reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
//===----------------------- MipsBranchExpansion.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This pass do two things:
/// - it expands a branch or jump instruction into a long branch if its offset
///   is too large to fit into its immediate field,
/// - it inserts nops to prevent forbidden slot hazards.
///
/// The reason why this pass combines these two tasks is that one of these two
/// tasks can break the result of the previous one.
///
/// Example of that is a situation where at first, no branch should be expanded,
/// but after adding at least one nop somewhere in the code to prevent a
/// forbidden slot hazard, offset of some branches may go out of range. In that
/// case it is necessary to check again if there is some branch that needs
/// expansion. On the other hand, expanding some branch may cause a control
/// transfer instruction to appear in the forbidden slot, which is a hazard that
/// should be fixed. This pass alternates between this two tasks untill no
/// changes are made. Only then we can be sure that all branches are expanded
/// properly, and no hazard situations exist.
///
/// Regarding branch expanding:
///
/// When branch instruction like beqzc or bnezc has offset that is too large
/// to fit into its immediate field, it has to be expanded to another
/// instruction or series of instructions.
///
/// FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries.
/// TODO: Handle out of range bc, b (pseudo) instructions.
///
/// Regarding compact branch hazard prevention:
///
/// Hazards handled: forbidden slots for MIPSR6.
///
/// A forbidden slot hazard occurs when a compact branch instruction is executed
/// and the adjacent instruction in memory is a control transfer instruction
/// such as a branch or jump, ERET, ERETNC, DERET, WAIT and PAUSE.
///
/// For example:
///
/// 0x8004      bnec    a1,v0,<P+0x18>
/// 0x8008      beqc    a1,a2,<P+0x54>
///
/// In such cases, the processor is required to signal a Reserved Instruction
/// exception.
///
/// Here, if the instruction at 0x8004 is executed, the processor will raise an
/// exception as there is a control transfer instruction at 0x8008.
///
/// There are two sources of forbidden slot hazards:
///
/// A) A previous pass has created a compact branch directly.
/// B) Transforming a delay slot branch into compact branch. This case can be
///    difficult to process as lookahead for hazards is insufficient, as
///    backwards delay slot fillling can also produce hazards in previously
///    processed instuctions.
///
/// In future this pass can be extended (or new pass can be created) to handle
/// other pipeline hazards, such as various MIPS1 hazards, processor errata that
/// require instruction reorganization, etc.
///
/// This pass has to run after the delay slot filler as that pass can introduce
/// pipeline hazards such as compact branch hazard, hence the existing hazard
/// recognizer is not suitable.
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCNaCl.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "mips-branch-expansion"

STATISTIC(NumInsertedNops, "Number of nops inserted");
STATISTIC(LongBranches, "Number of long branches.");

static cl::opt<bool>
    SkipLongBranch("skip-mips-long-branch", cl::init(false),
                   cl::desc("MIPS: Skip branch expansion pass."), cl::Hidden);

static cl::opt<bool>
    ForceLongBranch("force-mips-long-branch", cl::init(false),
                    cl::desc("MIPS: Expand all branches to long format."),
                    cl::Hidden);

namespace {

using Iter = MachineBasicBlock::iterator;
using ReverseIter = MachineBasicBlock::reverse_iterator;

struct MBBInfo {
  uint64_t Size = 0;
  bool HasLongBranch = false;
  MachineInstr *Br = nullptr;
  uint64_t Offset = 0;
  MBBInfo() = default;
};

class MipsBranchExpansion : public MachineFunctionPass {
public:
  static char ID;

  MipsBranchExpansion() : MachineFunctionPass(ID), ABI(MipsABIInfo::Unknown()) {
    initializeMipsBranchExpansionPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Mips Branch Expansion Pass";
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  void splitMBB(MachineBasicBlock *MBB);
  void initMBBInfo();
  int64_t computeOffset(const MachineInstr *Br);
  uint64_t computeOffsetFromTheBeginning(int MBB);
  void replaceBranch(MachineBasicBlock &MBB, Iter Br, const DebugLoc &DL,
                     MachineBasicBlock *MBBOpnd);
  bool buildProperJumpMI(MachineBasicBlock *MBB,
                         MachineBasicBlock::iterator Pos, DebugLoc DL);
  void expandToLongBranch(MBBInfo &Info);
  bool handleForbiddenSlot();
  bool handlePossibleLongBranch();

  const MipsSubtarget *STI;
  const MipsInstrInfo *TII;

