reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
//===---------------------------- GCNILPSched.cpp - -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

namespace {

class GCNILPScheduler {
  struct Candidate : ilist_node<Candidate> {
    SUnit *SU;

    Candidate(SUnit *SU_)
      : SU(SU_) {}
  };

  SpecificBumpPtrAllocator<Candidate> Alloc;
  typedef simple_ilist<Candidate> Queue;
  Queue PendingQueue;
  Queue AvailQueue;
  unsigned CurQueueId = 0;

  std::vector<unsigned> SUNumbers;

  /// CurCycle - The current scheduler state corresponds to this cycle.
  unsigned CurCycle = 0;

  unsigned getNodePriority(const SUnit *SU) const;

  const SUnit *pickBest(const SUnit *left, const SUnit *right);
  Candidate* pickCandidate();

  void releasePending();
  void advanceToCycle(unsigned NextCycle);
  void releasePredecessors(const SUnit* SU);

public:
  std::vector<const SUnit*> schedule(ArrayRef<const SUnit*> TopRoots,
                                     const ScheduleDAG &DAG);
};
} // namespace

/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
  if (SethiUllmanNumber != 0)
    return SethiUllmanNumber;

  unsigned Extra = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    SUnit *PredSU = Pred.getSUnit();
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
    if (PredSethiUllman > SethiUllmanNumber) {
      SethiUllmanNumber = PredSethiUllman;
      Extra = 0;
    }
    else if (PredSethiUllman == SethiUllmanNumber)
      ++Extra;
  }

  SethiUllmanNumber += Extra;

  if (SethiUllmanNumber == 0)
    SethiUllmanNumber = 1;

  return SethiUllmanNumber;
}

// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned GCNILPScheduler::getNodePriority(const SUnit *SU) const {
  assert(SU->NodeNum < SUNumbers.size());
  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
    // If SU does not have a register use, i.e. it doesn't produce a value
    // that would be consumed (e.g. store), then it terminates a chain of
    // computation.  Give it a large SethiUllman number so it will be
    // scheduled right before its predecessors that it doesn't lengthen
    // their live ranges.
    return 0xffff;

  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return 0;

  return SUNumbers[SU->NodeNum];
}

/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
  unsigned MaxHeight = 0;
  for (const SDep &Succ : SU->Succs) {
    if (Succ.isCtrl()) continue;  // ignore chain succs
    unsigned Height = Succ.getSUnit()->getHeight();
    // If there are bunch of CopyToRegs stacked up, they should be considered
    // to be at the same position.
    if (Height > MaxHeight)
      MaxHeight = Height;
  }
  return MaxHeight;
}

/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
  unsigned Scratches = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    Scratches++;
  }
  return Scratches;
}

// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(const SUnit *left, const SUnit *right) {
  // Scheduling an instruction that uses a VReg whose postincrement has not yet
  // been scheduled will induce a copy. Model this as an extra cycle of latency.
  int LHeight = (int)left->getHeight();
  int RHeight = (int)right->getHeight();

  // If either node is scheduling for latency, sort them by height/depth
  // and latency.

  // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
  // is enabled, grouping instructions by cycle, then its height is already
  // covered so only its depth matters. We also reach this point if both stall
  // but have the same height.
  if (LHeight != RHeight)
    return LHeight > RHeight ? 1 : -1;

  int LDepth = left->getDepth();
  int RDepth = right->getDepth();
  if (LDepth != RDepth) {
    LLVM_DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
                      << ") depth " << LDepth << " vs SU (" << right->NodeNum
                      << ") depth " << RDepth << "\n");
    return LDepth < RDepth ? 1 : -1;
  }
  if (left->Latency != right->Latency)
    return left->Latency > right->Latency ? 1 : -1;

  return 0;
}

const SUnit *GCNILPScheduler::pickBest(const SUnit *left, const SUnit *right)
{
  // TODO: add register pressure lowering checks

  bool const DisableSchedCriticalPath = false;
  int MaxReorderWindow = 6;
  if (!DisableSchedCriticalPath) {
    int spread = (int)left->getDepth() - (int)right->getDepth();
    if (std::abs(spread) > MaxReorderWindow) {
      LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
                        << left->getDepth() << " != SU(" << right->NodeNum
                        << "): " << right->getDepth() << "\n");
      return left->getDepth() < right->getDepth() ? right : left;
    }
  }

  bool const DisableSchedHeight = false;
  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
    int spread = (int)left->getHeight() - (int)right->getHeight();
    if (std::abs(spread) > MaxReorderWindow)
      return left->getHeight() > right->getHeight() ? right : left;
  }

  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
  unsigned LPriority = getNodePriority(left);
  unsigned RPriority = getNodePriority(right);

  if (LPriority != RPriority)
    return LPriority > RPriority ? right : left;

  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
  // e.g.
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // and the following instructions are both ready.
  // t2 = op c3
  // t4 = op c4
  //
  // Then schedule t2 = op first.
  // i.e.
  // t4 = op c4
  // t2 = op c3
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // This creates more short live intervals.
  unsigned LDist = closestSucc(left);
  unsigned RDist = closestSucc(right);
  if (LDist != RDist)
    return LDist < RDist ? right : left;

