1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
| //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// Semi-NCA algorithm described in this dissertation:
///
/// Linear-Time Algorithms for Dominators and Related Problems
/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
/// faster than Simple Lengauer-Tarjan in practice.
///
/// O(n^2) worst cases happen when the computation of nearest common ancestors
/// requires O(n) average time, which is very unlikely in real world. If this
/// ever turns out to be an issue, consider implementing a hybrid algorithm.
///
/// The file uses the Depth Based Search algorithm to perform incremental
/// updates (insertion and deletions). The implemented algorithm is based on
/// this publication:
///
/// An Experimental Study of Dynamic Dominators
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
/// https://arxiv.org/pdf/1604.02711.pdf
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include <queue>
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#define DEBUG_TYPE "dom-tree-builder"
namespace llvm {
namespace DomTreeBuilder {
template <typename DomTreeT>
struct SemiNCAInfo {
using NodePtr = typename DomTreeT::NodePtr;
using NodeT = typename DomTreeT::NodeType;
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
using RootsT = decltype(DomTreeT::Roots);
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
// Information record used by Semi-NCA during tree construction.
struct InfoRec {
unsigned DFSNum = 0;
unsigned Parent = 0;
unsigned Semi = 0;
NodePtr Label = nullptr;
NodePtr IDom = nullptr;
SmallVector<NodePtr, 2> ReverseChildren;
};
// Number to node mapping is 1-based. Initialize the mapping to start with
// a dummy element.
std::vector<NodePtr> NumToNode = {nullptr};
DenseMap<NodePtr, InfoRec> NodeToInfo;
using UpdateT = typename DomTreeT::UpdateType;
using UpdateKind = typename DomTreeT::UpdateKind;
struct BatchUpdateInfo {
SmallVector<UpdateT, 4> Updates;
using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
// In order to be able to walk a CFG that is out of sync with the CFG
// DominatorTree last knew about, use the list of updates to reconstruct
// previous CFG versions of the current CFG. For each node, we store a set
// of its virtually added/deleted future successors and predecessors.
// Note that these children are from the future relative to what the
// DominatorTree knows about -- using them to gets us some snapshot of the
// CFG from the past (relative to the state of the CFG).
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
// Remembers if the whole tree was recalculated at some point during the
// current batch update.
bool IsRecalculated = false;
};
BatchUpdateInfo *BatchUpdates;
using BatchUpdatePtr = BatchUpdateInfo *;
// If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
void clear() {
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
NodeToInfo.clear();
// Don't reset the pointer to BatchUpdateInfo here -- if there's an update
// in progress, we need this information to continue it.
}
template <bool Inverse>
struct ChildrenGetter {
using ResultTy = SmallVector<NodePtr, 8>;
static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
auto RChildren = reverse(children<NodePtr>(N));
return ResultTy(RChildren.begin(), RChildren.end());
}
static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
auto IChildren = inverse_children<NodePtr>(N);
return ResultTy(IChildren.begin(), IChildren.end());
}
using Tag = std::integral_constant<bool, Inverse>;
// The function below is the core part of the batch updater. It allows the
// Depth Based Search algorithm to perform incremental updates in lockstep
// with updates to the CFG. We emulated lockstep CFG updates by getting its
// next snapshots by reverse-applying future updates.
static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
ResultTy Res = Get(N, Tag());
// If there's no batch update in progress, simply return node's children.
if (!BUI) return Res;
// CFG children are actually its *most current* children, and we have to
// reverse-apply the future updates to get the node's children at the
// point in time the update was performed.
auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
: BUI->FutureSuccessors;
auto FCIt = FutureChildren.find(N);
if (FCIt == FutureChildren.end()) return Res;
for (auto ChildAndKind : FCIt->second) {
const NodePtr Child = ChildAndKind.getPointer();
const UpdateKind UK = ChildAndKind.getInt();
// Reverse-apply the future update.
if (UK == UpdateKind::Insert) {
// If there's an insertion in the future, it means that the edge must
// exist in the current CFG, but was not present in it before.
assert(llvm::find(Res, Child) != Res.end()
&& "Expected child not found in the CFG");
Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
<< BlockNamePrinter(Child) << "\n");
} else {
// If there's an deletion in the future, it means that the edge cannot
// exist in the current CFG, but existed in it before.