  MachineFunction *MFp;
  SmallVector<MBBInfo, 16> MBBInfos;
  bool IsPIC;
  MipsABIInfo ABI;
  bool ForceLongBranchFirstPass = false;
};

} // end of anonymous namespace

char MipsBranchExpansion::ID = 0;

INITIALIZE_PASS(MipsBranchExpansion, DEBUG_TYPE,
                "Expand out of range branch instructions and fix forbidden"
                " slot hazards",
                false, false)

/// Returns a pass that clears pipeline hazards.
FunctionPass *llvm::createMipsBranchExpansion() {
  return new MipsBranchExpansion();
}

// Find the next real instruction from the current position in current basic
// block.
static Iter getNextMachineInstrInBB(Iter Position) {
  Iter I = Position, E = Position->getParent()->end();
  I = std::find_if_not(I, E,
                       [](const Iter &Insn) { return Insn->isTransient(); });

  return I;
}

// Find the next real instruction from the current position, looking through
// basic block boundaries.
static std::pair<Iter, bool> getNextMachineInstr(Iter Position,
                                                 MachineBasicBlock *Parent) {
  if (Position == Parent->end()) {
    do {
      MachineBasicBlock *Succ = Parent->getNextNode();
      if (Succ != nullptr && Parent->isSuccessor(Succ)) {
        Position = Succ->begin();
        Parent = Succ;
      } else {
        return std::make_pair(Position, true);
      }
    } while (Parent->empty());
  }

  Iter Instr = getNextMachineInstrInBB(Position);
  if (Instr == Parent->end()) {
    return getNextMachineInstr(Instr, Parent);
  }
  return std::make_pair(Instr, false);
}

/// Iterate over list of Br's operands and search for a MachineBasicBlock
/// operand.
static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) {
  for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) {
    const MachineOperand &MO = Br.getOperand(I);

    if (MO.isMBB())
      return MO.getMBB();
  }

  llvm_unreachable("This instruction does not have an MBB operand.");
}

// Traverse the list of instructions backwards until a non-debug instruction is
// found or it reaches E.
static ReverseIter getNonDebugInstr(ReverseIter B, const ReverseIter &E) {
  for (; B != E; ++B)
    if (!B->isDebugInstr())
      return B;

  return E;
}

// Split MBB if it has two direct jumps/branches.
void MipsBranchExpansion::splitMBB(MachineBasicBlock *MBB) {
  ReverseIter End = MBB->rend();
  ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End);

  // Return if MBB has no branch instructions.
  if ((LastBr == End) ||
      (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch()))
    return;

  ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End);

  // MBB has only one branch instruction if FirstBr is not a branch
  // instruction.
  if ((FirstBr == End) ||
      (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch()))
    return;

  assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found.");

  // Create a new MBB. Move instructions in MBB to the newly created MBB.
  MachineBasicBlock *NewMBB =
      MFp->CreateMachineBasicBlock(MBB->getBasicBlock());

  // Insert NewMBB and fix control flow.
  MachineBasicBlock *Tgt = getTargetMBB(*FirstBr);
  NewMBB->transferSuccessors(MBB);
  if (Tgt != getTargetMBB(*LastBr))
    NewMBB->removeSuccessor(Tgt, true);
  MBB->addSuccessor(NewMBB);
  MBB->addSuccessor(Tgt);
  MFp->insert(std::next(MachineFunction::iterator(MBB)), NewMBB);

