reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
//===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pre-emit peephole for catching opportunities introduced by late passes such
// as MachineBlockPlacement.
//
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-pre-emit-peephole"

STATISTIC(NumRRConvertedInPreEmit,
          "Number of r+r instructions converted to r+i in pre-emit peephole");
STATISTIC(NumRemovedInPreEmit,
          "Number of instructions deleted in pre-emit peephole");
STATISTIC(NumberOfSelfCopies,
          "Number of self copy instructions eliminated");
STATISTIC(NumFrameOffFoldInPreEmit,
          "Number of folding frame offset by using r+r in pre-emit peephole");

static cl::opt<bool>
RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
                   cl::desc("Run pre-emit peephole optimizations."));

namespace {
  class PPCPreEmitPeephole : public MachineFunctionPass {
  public:
    static char ID;
    PPCPreEmitPeephole() : MachineFunctionPass(ID) {
      initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    // This function removes any redundant load immediates. It has two level
    // loops - The outer loop finds the load immediates BBI that could be used
    // to replace following redundancy. The inner loop scans instructions that
    // after BBI to find redundancy and update kill/dead flags accordingly. If
    // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
    // that modify the def register of BBI would break the scanning.
    // DeadOrKillToUnset is a pointer to the previous operand that had the
    // kill/dead flag set. It keeps track of the def register of BBI, the use
    // registers of AfterBBIs and the def registers of AfterBBIs.
    bool removeRedundantLIs(MachineBasicBlock &MBB,
                            const TargetRegisterInfo *TRI) {
      LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
                 MBB.dump(); dbgs() << "\n");

      DenseSet<MachineInstr *> InstrsToErase;
      for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
        // Skip load immediate that is marked to be erased later because it
        // cannot be used to replace any other instructions.
        if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
          continue;
        // Skip non-load immediate.
        unsigned Opc = BBI->getOpcode();
        if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
            Opc != PPC::LIS8)
          continue;
        // Skip load immediate, where the operand is a relocation (e.g., $r3 =
        // LI target-flags(ppc-lo) %const.0).
        if (!BBI->getOperand(1).isImm())
          continue;
        assert(BBI->getOperand(0).isReg() &&
               "Expected a register for the first operand");

        LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););

        Register Reg = BBI->getOperand(0).getReg();
        int64_t Imm = BBI->getOperand(1).getImm();
        MachineOperand *DeadOrKillToUnset = nullptr;
        if (BBI->getOperand(0).isDead()) {
          DeadOrKillToUnset = &BBI->getOperand(0);
          LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
                            << " from load immediate " << *BBI
                            << " is a unsetting candidate\n");
        }
        // This loop scans instructions after BBI to see if there is any
        // redundant load immediate.
        for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
             ++AfterBBI) {
          // Track the operand that kill Reg. We would unset the kill flag of
          // the operand if there is a following redundant load immediate.
          int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
          if (KillIdx != -1) {
            assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
            DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
            LLVM_DEBUG(dbgs()
                       << " Kill flag of " << *DeadOrKillToUnset << " from "
                       << *AfterBBI << " is a unsetting candidate\n");
          }

          if (!AfterBBI->modifiesRegister(Reg, TRI))
            continue;
          // Finish scanning because Reg is overwritten by a non-load
          // instruction.
          if (AfterBBI->getOpcode() != Opc)
            break;
          assert(AfterBBI->getOperand(0).isReg() &&
                 "Expected a register for the first operand");
          // Finish scanning because Reg is overwritten by a relocation or a
          // different value.
          if (!AfterBBI->getOperand(1).isImm() ||
              AfterBBI->getOperand(1).getImm() != Imm)
            break;

          // It loads same immediate value to the same Reg, which is redundant.
          // We would unset kill flag in previous Reg usage to extend live range
          // of Reg first, then remove the redundancy.
          if (DeadOrKillToUnset) {
            LLVM_DEBUG(dbgs()
                       << " Unset dead/kill flag of " << *DeadOrKillToUnset
                       << " from " << *DeadOrKillToUnset->getParent());
            if (DeadOrKillToUnset->isDef())
              DeadOrKillToUnset->setIsDead(false);
            else
              DeadOrKillToUnset->setIsKill(false);
          }
          DeadOrKillToUnset =
              AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
          if (DeadOrKillToUnset)
            LLVM_DEBUG(dbgs()
                       << " Dead flag of " << *DeadOrKillToUnset << " from "
                       << *AfterBBI << " is a unsetting candidate\n");
          InstrsToErase.insert(&*AfterBBI);
          LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
                     AfterBBI->dump());
        }
      }

