1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
| //===---------------------------- GCNILPSched.cpp - -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "machine-scheduler"
namespace {
class GCNILPScheduler {
struct Candidate : ilist_node<Candidate> {
SUnit *SU;
Candidate(SUnit *SU_)
: SU(SU_) {}
};
SpecificBumpPtrAllocator<Candidate> Alloc;
typedef simple_ilist<Candidate> Queue;
Queue PendingQueue;
Queue AvailQueue;
unsigned CurQueueId = 0;
std::vector<unsigned> SUNumbers;
/// CurCycle - The current scheduler state corresponds to this cycle.
unsigned CurCycle = 0;
unsigned getNodePriority(const SUnit *SU) const;
const SUnit *pickBest(const SUnit *left, const SUnit *right);
Candidate* pickCandidate();
void releasePending();
void advanceToCycle(unsigned NextCycle);
void releasePredecessors(const SUnit* SU);
public:
std::vector<const SUnit*> schedule(ArrayRef<const SUnit*> TopRoots,
const ScheduleDAG &DAG);
};
} // namespace
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
if (SethiUllmanNumber != 0)
return SethiUllmanNumber;
unsigned Extra = 0;
for (const SDep &Pred : SU->Preds) {
if (Pred.isCtrl()) continue; // ignore chain preds
SUnit *PredSU = Pred.getSUnit();
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
Extra = 0;
}
else if (PredSethiUllman == SethiUllmanNumber)
++Extra;
}
SethiUllmanNumber += Extra;
if (SethiUllmanNumber == 0)
SethiUllmanNumber = 1;
return SethiUllmanNumber;
}
// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned GCNILPScheduler::getNodePriority(const SUnit *SU) const {
assert(SU->NodeNum < SUNumbers.size());
if (SU->NumSuccs == 0 && SU->NumPreds != 0)
// If SU does not have a register use, i.e. it doesn't produce a value
// that would be consumed (e.g. store), then it terminates a chain of
// computation. Give it a large SethiUllman number so it will be
// scheduled right before its predecessors that it doesn't lengthen
// their live ranges.
return 0xffff;
if (SU->NumPreds == 0 && SU->NumSuccs != 0)
// If SU does not have a register def, schedule it close to its uses
// because it does not lengthen any live ranges.
return 0;
return SUNumbers[SU->NodeNum];
}
/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
unsigned MaxHeight = 0;
for (const SDep &Succ : SU->Succs) {
if (Succ.isCtrl()) continue; // ignore chain succs
unsigned Height = Succ.getSUnit()->getHeight();
// If there are bunch of CopyToRegs stacked up, they should be considered
// to be at the same position.
if (Height > MaxHeight)
MaxHeight = Height;
}
return MaxHeight;
}
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
unsigned Scratches = 0;
for (const SDep &Pred : SU->Preds) {
if (Pred.isCtrl()) continue; // ignore chain preds
Scratches++;
}
return Scratches;
}
// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(const SUnit *left, const SUnit *right) {
// Scheduling an instruction that uses a VReg whose postincrement has not yet
// been scheduled will induce a copy. Model this as an extra cycle of latency.
int LHeight = (int)left->getHeight();
int RHeight = (int)right->getHeight();
// If either node is scheduling for latency, sort them by height/depth
// and latency.
// If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
// is enabled, grouping instructions by cycle, then its height is already
// covered so only its depth matters. We also reach this point if both stall
// but have the same height.
if (LHeight != RHeight)
return LHeight > RHeight ? 1 : -1;
int LDepth = left->getDepth();
int RDepth = right->getDepth();
if (LDepth != RDepth) {
LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
<< ") depth " << LDepth << " vs SU (" << right->NodeNum
<< ") depth " << RDepth << "\n");
return LDepth < RDepth ? 1 : -1;
}
if (left->Latency != right->Latency)
return left->Latency > right->Latency ? 1 : -1;
return 0;
}
const SUnit *GCNILPScheduler::pickBest(const SUnit *left, const SUnit *right)
{
// TODO: add register pressure lowering checks
bool const DisableSchedCriticalPath = false;
int MaxReorderWindow = 6;
if (!DisableSchedCriticalPath) {
int spread = (int)left->getDepth() - (int)right->getDepth();
if (std::abs(spread) > MaxReorderWindow) {
LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
<< left->getDepth() << " != SU(" << right->NodeNum
<< "): " << right->getDepth() << "\n");
return left->getDepth() < right->getDepth() ? right : left;
}
}
bool const DisableSchedHeight = false;
if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
int spread = (int)left->getHeight() - (int)right->getHeight();
if (std::abs(spread) > MaxReorderWindow)
return left->getHeight() > right->getHeight() ? right : left;
}
// Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
unsigned LPriority = getNodePriority(left);
unsigned RPriority = getNodePriority(right);
if (LPriority != RPriority)
return LPriority > RPriority ? right : left;
// Try schedule def + use closer when Sethi-Ullman numbers are the same.
// e.g.
// t1 = op t2, c1
// t3 = op t4, c2
//
// and the following instructions are both ready.
// t2 = op c3
// t4 = op c4
//
// Then schedule t2 = op first.
// i.e.