  NewMBB->splice(NewMBB->end(), MBB, LastBr.getReverse(), MBB->end());
}

// Fill MBBInfos.
void MipsBranchExpansion::initMBBInfo() {
  // Split the MBBs if they have two branches. Each basic block should have at
  // most one branch after this loop is executed.
  for (auto &MBB : *MFp)
    splitMBB(&MBB);

  MFp->RenumberBlocks();
  MBBInfos.clear();
  MBBInfos.resize(MFp->size());

  for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
    MachineBasicBlock *MBB = MFp->getBlockNumbered(I);

    // Compute size of MBB.
    for (MachineBasicBlock::instr_iterator MI = MBB->instr_begin();
         MI != MBB->instr_end(); ++MI)
      MBBInfos[I].Size += TII->getInstSizeInBytes(*MI);
  }
}

// Compute offset of branch in number of bytes.
int64_t MipsBranchExpansion::computeOffset(const MachineInstr *Br) {
  int64_t Offset = 0;
  int ThisMBB = Br->getParent()->getNumber();
  int TargetMBB = getTargetMBB(*Br)->getNumber();

  // Compute offset of a forward branch.
  if (ThisMBB < TargetMBB) {
    for (int N = ThisMBB + 1; N < TargetMBB; ++N)
      Offset += MBBInfos[N].Size;

    return Offset + 4;
  }

  // Compute offset of a backward branch.
  for (int N = ThisMBB; N >= TargetMBB; --N)
    Offset += MBBInfos[N].Size;

  return -Offset + 4;
}

// Returns the distance in bytes up until MBB
uint64_t MipsBranchExpansion::computeOffsetFromTheBeginning(int MBB) {
  uint64_t Offset = 0;
  for (int N = 0; N < MBB; ++N)
    Offset += MBBInfos[N].Size;
  return Offset;
}

// Replace Br with a branch which has the opposite condition code and a
// MachineBasicBlock operand MBBOpnd.
void MipsBranchExpansion::replaceBranch(MachineBasicBlock &MBB, Iter Br,
                                        const DebugLoc &DL,
                                        MachineBasicBlock *MBBOpnd) {
  unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode());
  const MCInstrDesc &NewDesc = TII->get(NewOpc);

  MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc);

  for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) {
    MachineOperand &MO = Br->getOperand(I);

    if (!MO.isReg()) {
      assert(MO.isMBB() && "MBB operand expected.");
      break;
    }

    MIB.addReg(MO.getReg());
  }

  MIB.addMBB(MBBOpnd);

  if (Br->hasDelaySlot()) {
    // Bundle the instruction in the delay slot to the newly created branch
    // and erase the original branch.
    assert(Br->isBundledWithSucc());
    MachineBasicBlock::instr_iterator II = Br.getInstrIterator();
    MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
  }
  Br->eraseFromParent();
}

bool MipsBranchExpansion::buildProperJumpMI(MachineBasicBlock *MBB,
                                            MachineBasicBlock::iterator Pos,
                                            DebugLoc DL) {
  bool HasR6 = ABI.IsN64() ? STI->hasMips64r6() : STI->hasMips32r6();
  bool AddImm = HasR6 && !STI->useIndirectJumpsHazard();

  unsigned JR = ABI.IsN64() ? Mips::JR64 : Mips::JR;
  unsigned JIC = ABI.IsN64() ? Mips::JIC64 : Mips::JIC;
  unsigned JR_HB = ABI.IsN64() ? Mips::JR_HB64 : Mips::JR_HB;
  unsigned JR_HB_R6 = ABI.IsN64() ? Mips::JR_HB64_R6 : Mips::JR_HB_R6;

  unsigned JumpOp;
  if (STI->useIndirectJumpsHazard())
    JumpOp = HasR6 ? JR_HB_R6 : JR_HB;
  else
    JumpOp = HasR6 ? JIC : JR;

  if (JumpOp == Mips::JIC && STI->inMicroMipsMode())
    JumpOp = Mips::JIC_MMR6;