      for (MachineInstr *MI : InstrsToErase) {
        MI->eraseFromParent();
      }
      NumRemovedInPreEmit += InstrsToErase.size();
      return !InstrsToErase.empty();
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole)
        return false;
      bool Changed = false;
      const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      SmallVector<MachineInstr *, 4> InstrsToErase;
      for (MachineBasicBlock &MBB : MF) {
        Changed |= removeRedundantLIs(MBB, TRI);
        for (MachineInstr &MI : MBB) {
          unsigned Opc = MI.getOpcode();
          // Detect self copies - these can result from running AADB.
          if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
            const MCInstrDesc &MCID = TII->get(Opc);
            if (MCID.getNumOperands() == 3 &&
                MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
                MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
              NumberOfSelfCopies++;
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
              LLVM_DEBUG(MI.dump());
              InstrsToErase.push_back(&MI);
              continue;
            }
            else if (MCID.getNumOperands() == 2 &&
                     MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
              NumberOfSelfCopies++;
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
              LLVM_DEBUG(MI.dump());
              InstrsToErase.push_back(&MI);
              continue;
            }
          }
          MachineInstr *DefMIToErase = nullptr;
          if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
            Changed = true;
            NumRRConvertedInPreEmit++;
            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
            LLVM_DEBUG(MI.dump());
            if (DefMIToErase) {
              InstrsToErase.push_back(DefMIToErase);
            }
          }
          if (TII->foldFrameOffset(MI)) {
            Changed = true;
            NumFrameOffFoldInPreEmit++;
            LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
            LLVM_DEBUG(MI.dump());
          }
        }

        // Eliminate conditional branch based on a constant CR bit by
        // CRSET or CRUNSET. We eliminate the conditional branch or
        // convert it into an unconditional branch. Also, if the CR bit
        // is not used by other instructions, we eliminate CRSET as well.
        auto I = MBB.getFirstInstrTerminator();
        if (I == MBB.instr_end())
          continue;
        MachineInstr *Br = &*I;
        if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
          continue;
        MachineInstr *CRSetMI = nullptr;
        Register CRBit = Br->getOperand(0).getReg();
        unsigned CRReg = getCRFromCRBit(CRBit);
        bool SeenUse = false;
        MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
        for (It++; It != Er; It++) {
          if (It->modifiesRegister(CRBit, TRI)) {
            if ((It->getOpcode() == PPC::CRUNSET ||
                 It->getOpcode() == PPC::CRSET) &&
                It->getOperand(0).getReg() == CRBit)
              CRSetMI = &*It;
            break;
          }
          if (It->readsRegister(CRBit, TRI))
            SeenUse = true;
        }
        if (!CRSetMI) continue;

        unsigned CRSetOp = CRSetMI->getOpcode();
        if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
            (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
          // Remove this branch since it cannot be taken.
          InstrsToErase.push_back(Br);
          MBB.removeSuccessor(Br->getOperand(1).getMBB());
        }
        else {
          // This conditional branch is always taken. So, remove all branches
          // and insert an unconditional branch to the destination of this.
          MachineBasicBlock::iterator It = Br, Er = MBB.end();
          for (; It != Er; It++) {
            if (It->isDebugInstr()) continue;
            assert(It->isTerminator() && "Non-terminator after a terminator");
            InstrsToErase.push_back(&*It);
          }
          if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
            ArrayRef<MachineOperand> NoCond;
            TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
                              NoCond, Br->getDebugLoc());
          }
          for (auto &Succ : MBB.successors())
            if (Succ != Br->getOperand(1).getMBB()) {
              MBB.removeSuccessor(Succ);
              break;
            }
        }

        // If the CRBit is not used by another instruction, we can eliminate
        // CRSET/CRUNSET instruction.
        if (!SeenUse) {
          // We need to check use of the CRBit in successors.
          for (auto &SuccMBB : MBB.successors())
            if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
              SeenUse = true;
              break;
            }
          if (!SeenUse)
            InstrsToErase.push_back(CRSetMI);
        }
      }
      for (MachineInstr *MI : InstrsToErase) {
        LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
        LLVM_DEBUG(MI->dump());
        MI->eraseFromParent();
        NumRemovedInPreEmit++;
      }
      return Changed;
    }
  };
}

INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
                false, false)
char PPCPreEmitPeephole::ID = 0;

FunctionPass *llvm::createPPCPreEmitPeepholePass() {
  return new PPCPreEmitPeephole();
}