// t4 = op c4
// t2 = op c3
// t1 = op t2, c1
// t3 = op t4, c2
//
// This creates more short live intervals.
unsigned LDist = closestSucc(left);
unsigned RDist = closestSucc(right);
if (LDist != RDist)
return LDist < RDist ? right : left;
// How many registers becomes live when the node is scheduled.
unsigned LScratch = calcMaxScratches(left);
unsigned RScratch = calcMaxScratches(right);
if (LScratch != RScratch)
return LScratch > RScratch ? right : left;
bool const DisableSchedCycles = false;
if (!DisableSchedCycles) {
int result = BUCompareLatency(left, right);
if (result != 0)
return result > 0 ? right : left;
return left;
}
else {
if (left->getHeight() != right->getHeight())
return (left->getHeight() > right->getHeight()) ? right : left;
if (left->getDepth() != right->getDepth())
return (left->getDepth() < right->getDepth()) ? right : left;
}
assert(left->NodeQueueId && right->NodeQueueId &&
"NodeQueueId cannot be zero");
return (left->NodeQueueId > right->NodeQueueId) ? right : left;
}
GCNILPScheduler::Candidate* GCNILPScheduler::pickCandidate() {
if (AvailQueue.empty())
return nullptr;
auto Best = AvailQueue.begin();
for (auto I = std::next(AvailQueue.begin()), E = AvailQueue.end(); I != E; ++I) {
auto NewBestSU = pickBest(Best->SU, I->SU);
if (NewBestSU != Best->SU) {
assert(NewBestSU == I->SU);
Best = I;
}
}
return &*Best;
}
void GCNILPScheduler::releasePending() {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for(auto I = PendingQueue.begin(), E = PendingQueue.end(); I != E;) {
auto &C = *I++;
if (C.SU->getHeight() <= CurCycle) {
PendingQueue.remove(C);
AvailQueue.push_back(C);
C.SU->NodeQueueId = CurQueueId++;
}
}
}
/// Move the scheduler state forward by the specified number of Cycles.
void GCNILPScheduler::advanceToCycle(unsigned NextCycle) {
if (NextCycle <= CurCycle)
return;
CurCycle = NextCycle;
releasePending();
}
void GCNILPScheduler::releasePredecessors(const SUnit* SU) {
for (const auto &PredEdge : SU->Preds) {
auto PredSU = PredEdge.getSUnit();
if (PredEdge.isWeak())
continue;
assert(PredSU->isBoundaryNode() || PredSU->NumSuccsLeft > 0);
PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge.getLatency());
if (!PredSU->isBoundaryNode() && --PredSU->NumSuccsLeft == 0)
PendingQueue.push_front(*new (Alloc.Allocate()) Candidate(PredSU));
}
}
std::vector<const SUnit*>
GCNILPScheduler::schedule(ArrayRef<const SUnit*> BotRoots,
const ScheduleDAG &DAG) {
auto &SUnits = const_cast<ScheduleDAG&>(DAG).SUnits;
std::vector<SUnit> SUSavedCopy;
SUSavedCopy.resize(SUnits.size());
// we cannot save only those fields we touch: some of them are private
// so save units verbatim: this assumes SUnit should have value semantics
for (const SUnit &SU : SUnits)
SUSavedCopy[SU.NodeNum] = SU;
SUNumbers.assign(SUnits.size(), 0);
for (const SUnit &SU : SUnits)
CalcNodeSethiUllmanNumber(&SU, SUNumbers);
for (auto SU : BotRoots) {
AvailQueue.push_back(
*new (Alloc.Allocate()) Candidate(const_cast<SUnit*>(SU)));
}
releasePredecessors(&DAG.ExitSU);
std::vector<const SUnit*> Schedule;
Schedule.reserve(SUnits.size());
while (true) {
if (AvailQueue.empty() && !PendingQueue.empty()) {
auto EarliestSU = std::min_element(
PendingQueue.begin(), PendingQueue.end(),
[=](const Candidate& C1, const Candidate& C2) {
return C1.SU->getHeight() < C2.SU->getHeight();
})->SU;
advanceToCycle(std::max(CurCycle + 1, EarliestSU->getHeight()));
}
if (AvailQueue.empty())
break;
LLVM_DEBUG(dbgs() << "\n=== Picking candidate\n"
"Ready queue:";
for (auto &C
: AvailQueue) dbgs()
<< ' ' << C.SU->NodeNum;
dbgs() << '\n';);
auto C = pickCandidate();
assert(C);
AvailQueue.remove(*C);
auto SU = C->SU;
LLVM_DEBUG(dbgs() << "Selected "; DAG.dumpNode(*SU));
advanceToCycle(SU->getHeight());
releasePredecessors(SU);
Schedule.push_back(SU);
SU->isScheduled = true;
}
assert(SUnits.size() == Schedule.size());
std::reverse(Schedule.begin(), Schedule.end());
// restore units
for (auto &SU : SUnits)
SU = SUSavedCopy[SU.NodeNum];
return Schedule;
}
namespace llvm {
std::vector<const SUnit*> makeGCNILPScheduler(ArrayRef<const SUnit*> BotRoots,
const ScheduleDAG &DAG) {
GCNILPScheduler S;
return S.schedule(BotRoots, DAG);
}
}
|