  unsigned ATReg = ABI.IsN64() ? Mips::AT_64 : Mips::AT;
  MachineInstrBuilder Instr =
      BuildMI(*MBB, Pos, DL, TII->get(JumpOp)).addReg(ATReg);
  if (AddImm)
    Instr.addImm(0);

  return !AddImm;
}

// Expand branch instructions to long branches.
// TODO: This function has to be fixed for beqz16 and bnez16, because it
// currently assumes that all branches have 16-bit offsets, and will produce
// wrong code if branches whose allowed offsets are [-128, -126, ..., 126]
// are present.
void MipsBranchExpansion::expandToLongBranch(MBBInfo &I) {
  MachineBasicBlock::iterator Pos;
  MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
  DebugLoc DL = I.Br->getDebugLoc();
  const BasicBlock *BB = MBB->getBasicBlock();
  MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB);
  MachineBasicBlock *LongBrMBB = MFp->CreateMachineBasicBlock(BB);

  MFp->insert(FallThroughMBB, LongBrMBB);
  MBB->replaceSuccessor(TgtMBB, LongBrMBB);

  if (IsPIC) {
    MachineBasicBlock *BalTgtMBB = MFp->CreateMachineBasicBlock(BB);
    MFp->insert(FallThroughMBB, BalTgtMBB);
    LongBrMBB->addSuccessor(BalTgtMBB);
    BalTgtMBB->addSuccessor(TgtMBB);

    // We must select between the MIPS32r6/MIPS64r6 BALC (which is a normal
    // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an
    // pseudo-instruction wrapping BGEZAL).
    const unsigned BalOp =
        STI->hasMips32r6()
            ? STI->inMicroMipsMode() ? Mips::BALC_MMR6 : Mips::BALC
            : STI->inMicroMipsMode() ? Mips::BAL_BR_MM : Mips::BAL_BR;

    if (!ABI.IsN64()) {
      // Pre R6:
      // $longbr:
      //  addiu $sp, $sp, -8
      //  sw $ra, 0($sp)
      //  lui $at, %hi($tgt - $baltgt)
      //  bal $baltgt
      //  addiu $at, $at, %lo($tgt - $baltgt)
      // $baltgt:
      //  addu $at, $ra, $at
      //  lw $ra, 0($sp)
      //  jr $at
      //  addiu $sp, $sp, 8
      // $fallthrough:
      //

      // R6:
      // $longbr:
      //  addiu $sp, $sp, -8
      //  sw $ra, 0($sp)
      //  lui $at, %hi($tgt - $baltgt)
      //  addiu $at, $at, %lo($tgt - $baltgt)
      //  balc $baltgt
      // $baltgt:
      //  addu $at, $ra, $at
      //  lw $ra, 0($sp)
      //  addiu $sp, $sp, 8
      //  jic $at, 0
      // $fallthrough:

      Pos = LongBrMBB->begin();

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
          .addReg(Mips::SP)
          .addImm(-8);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW))
          .addReg(Mips::RA)
          .addReg(Mips::SP)
          .addImm(0);

      // LUi and ADDiu instructions create 32-bit offset of the target basic
      // block from the target of BAL(C) instruction.  We cannot use immediate
      // value for this offset because it cannot be determined accurately when
      // the program has inline assembly statements.  We therefore use the
      // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which
      // are resolved during the fixup, so the values will always be correct.
      //
      // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt)
      // expressions at this point (it is possible only at the MC layer),
      // we replace LUi and ADDiu with pseudo instructions
      // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic
      // blocks as operands to these instructions.  When lowering these pseudo
      // instructions to LUi and ADDiu in the MC layer, we will create
      // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as
      // operands to lowered instructions.