  // How many registers becomes live when the node is scheduled.
  unsigned LScratch = calcMaxScratches(left);
  unsigned RScratch = calcMaxScratches(right);
  if (LScratch != RScratch)
    return LScratch > RScratch ? right : left;

  bool const DisableSchedCycles = false;
  if (!DisableSchedCycles) {
    int result = BUCompareLatency(left, right);
    if (result != 0)
      return result > 0 ? right : left;
    return left;
  }
  else {
    if (left->getHeight() != right->getHeight())
      return (left->getHeight() > right->getHeight()) ? right : left;

    if (left->getDepth() != right->getDepth())
      return (left->getDepth() < right->getDepth()) ? right : left;
  }

  assert(left->NodeQueueId && right->NodeQueueId &&
        "NodeQueueId cannot be zero");
  return (left->NodeQueueId > right->NodeQueueId) ? right : left;
}

GCNILPScheduler::Candidate* GCNILPScheduler::pickCandidate() {
  if (AvailQueue.empty())
    return nullptr;
  auto Best = AvailQueue.begin();
  for (auto I = std::next(AvailQueue.begin()), E = AvailQueue.end(); I != E; ++I) {
    auto NewBestSU = pickBest(Best->SU, I->SU);
    if (NewBestSU != Best->SU) {
      assert(NewBestSU == I->SU);
      Best = I;
    }
  }
  return &*Best;
}

void GCNILPScheduler::releasePending() {
  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for(auto I = PendingQueue.begin(), E = PendingQueue.end(); I != E;) {
    auto &C = *I++;
    if (C.SU->getHeight() <= CurCycle) {
      PendingQueue.remove(C);
      AvailQueue.push_back(C);
      C.SU->NodeQueueId = CurQueueId++;
    }
  }
}

/// Move the scheduler state forward by the specified number of Cycles.
void GCNILPScheduler::advanceToCycle(unsigned NextCycle) {
  if (NextCycle <= CurCycle)
    return;
  CurCycle = NextCycle;
  releasePending();
}

void GCNILPScheduler::releasePredecessors(const SUnit* SU) {
  for (const auto &PredEdge : SU->Preds) {
    auto PredSU = PredEdge.getSUnit();
    if (PredEdge.isWeak())
      continue;
    assert(PredSU->isBoundaryNode() || PredSU->NumSuccsLeft > 0);

    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge.getLatency());

    if (!PredSU->isBoundaryNode() && --PredSU->NumSuccsLeft == 0)
      PendingQueue.push_front(*new (Alloc.Allocate()) Candidate(PredSU));
  }
}

std::vector<const SUnit*>
GCNILPScheduler::schedule(ArrayRef<const SUnit*> BotRoots,
                          const ScheduleDAG &DAG) {
  auto &SUnits = const_cast<ScheduleDAG&>(DAG).SUnits;

  std::vector<SUnit> SUSavedCopy;
  SUSavedCopy.resize(SUnits.size());

  // we cannot save only those fields we touch: some of them are private
  // so save units verbatim: this assumes SUnit should have value semantics
  for (const SUnit &SU : SUnits)
    SUSavedCopy[SU.NodeNum] = SU;

  SUNumbers.assign(SUnits.size(), 0);
  for (const SUnit &SU : SUnits)
    CalcNodeSethiUllmanNumber(&SU, SUNumbers);

  for (auto SU : BotRoots) {
    AvailQueue.push_back(
      *new (Alloc.Allocate()) Candidate(const_cast<SUnit*>(SU)));
  }
  releasePredecessors(&DAG.ExitSU);

  std::vector<const SUnit*> Schedule;
  Schedule.reserve(SUnits.size());
  while (true) {
    if (AvailQueue.empty() && !PendingQueue.empty()) {
      auto EarliestSU = std::min_element(
        PendingQueue.begin(), PendingQueue.end(),
        [=](const Candidate& C1, const Candidate& C2) {
        return C1.SU->getHeight() < C2.SU->getHeight();
      })->SU;
      advanceToCycle(std::max(CurCycle + 1, EarliestSU->getHeight()));
    }
    if (AvailQueue.empty())
      break;

    LLVM_DEBUG(dbgs() << "\n=== Picking candidate\n"
                         "Ready queue:";
               for (auto &C
                    : AvailQueue) dbgs()
               << ' ' << C.SU->NodeNum;
               dbgs() << '\n';);

    auto C = pickCandidate();
    assert(C);
    AvailQueue.remove(*C);
    auto SU = C->SU;
    LLVM_DEBUG(dbgs() << "Selected "; DAG.dumpNode(*SU));

    advanceToCycle(SU->getHeight());

    releasePredecessors(SU);
    Schedule.push_back(SU);
    SU->isScheduled = true;
  }
  assert(SUnits.size() == Schedule.size());

  std::reverse(Schedule.begin(), Schedule.end());

  // restore units
  for (auto &SU : SUnits)
    SU = SUSavedCopy[SU.NodeNum];

  return Schedule;
}

namespace llvm {
std::vector<const SUnit*> makeGCNILPScheduler(ArrayRef<const SUnit*> BotRoots,
                                              const ScheduleDAG &DAG) {
  GCNILPScheduler S;
  return S.schedule(BotRoots, DAG);
}
}