1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
| //===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include <cstdint>
#include <string>
#include <utility>
namespace llvm {
class Argument;
class AMDGPUSubtarget;
class FeatureBitset;
class Function;
class GCNSubtarget;
class GlobalValue;
class MCContext;
class MCRegisterClass;
class MCRegisterInfo;
class MCSection;
class MCSubtargetInfo;
class MachineMemOperand;
class Triple;
namespace AMDGPU {
#define GET_MIMGBaseOpcode_DECL
#define GET_MIMGDim_DECL
#define GET_MIMGEncoding_DECL
#define GET_MIMGLZMapping_DECL
#define GET_MIMGMIPMapping_DECL
#include "AMDGPUGenSearchableTables.inc"
namespace IsaInfo {
enum {
// The closed Vulkan driver sets 96, which limits the wave count to 8 but
// doesn't spill SGPRs as much as when 80 is set.
FIXED_NUM_SGPRS_FOR_INIT_BUG = 96,
TRAP_NUM_SGPRS = 16
};
/// Streams isa version string for given subtarget \p STI into \p Stream.
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream);
/// \returns True if given subtarget \p STI supports code object version 3,
/// false otherwise.
bool hasCodeObjectV3(const MCSubtargetInfo *STI);
/// \returns Wavefront size for given subtarget \p STI.
unsigned getWavefrontSize(const MCSubtargetInfo *STI);
/// \returns Local memory size in bytes for given subtarget \p STI.
unsigned getLocalMemorySize(const MCSubtargetInfo *STI);
/// \returns Number of execution units per compute unit for given subtarget \p
/// STI.
unsigned getEUsPerCU(const MCSubtargetInfo *STI);
/// \returns Maximum number of work groups per compute unit for given subtarget
/// \p STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Maximum number of waves per compute unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI);
/// \returns Maximum number of waves per compute unit for given subtarget \p
/// STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum number of waves per execution unit for given subtarget \p
/// STI.
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum flat work group size for given subtarget \p STI.
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Maximum flat work group size for given subtarget \p STI.
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Number of waves per work group for given subtarget \p STI and
/// limited by given \p FlatWorkGroupSize.
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns SGPR allocation granularity for given subtarget \p STI.
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI);
/// \returns SGPR encoding granularity for given subtarget \p STI.
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI);
/// \returns Total number of SGPRs for given subtarget \p STI.
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of SGPRs for given subtarget \p STI.
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used. XNACK is inferred from
/// \p STI.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed);
/// \returns Number of SGPR blocks needed for given subtarget \p STI when
/// \p NumSGPRs are used. \p NumSGPRs should already include any special
/// register counts.
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs);
/// \returns VGPR allocation granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32 = None);
/// \returns VGPR encoding granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32 = None);
/// \returns Total number of VGPRs for given subtarget \p STI.
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of VGPRs for given subtarget \p STI.
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Number of VGPR blocks needed for given subtarget \p STI when
/// \p NumVGPRs are used.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match the
/// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs,
Optional<bool> EnableWavefrontSize32 = None);
} // end namespace IsaInfo
LLVM_READONLY
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx);
LLVM_READONLY
int getSOPPWithRelaxation(uint16_t Opcode);
struct MIMGBaseOpcodeInfo {
MIMGBaseOpcode BaseOpcode;
bool Store;
bool Atomic;
bool AtomicX2;
bool Sampler;
bool Gather4;
uint8_t NumExtraArgs;
bool Gradients;
bool Coordinates;
bool LodOrClampOrMip;
bool HasD16;
};
LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode);
struct MIMGDimInfo {
MIMGDim Dim;
uint8_t NumCoords;
uint8_t NumGradients;
bool DA;
uint8_t Encoding;
const char *AsmSuffix;
};
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfo(unsigned DimEnum);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix);
struct MIMGLZMappingInfo {
MIMGBaseOpcode L;
MIMGBaseOpcode LZ;
};
struct MIMGMIPMappingInfo {
MIMGBaseOpcode MIP;
MIMGBaseOpcode NONMIP;
};
LLVM_READONLY
const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L);
LLVM_READONLY
const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned L);
LLVM_READONLY
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords);
LLVM_READONLY
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels);
struct MIMGInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t MIMGEncoding;
uint8_t VDataDwords;
uint8_t VAddrDwords;
};
LLVM_READONLY
const MIMGInfo *getMIMGInfo(unsigned Opc);
LLVM_READONLY
int getMTBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMTBUFElements(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSoffset(unsigned Opc);
LLVM_READONLY
int getMUBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMUBUFElements(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSoffset(unsigned Opc);
LLVM_READONLY
int getMCOpcode(uint16_t Opcode, unsigned Gen);
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI);
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
const MCSubtargetInfo *STI);
bool isGroupSegment(const GlobalValue *GV);
bool isGlobalSegment(const GlobalValue *GV);
bool isReadOnlySegment(const GlobalValue *GV);
/// \returns True if constants should be emitted to .text section for given
/// target triple \p TT, false otherwise.
bool shouldEmitConstantsToTextSection(const Triple &TT);
/// \returns Integer value requested using \p F's \p Name attribute.