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT)
          .addMBB(TgtMBB, MipsII::MO_ABS_HI)
          .addMBB(BalTgtMBB);

      MachineInstrBuilder BalInstr =
          BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
      MachineInstrBuilder ADDiuInstr =
          BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT)
              .addReg(Mips::AT)
              .addMBB(TgtMBB, MipsII::MO_ABS_LO)
              .addMBB(BalTgtMBB);
      if (STI->hasMips32r6()) {
        LongBrMBB->insert(Pos, ADDiuInstr);
        LongBrMBB->insert(Pos, BalInstr);
      } else {
        LongBrMBB->insert(Pos, BalInstr);
        LongBrMBB->insert(Pos, ADDiuInstr);
        LongBrMBB->rbegin()->bundleWithPred();
      }

      Pos = BalTgtMBB->begin();

      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT)
          .addReg(Mips::RA)
          .addReg(Mips::AT);
      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA)
          .addReg(Mips::SP)
          .addImm(0);
      if (STI->isTargetNaCl())
        // Bundle-align the target of indirect branch JR.
        TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);

      // In NaCl, modifying the sp is not allowed in branch delay slot.
      // For MIPS32R6, we can skip using a delay slot branch.
      bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);

      if (STI->isTargetNaCl() || !hasDelaySlot) {
        BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::ADDiu), Mips::SP)
            .addReg(Mips::SP)
            .addImm(8);
      }
      if (hasDelaySlot) {
        if (STI->isTargetNaCl()) {
          BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::NOP));
        } else {
          BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
              .addReg(Mips::SP)
              .addImm(8);
        }
        BalTgtMBB->rbegin()->bundleWithPred();
      }
    } else {
      // Pre R6:
      // $longbr:
      //  daddiu $sp, $sp, -16
      //  sd $ra, 0($sp)
      //  daddiu $at, $zero, %hi($tgt - $baltgt)
      //  dsll $at, $at, 16
      //  bal $baltgt
      //  daddiu $at, $at, %lo($tgt - $baltgt)
      // $baltgt:
      //  daddu $at, $ra, $at
      //  ld $ra, 0($sp)
      //  jr64 $at
      //  daddiu $sp, $sp, 16
      // $fallthrough:

      // R6:
      // $longbr:
      //  daddiu $sp, $sp, -16
      //  sd $ra, 0($sp)
      //  daddiu $at, $zero, %hi($tgt - $baltgt)
      //  dsll $at, $at, 16
      //  daddiu $at, $at, %lo($tgt - $baltgt)
      //  balc $baltgt
      // $baltgt:
      //  daddu $at, $ra, $at
      //  ld $ra, 0($sp)
      //  daddiu $sp, $sp, 16
      //  jic $at, 0
      // $fallthrough:

      // We assume the branch is within-function, and that offset is within
      // +/- 2GB.  High 32 bits will therefore always be zero.

      // Note that this will work even if the offset is negative, because
      // of the +1 modification that's added in that case.  For example, if the
      // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is
      //
      // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000
      //
      // and the bits [47:32] are zero.  For %highest
      //
      // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000
      //
      // and the bits [63:48] are zero.

      Pos = LongBrMBB->begin();

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
          .addReg(Mips::SP_64)
          .addImm(-16);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD))
          .addReg(Mips::RA_64)
          .addReg(Mips::SP_64)
          .addImm(0);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu),
              Mips::AT_64)
          .addReg(Mips::ZERO_64)
          .addMBB(TgtMBB, MipsII::MO_ABS_HI)
          .addMBB(BalTgtMBB);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
          .addReg(Mips::AT_64)
          .addImm(16);

      MachineInstrBuilder BalInstr =
          BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
      MachineInstrBuilder DADDiuInstr =
          BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64)
              .addReg(Mips::AT_64)
              .addMBB(TgtMBB, MipsII::MO_ABS_LO)
              .addMBB(BalTgtMBB);
      if (STI->hasMips32r6()) {
        LongBrMBB->insert(Pos, DADDiuInstr);
        LongBrMBB->insert(Pos, BalInstr);
      } else {
        LongBrMBB->insert(Pos, BalInstr);
        LongBrMBB->insert(Pos, DADDiuInstr);
        LongBrMBB->rbegin()->bundleWithPred();
      }

      Pos = BalTgtMBB->begin();