assert(llvm::find(Res, Child) == Res.end() &&
"Unexpected child found in the CFG");
LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
<< " -> " << BlockNamePrinter(Child) << "\n");
Res.push_back(Child);
}
}
return Res;
}
};
NodePtr getIDom(NodePtr BB) const {
auto InfoIt = NodeToInfo.find(BB);
if (InfoIt == NodeToInfo.end()) return nullptr;
return InfoIt->second.IDom;
}
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
if (TreeNodePtr Node = DT.getNode(BB)) return Node;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
NodePtr IDom = getIDom(BB);
assert(IDom || DT.DomTreeNodes[nullptr]);
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
return (DT.DomTreeNodes[BB] = IDomNode->addChild(
std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
.get();
}
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
struct BlockNamePrinter {
NodePtr N;
BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
if (!BP.N)
O << "nullptr";
else
BP.N->printAsOperand(O, false);
return O;
}
};
// Custom DFS implementation which can skip nodes based on a provided
// predicate. It also collects ReverseChildren so that we don't have to spend
// time getting predecessors in SemiNCA.
//
// If IsReverse is set to true, the DFS walk will be performed backwards
// relative to IsPostDom -- using reverse edges for dominators and forward
// edges for postdominators.
template <bool IsReverse = false, typename DescendCondition>
unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
unsigned AttachToNum) {
assert(V);
SmallVector<NodePtr, 64> WorkList = {V};
if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
while (!WorkList.empty()) {
const NodePtr BB = WorkList.pop_back_val();
auto &BBInfo = NodeToInfo[BB];
// Visited nodes always have positive DFS numbers.
if (BBInfo.DFSNum != 0) continue;
BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
BBInfo.Label = BB;
NumToNode.push_back(BB);
constexpr bool Direction = IsReverse != IsPostDom; // XOR.
for (const NodePtr Succ :
ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
const auto SIT = NodeToInfo.find(Succ);
// Don't visit nodes more than once but remember to collect
// ReverseChildren.
if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
continue;
}
if (!Condition(BB, Succ)) continue;
// It's fine to add Succ to the map, because we know that it will be
// visited later.
auto &SuccInfo = NodeToInfo[Succ];
WorkList.push_back(Succ);
SuccInfo.Parent = LastNum;
SuccInfo.ReverseChildren.push_back(BB);
}
}
return LastNum;
}
// V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
// of sdom(U), where U > W and there is a virtual forest path from U to V. The
// virtual forest consists of linked edges of processed vertices.
//
// We can follow Parent pointers (virtual forest edges) to determine the
// ancestor U with minimum sdom(U). But it is slow and thus we employ the path
// compression technique to speed up to O(m*log(n)). Theoretically the virtual
// forest can be organized as balanced trees to achieve almost linear
// O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
// and Child) and is unlikely to be faster than the simple implementation.
//
// For each vertex V, its Label points to the vertex with the minimal sdom(U)
// (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
NodePtr eval(NodePtr V, unsigned LastLinked,
SmallVectorImpl<InfoRec *> &Stack) {
InfoRec *VInfo = &NodeToInfo[V];
if (VInfo->Parent < LastLinked)
return VInfo->Label;
// Store ancestors except the last (root of a virtual tree) into a stack.
assert(Stack.empty());
do {
Stack.push_back(VInfo);
VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
} while (VInfo->Parent >= LastLinked);
// Path compression. Point each vertex's Parent to the root and update its
// Label if any of its ancestors (PInfo->Label) has a smaller Semi.
const InfoRec *PInfo = VInfo;
const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
do {
VInfo = Stack.pop_back_val();
VInfo->Parent = PInfo->Parent;
const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
if (PLabelInfo->Semi < VLabelInfo->Semi)
VInfo->Label = PInfo->Label;
else
PLabelInfo = VLabelInfo;
PInfo = VInfo;
} while (!Stack.empty());
return VInfo->Label;
}
// This function requires DFS to be run before calling it.
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
const unsigned NextDFSNum(NumToNode.size());
// Initialize IDoms to spanning tree parents.
for (unsigned i = 1; i < NextDFSNum; ++i) {
const NodePtr V = NumToNode[i];
auto &VInfo = NodeToInfo[V];
VInfo.IDom = NumToNode[VInfo.Parent];
}
// Step #1: Calculate the semidominators of all vertices.
SmallVector<InfoRec *, 32> EvalStack;
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
// Initialize the semi dominator to point to the parent node.
WInfo.Semi = WInfo.Parent;
for (const auto &N : WInfo.ReverseChildren) {
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
continue;
const TreeNodePtr TN = DT.getNode(N);
// Skip predecessors whose level is above the subtree we are processing.
if (TN && TN->getLevel() < MinLevel)
continue;
unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
}
}
// Step #2: Explicitly define the immediate dominator of each vertex.
