getOpcode();
  unsigned OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
  if (OpcodeForOffset) {
    if (OpcodeForOffset == SystemZ::LE &&
        MF.getSubtarget<SystemZSubtarget>().hasVector()) {
      // If LE is ok for offset, use LDE instead on z13.
      OpcodeForOffset = SystemZ::LDE32;
    }
    MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
  }
  else {
    // Create an anchor point that is in range.  Start at 0xffff so that
    // can use LLILH to load the immediate.
    int64_t OldOffset = Offset;
    int64_t Mask = 0xffff;
    do {
      Offset = OldOffset & Mask;
      OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
      Mask >>= 1;
      assert(Mask && "One offset must be OK");
    } while (!OpcodeForOffset);

    Register ScratchReg =
        MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass);
    int64_t HighOffset = OldOffset - Offset;

    if (MI->getDesc().TSFlags & SystemZII::HasIndex
        && MI->getOperand(FIOperandNum + 2).getReg() == 0) {
      // Load the offset into the scratch register and use it as an index.
      // The scratch register then dies here.
      TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
      MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
      MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg,
                                                        false, false, true);
    } else {
      // Load the anchor address into a scratch register.
      unsigned LAOpcode = TII->getOpcodeForOffset(SystemZ::LA, HighOffset);
      if (LAOpcode)
        BuildMI(MBB, MI, DL, TII->get(LAOpcode),ScratchReg)
          .addReg(BasePtr).addImm(HighOffset).addReg(0);
      else {
        // Load the high offset into the scratch register and use it as
        // an index.
        TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
        BuildMI(MBB, MI, DL, TII->get(SystemZ::AGR),ScratchReg)
          .addReg(ScratchReg, RegState::Kill).addReg(BasePtr);
      }

      // Use the scratch register as the base.  It then dies here.
      MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg,
                                                    false, false, true);
    }
  }
  MI->setDesc(TII->get(OpcodeForOffset));
  MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}

bool SystemZRegisterInfo::shouldCoalesce(MachineInstr *MI,
                                  const TargetRegisterClass *SrcRC,
                                  unsigned SubReg,
                                  const TargetRegisterClass *DstRC,
                                  unsigned DstSubReg,
                                  const TargetRegisterClass *NewRC,
                                  LiveIntervals &LIS) const {
  assert (MI->isCopy() && "Only expecting COPY instructions");

  // Coalesce anything which is not a COPY involving a subreg to/from GR128.
  if (!(NewRC->hasSuperClassEq(&SystemZ::GR128BitRegClass) &&
        (getRegSizeInBits(*SrcRC) <= 64 || getRegSizeInBits(*DstRC) <= 64)))
    return true;

  // Allow coalescing of a GR128 subreg COPY only if the live ranges are small
  // and local to one MBB with not too much interferring registers. Otherwise
  // regalloc may run out of registers.

  unsigned WideOpNo = (getRegSizeInBits(*SrcRC) == 128 ? 1 : 0);
  Register GR128Reg = MI->getOperand(WideOpNo).getReg();
  Register GRNarReg = MI->getOperand((WideOpNo == 1) ? 0 : 1).getReg();
  LiveInterval &IntGR128 = LIS.getInterval(GR128Reg);
  LiveInterval &IntGRNar = LIS.getInterval(GRNarReg);

  // Check that the two virtual registers are local to MBB.
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstr *FirstMI_GR128 =
    LIS.getInstructionFromIndex(IntGR128.beginIndex());
  MachineInstr *FirstMI_GRNar =
    LIS.getInstructionFromIndex(IntGRNar.beginIndex());
  MachineInstr *LastMI_GR128 = LIS.getInstructionFromIndex(IntGR128.endIndex());
  MachineInstr *LastMI_GRNar = LIS.getInstructionFromIndex(IntGRNar.endIndex());
  if ((!FirstMI_GR128 || FirstMI_GR128->getParent() != MBB) ||
      (!FirstMI_GRNar || FirstMI_GRNar->getParent() != MBB) ||
      (!LastMI_GR128 || LastMI_GR128->getParent() != MBB) ||
      (!LastMI_GRNar || LastMI_GRNar->getParent() != MBB))
    return false;

  MachineBasicBlock::iterator MII = nullptr, MEE = nullptr;
  if (WideOpNo == 1) {
    MII = FirstMI_GR128;
    MEE = LastMI_GRNar;
  } else {
    MII = FirstMI_GRNar;
    MEE = LastMI_GR128;
  }

  // Check if coalescing seems safe by finding the set of clobbered physreg
  // pairs in the region.
  BitVector PhysClobbered(getNumRegs());
  MEE++;
  for (; MII != MEE; ++MII) {
    for (const MachineOperand &MO : MII->operands())
      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
        for (MCSuperRegIterator SI(MO.getReg(), this, true/*IncludeSelf*/);
             SI.isValid(); ++SI)
          if (NewRC->contains(*SI)) {
            PhysClobbered.set(*SI);
            break;
          }
      }
  }

  // Demand an arbitrary margin of free regs.
  unsigned const DemandedFreeGR128 = 3;
  if (PhysClobbered.count() > (NewRC->getNumRegs() - DemandedFreeGR128))
    return false;

  return true;
}

Register
SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const SystemZFrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
}

const TargetRegisterClass *
SystemZRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &SystemZ::CCRRegClass)
    return &SystemZ::GR32BitRegClass;
  return RC;
}