      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
          .addReg(Mips::RA_64)
          .addReg(Mips::AT_64);
      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
          .addReg(Mips::SP_64)
          .addImm(0);

      bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);
      // If there is no delay slot, Insert stack adjustment before
      if (!hasDelaySlot) {
        BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::DADDiu),
                Mips::SP_64)
            .addReg(Mips::SP_64)
            .addImm(16);
      } else {
        BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
            .addReg(Mips::SP_64)
            .addImm(16);
        BalTgtMBB->rbegin()->bundleWithPred();
      }
    }
  } else { // Not PIC
    Pos = LongBrMBB->begin();
    LongBrMBB->addSuccessor(TgtMBB);

    // Compute the position of the potentiall jump instruction (basic blocks
    // before + 4 for the instruction)
    uint64_t JOffset = computeOffsetFromTheBeginning(MBB->getNumber()) +
                       MBBInfos[MBB->getNumber()].Size + 4;
    uint64_t TgtMBBOffset = computeOffsetFromTheBeginning(TgtMBB->getNumber());
    // If it's a forward jump, then TgtMBBOffset will be shifted by two
    // instructions
    if (JOffset < TgtMBBOffset)
      TgtMBBOffset += 2 * 4;
    // Compare 4 upper bits to check if it's the same segment
    bool SameSegmentJump = JOffset >> 28 == TgtMBBOffset >> 28;

    if (STI->hasMips32r6() && TII->isBranchOffsetInRange(Mips::BC, I.Offset)) {
      // R6:
      // $longbr:
      //  bc $tgt
      // $fallthrough:
      //
      BuildMI(*LongBrMBB, Pos, DL,
              TII->get(STI->inMicroMipsMode() ? Mips::BC_MMR6 : Mips::BC))
          .addMBB(TgtMBB);
    } else if (SameSegmentJump) {
      // Pre R6:
      // $longbr:
      //  j $tgt
      //  nop
      // $fallthrough:
      //
      MIBundleBuilder(*LongBrMBB, Pos)
          .append(BuildMI(*MFp, DL, TII->get(Mips::J)).addMBB(TgtMBB))
          .append(BuildMI(*MFp, DL, TII->get(Mips::NOP)));
    } else {
      // At this point, offset where we need to branch does not fit into
      // immediate field of the branch instruction and is not in the same
      // segment as jump instruction. Therefore we will break it into couple
      // instructions, where we first load the offset into register, and then we
      // do branch register.
      if (ABI.IsN64()) {
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op_64),
                Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_HIGHEST);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_HIGHER);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
            .addReg(Mips::AT_64)
            .addImm(16);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_ABS_HI);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
            .addReg(Mips::AT_64)
            .addImm(16);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_ABS_LO);
      } else {
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op),
                Mips::AT)
            .addMBB(TgtMBB, MipsII::MO_ABS_HI);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_ADDiu2Op),
                Mips::AT)
            .addReg(Mips::AT)
            .addMBB(TgtMBB, MipsII::MO_ABS_LO);
      }
      buildProperJumpMI(LongBrMBB, Pos, DL);
    }
  }

  if (I.Br->isUnconditionalBranch()) {
    // Change branch destination.
    assert(I.Br->getDesc().getNumOperands() == 1);
    I.Br->RemoveOperand(0);
    I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB));
  } else
    // Change branch destination and reverse condition.
    replaceBranch(*MBB, I.Br, DL, &*FallThroughMBB);
}

static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) {
  MachineBasicBlock &MBB = F.front();
  MachineBasicBlock::iterator I = MBB.begin();
  DebugLoc DL = MBB.findDebugLoc(MBB.begin());
  BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0)
      .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI);
  BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0)
      .addReg(Mips::V0)
      .addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO);
  MBB.removeLiveIn(Mips::V0);
}

bool MipsBranchExpansion::handleForbiddenSlot() {
  // Forbidden slot hazards are only defined for MIPSR6 but not microMIPSR6.
  if (!STI->hasMips32r6() || STI->inMicroMipsMode())
    return false;

  bool Changed = false;

  for (MachineFunction::iterator FI = MFp->begin(); FI != MFp->end(); ++FI) {
    for (Iter I = FI->begin(); I != FI->end(); ++I) {