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
// Note that the parents were stored in IDoms and later got invalidated
// during path compression in Eval.
for (unsigned i = 2; i < NextDFSNum; ++i) {
const NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
NodePtr WIDomCandidate = WInfo.IDom;
while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
WInfo.IDom = WIDomCandidate;
}
}
// PostDominatorTree always has a virtual root that represents a virtual CFG
// node that serves as a single exit from the function. All the other exits
// (CFG nodes with terminators and nodes in infinite loops are logically
// connected to this virtual CFG exit node).
// This functions maps a nullptr CFG node to the virtual root tree node.
void addVirtualRoot() {
assert(IsPostDom && "Only postdominators have a virtual root");
assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
auto &BBInfo = NodeToInfo[nullptr];
BBInfo.DFSNum = BBInfo.Semi = 1;
BBInfo.Label = nullptr;
NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
}
// For postdominators, nodes with no forward successors are trivial roots that
// are always selected as tree roots. Roots with forward successors correspond
// to CFG nodes within infinite loops.
static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
assert(N && "N must be a valid node");
return !ChildrenGetter<false>::Get(N, BUI).empty();
}
static NodePtr GetEntryNode(const DomTreeT &DT) {
assert(DT.Parent && "Parent not set");
return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
}
// Finds all roots without relaying on the set of roots already stored in the
// tree.
// We define roots to be some non-redundant set of the CFG nodes
static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
assert(DT.Parent && "Parent pointer is not set");
RootsT Roots;
// For dominators, function entry CFG node is always a tree root node.
if (!IsPostDom) {
Roots.push_back(GetEntryNode(DT));
return Roots;
}
SemiNCAInfo SNCA(BUI);
// PostDominatorTree always has a virtual root.
SNCA.addVirtualRoot();
unsigned Num = 1;
LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
// Step #1: Find all the trivial roots that are going to will definitely
// remain tree roots.
unsigned Total = 0;
// It may happen that there are some new nodes in the CFG that are result of
// the ongoing batch update, but we cannot really pretend that they don't
// exist -- we won't see any outgoing or incoming edges to them, so it's
// fine to discover them here, as they would end up appearing in the CFG at
// some point anyway.
for (const NodePtr N : nodes(DT.Parent)) {
++Total;
// If it has no *successors*, it is definitely a root.
if (!HasForwardSuccessors(N, BUI)) {
Roots.push_back(N);
// Run DFS not to walk this part of CFG later.
Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
<< "\n");
LLVM_DEBUG(dbgs() << "Last visited node: "
<< BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
}
}
LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
// Step #2: Find all non-trivial root candidates. Those are CFG nodes that
// are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
// nodes in infinite loops).
bool HasNonTrivialRoots = false;
// Accounting for the virtual exit, see if we had any reverse-unreachable
// nodes.
if (Total + 1 != Num) {
HasNonTrivialRoots = true;
// Make another DFS pass over all other nodes to find the
// reverse-unreachable blocks, and find the furthest paths we'll be able
// to make.
// Note that this looks N^2, but it's really 2N worst case, if every node
// is unreachable. This is because we are still going to only visit each
// unreachable node once, we may just visit it in two directions,
// depending on how lucky we get.
SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
for (const NodePtr I : nodes(DT.Parent)) {
if (SNCA.NodeToInfo.count(I) == 0) {
LLVM_DEBUG(dbgs()
<< "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
// Find the furthest away we can get by following successors, then
// follow them in reverse. This gives us some reasonable answer about
// the post-dom tree inside any infinite loop. In particular, it
// guarantees we get to the farthest away point along *some*
// path. This also matches the GCC's behavior.
// If we really wanted a totally complete picture of dominance inside
// this infinite loop, we could do it with SCC-like algorithms to find
// the lowest and highest points in the infinite loop. In theory, it
// would be nice to give the canonical backedge for the loop, but it's
// expensive and does not always lead to a minimal set of roots.
LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
<< "(non-trivial root): "
<< BlockNamePrinter(FurthestAway) << "\n");
ConnectToExitBlock.insert(FurthestAway);
Roots.push_back(FurthestAway);
LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
<< NewNum << "\n\t\t\tRemoving DFS info\n");
for (unsigned i = NewNum; i > Num; --i) {
const NodePtr N = SNCA.NumToNode[i];
LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
<< BlockNamePrinter(N) << "\n");
SNCA.NodeToInfo.erase(N);
SNCA.NumToNode.pop_back();
}
const unsigned PrevNum = Num;
LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
for (unsigned i = PrevNum + 1; i <= Num; ++i)
LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
<< BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
}
}
}
LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
<< i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
assert((Total + 1 == Num) && "Everything should have been visited");
// Step #3: If we found some non-trivial roots, make them non-redundant.
if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
LLVM_DEBUG(dbgs() << "Found roots: ");
LLVM_DEBUG(for (auto *Root
: Roots) dbgs()
<< BlockNamePrinter(Root) << " ");
LLVM_DEBUG(dbgs() << "\n");
return Roots;
}
// This function only makes sense for postdominators.