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if requested value cannot be converted
/// to integer.
int getIntegerAttribute(const Function &F, StringRef Name, int Default);
/// \returns A pair of integer values requested using \p F's \p Name attribute
/// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired
/// is false).
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if one of the requested values cannot be
/// converted to integer, or \p OnlyFirstRequired is false and "second" value is
/// not present.
std::pair<int, int> getIntegerPairAttribute(const Function &F,
StringRef Name,
std::pair<int, int> Default,
bool OnlyFirstRequired = false);
/// Represents the counter values to wait for in an s_waitcnt instruction.
///
/// Large values (including the maximum possible integer) can be used to
/// represent "don't care" waits.
struct Waitcnt {
unsigned VmCnt = ~0u;
unsigned ExpCnt = ~0u;
unsigned LgkmCnt = ~0u;
unsigned VsCnt = ~0u;
Waitcnt() {}
Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt)
: VmCnt(VmCnt), ExpCnt(ExpCnt), LgkmCnt(LgkmCnt), VsCnt(VsCnt) {}
static Waitcnt allZero(const IsaVersion &Version) {
return Waitcnt(0, 0, 0, Version.Major >= 10 ? 0 : ~0u);
}
static Waitcnt allZeroExceptVsCnt() { return Waitcnt(0, 0, 0, ~0u); }
bool hasWait() const {
return VmCnt != ~0u || ExpCnt != ~0u || LgkmCnt != ~0u || VsCnt != ~0u;
}
bool dominates(const Waitcnt &Other) const {
return VmCnt <= Other.VmCnt && ExpCnt <= Other.ExpCnt &&
LgkmCnt <= Other.LgkmCnt && VsCnt <= Other.VsCnt;
}
Waitcnt combined(const Waitcnt &Other) const {
return Waitcnt(std::min(VmCnt, Other.VmCnt), std::min(ExpCnt, Other.ExpCnt),
std::min(LgkmCnt, Other.LgkmCnt),
std::min(VsCnt, Other.VsCnt));
}
};
/// \returns Vmcnt bit mask for given isa \p Version.
unsigned getVmcntBitMask(const IsaVersion &Version);
/// \returns Expcnt bit mask for given isa \p Version.
unsigned getExpcntBitMask(const IsaVersion &Version);
/// \returns Lgkmcnt bit mask for given isa \p Version.
unsigned getLgkmcntBitMask(const IsaVersion &Version);
/// \returns Waitcnt bit mask for given isa \p Version.
unsigned getWaitcntBitMask(const IsaVersion &Version);
/// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa
/// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and
/// \p Lgkmcnt respectively.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows:
/// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9 only)
/// \p Vmcnt = \p Waitcnt[3:0] | \p Waitcnt[15:14] (gfx9+ only)
/// \p Expcnt = \p Waitcnt[6:4]
/// \p Lgkmcnt = \p Waitcnt[11:8] (pre-gfx10 only)
/// \p Lgkmcnt = \p Waitcnt[13:8] (gfx10+ only)
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt);
Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded);
/// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version.
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt);
/// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version.
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt);
/// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version.
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt);
/// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa
/// \p Version.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows:
/// Waitcnt[3:0] = \p Vmcnt (pre-gfx9 only)
/// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9+ only)
/// Waitcnt[6:4] = \p Expcnt
/// Waitcnt[11:8] = \p Lgkmcnt (pre-gfx10 only)
/// Waitcnt[13:8] = \p Lgkmcnt (gfx10+ only)
/// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9+ only)
///
/// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given
/// isa \p Version.