      // Forbidden slot hazard handling. Use lookahead over state.
      if (!TII->HasForbiddenSlot(*I))
        continue;

      Iter Inst;
      bool LastInstInFunction =
          std::next(I) == FI->end() && std::next(FI) == MFp->end();
      if (!LastInstInFunction) {
        std::pair<Iter, bool> Res = getNextMachineInstr(std::next(I), &*FI);
        LastInstInFunction |= Res.second;
        Inst = Res.first;
      }

      if (LastInstInFunction || !TII->SafeInForbiddenSlot(*Inst)) {

        MachineBasicBlock::instr_iterator Iit = I->getIterator();
        if (std::next(Iit) == FI->end() ||
            std::next(Iit)->getOpcode() != Mips::NOP) {
          Changed = true;
          MIBundleBuilder(&*I).append(
              BuildMI(*MFp, I->getDebugLoc(), TII->get(Mips::NOP)));
          NumInsertedNops++;
        }
      }
    }
  }

  return Changed;
}

bool MipsBranchExpansion::handlePossibleLongBranch() {
  if (STI->inMips16Mode() || !STI->enableLongBranchPass())
    return false;

  if (SkipLongBranch)
    return false;

  bool EverMadeChange = false, MadeChange = true;

  while (MadeChange) {
    MadeChange = false;

    initMBBInfo();

    for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
      MachineBasicBlock *MBB = MFp->getBlockNumbered(I);
      // Search for MBB's branch instruction.
      ReverseIter End = MBB->rend();
      ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End);

      if ((Br != End) && Br->isBranch() && !Br->isIndirectBranch() &&
          (Br->isConditionalBranch() ||
           (Br->isUnconditionalBranch() && IsPIC))) {
        int64_t Offset = computeOffset(&*Br);

        if (STI->isTargetNaCl()) {
          // The offset calculation does not include sandboxing instructions
          // that will be added later in the MC layer.  Since at this point we
          // don't know the exact amount of code that "sandboxing" will add, we
          // conservatively estimate that code will not grow more than 100%.
          Offset *= 2;
        }

        if (ForceLongBranchFirstPass ||
            !TII->isBranchOffsetInRange(Br->getOpcode(), Offset)) {
          MBBInfos[I].Offset = Offset;
          MBBInfos[I].Br = &*Br;
        }
      }
    } // End for

    ForceLongBranchFirstPass = false;

    SmallVectorImpl<MBBInfo>::iterator I, E = MBBInfos.end();

    for (I = MBBInfos.begin(); I != E; ++I) {
      // Skip if this MBB doesn't have a branch or the branch has already been
      // converted to a long branch.
      if (!I->Br)
        continue;

      expandToLongBranch(*I);
      ++LongBranches;
      EverMadeChange = MadeChange = true;
    }

    MFp->RenumberBlocks();
  }

  return EverMadeChange;
}

bool MipsBranchExpansion::runOnMachineFunction(MachineFunction &MF) {
  const TargetMachine &TM = MF.getTarget();
  IsPIC = TM.isPositionIndependent();
  ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
  STI = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
  TII = static_cast<const MipsInstrInfo *>(STI->getInstrInfo());

  if (IsPIC && ABI.IsO32() &&
      MF.getInfo<MipsFunctionInfo>()->globalBaseRegSet())
    emitGPDisp(MF, TII);

  MFp = &MF;

  ForceLongBranchFirstPass = ForceLongBranch;
  // Run these two at least once
  bool longBranchChanged = handlePossibleLongBranch();
  bool forbiddenSlotChanged = handleForbiddenSlot();

  bool Changed = longBranchChanged || forbiddenSlotChanged;

  // Then run them alternatively while there are changes
  while (forbiddenSlotChanged) {
    longBranchChanged = handlePossibleLongBranch();
    if (!longBranchChanged)
      break;
    forbiddenSlotChanged = handleForbiddenSlot();
  }

  return Changed;
}