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt);
unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded);
namespace Hwreg {
LLVM_READONLY
int64_t getHwregId(const StringRef Name);
LLVM_READNONE
bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI);
LLVM_READNONE
bool isValidHwreg(int64_t Id);
LLVM_READNONE
bool isValidHwregOffset(int64_t Offset);
LLVM_READNONE
bool isValidHwregWidth(int64_t Width);
LLVM_READNONE
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width);
LLVM_READNONE
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI);
void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width);
} // namespace Hwreg
namespace SendMsg {
LLVM_READONLY
int64_t getMsgId(const StringRef Name);
LLVM_READONLY
int64_t getMsgOpId(int64_t MsgId, const StringRef Name);
LLVM_READNONE
StringRef getMsgName(int64_t MsgId);
LLVM_READNONE
StringRef getMsgOpName(int64_t MsgId, int64_t OpId);
LLVM_READNONE
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict = true);
LLVM_READNONE
bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict = true);
LLVM_READNONE
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict = true);
LLVM_READNONE
bool msgRequiresOp(int64_t MsgId);
LLVM_READNONE
bool msgSupportsStream(int64_t MsgId, int64_t OpId);
void decodeMsg(unsigned Val,
uint16_t &MsgId,
uint16_t &OpId,
uint16_t &StreamId);
LLVM_READNONE
uint64_t encodeMsg(uint64_t MsgId,
uint64_t OpId,
uint64_t StreamId);
} // namespace SendMsg
unsigned getInitialPSInputAddr(const Function &F);
LLVM_READNONE
bool isShader(CallingConv::ID CC);
LLVM_READNONE
bool isCompute(CallingConv::ID CC);
LLVM_READNONE
bool isEntryFunctionCC(CallingConv::ID CC);
// FIXME: Remove this when calling conventions cleaned up
LLVM_READNONE
inline bool isKernel(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
default:
return false;
}
}
bool hasXNACK(const MCSubtargetInfo &STI);
bool hasSRAMECC(const MCSubtargetInfo &STI);
bool hasMIMG_R128(const MCSubtargetInfo &STI);
bool hasPackedD16(const MCSubtargetInfo &STI);
bool isSI(const MCSubtargetInfo &STI);
bool isCI(const MCSubtargetInfo &STI);
bool isVI(const MCSubtargetInfo &STI);
bool isGFX9(const MCSubtargetInfo &STI);
bool isGFX10(const MCSubtargetInfo &STI);
/// Is Reg - scalar register
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI);
/// Is there any intersection between registers
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI);
/// If \p Reg is a pseudo reg, return the correct hardware register given
/// \p STI otherwise return \p Reg.
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI);
/// Convert hardware register \p Reg to a pseudo register
LLVM_READNONE
unsigned mc2PseudoReg(unsigned Reg);
/// Can this operand also contain immediate values?
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Is this floating-point operand?
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Does this opearnd support only inlinable literals?
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(unsigned RCID);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(const MCRegisterClass &RC);
/// Get size of register operand
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo);
LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
return 4;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
return 8;
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_IMM_V2FP16:
return 2;
default:
llvm_unreachable("unhandled operand type");
}
}
LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
return getOperandSize(Desc.OpInfo[OpNo]);
}
/// Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi);
bool isArgPassedInSGPR(const Argument *Arg);
/// \returns The encoding that will be used for \p ByteOffset in the SMRD
/// offset field.
int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);
/// \returns true if this offset is small enough to fit in the SMRD
/// offset field. \p ByteOffset should be the offset in bytes and
/// not the encoded offset.
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
const GCNSubtarget *Subtarget, uint32_t Align = 4);
/// \returns true if the intrinsic is divergent
bool isIntrinsicSourceOfDivergence(unsigned IntrID);
// Track defaults for fields in the MODE registser.
struct SIModeRegisterDefaults {
/// Floating point opcodes that support exception flag gathering quiet and
/// propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
/// become IEEE 754- 2008 compliant due to signaling NaN propagation and
/// quieting.
bool IEEE : 1;
/// Used by the vector ALU to force DX10-style treatment of NaNs: when set,
/// clamp NaN to zero; otherwise, pass NaN through.
bool DX10Clamp : 1;
// TODO: FP mode fields
SIModeRegisterDefaults() :
IEEE(true),
DX10Clamp(true) {}
SIModeRegisterDefaults(const Function &F);
static SIModeRegisterDefaults getDefaultForCallingConv(CallingConv::ID CC) {
SIModeRegisterDefaults Mode;
Mode.DX10Clamp = true;
Mode.IEEE = AMDGPU::isCompute(CC);
return Mode;
}
bool operator ==(const SIModeRegisterDefaults Other) const {
return IEEE == Other.IEEE && DX10Clamp == Other.DX10Clamp;
}
// FIXME: Inlining should be OK for dx10-clamp, since the caller's mode should
// be able to override.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const {
return *this == CalleeMode;
}
};
} // end namespace AMDGPU
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
|