// We define roots to be some set of CFG nodes where (reverse) DFS walks have
// to start in order to visit all the CFG nodes (including the
// reverse-unreachable ones).
// When the search for non-trivial roots is done it may happen that some of
// the non-trivial roots are reverse-reachable from other non-trivial roots,
// which makes them redundant. This function removes them from the set of
// input roots.
static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
RootsT &Roots) {
assert(IsPostDom && "This function is for postdominators only");
LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
SemiNCAInfo SNCA(BUI);
for (unsigned i = 0; i < Roots.size(); ++i) {
auto &Root = Roots[i];
// Trivial roots are always non-redundant.
if (!HasForwardSuccessors(Root, BUI)) continue;
LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
<< " remains a root\n");
SNCA.clear();
// Do a forward walk looking for the other roots.
const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
// Skip the start node and begin from the second one (note that DFS uses
// 1-based indexing).
for (unsigned x = 2; x <= Num; ++x) {
const NodePtr N = SNCA.NumToNode[x];
// If we wound another root in a (forward) DFS walk, remove the current
// root from the set of roots, as it is reverse-reachable from the other
// one.
if (llvm::find(Roots, N) != Roots.end()) {
LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
<< BlockNamePrinter(N) << "\n\tRemoving root "
<< BlockNamePrinter(Root) << "\n");
std::swap(Root, Roots.back());
Roots.pop_back();
// Root at the back takes the current root's place.
// Start the next loop iteration with the same index.
--i;
break;
}
}
}
}
template <typename DescendCondition>
void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
if (!IsPostDom) {
assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
runDFS(DT.Roots[0], 0, DC, 0);
return;
}
addVirtualRoot();
unsigned Num = 1;
for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
}
static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
auto *Parent = DT.Parent;
DT.reset();
DT.Parent = Parent;
SemiNCAInfo SNCA(nullptr); // Since we are rebuilding the whole tree,
// there's no point doing it incrementally.
// Step #0: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
DT.Roots = FindRoots(DT, nullptr);
SNCA.doFullDFSWalk(DT, AlwaysDescend);
SNCA.runSemiNCA(DT);
if (BUI) {
BUI->IsRecalculated = true;
LLVM_DEBUG(
dbgs() << "DomTree recalculated, skipping future batch updates\n");
}
if (DT.Roots.empty()) return;
// Add a node for the root. If the tree is a PostDominatorTree it will be
// the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
// all real exits (including multiple exit blocks, infinite loops).
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
DT.RootNode = (DT.DomTreeNodes[Root] =
std::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
.get();
SNCA.attachNewSubtree(DT, DT.RootNode);
}
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
// Attach the first unreachable block to AttachTo.
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
// Loop over all of the discovered blocks in the function...
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
NodePtr W = NumToNode[i];
LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
<< BlockNamePrinter(W) << "\n");
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
// Get or calculate the node for the immediate dominator.
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode.
DT.DomTreeNodes[W] = IDomNode->addChild(
std::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
}
}
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
const NodePtr N = NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
assert(TN);
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
TN->setIDom(NewIDom);
}
}
// Helper struct used during edge insertions.
struct InsertionInfo {
struct Compare {
bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
return LHS->getLevel() < RHS->getLevel();
}
};
// Bucket queue of tree nodes ordered by descending level. For simplicity,
// we use a priority_queue here.
std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
Compare>
Bucket;
SmallDenseSet<TreeNodePtr, 8> Visited;
SmallVector<TreeNodePtr, 8> Affected;
#ifndef NDEBUG
SmallVector<TreeNodePtr, 8> VisitedUnaffected;
#endif
};
static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
const NodePtr From, const NodePtr To) {
assert((From || IsPostDom) &&
"From has to be a valid CFG node or a virtual root");
assert(To && "Cannot be a nullptr");
LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
TreeNodePtr FromTN = DT.getNode(From);
if (!FromTN) {
// Ignore edges from unreachable nodes for (forward) dominators.
if (!IsPostDom) return;
// The unreachable node becomes a new root -- a tree node for it.
TreeNodePtr VirtualRoot = DT.getNode(nullptr);
FromTN =
(DT.DomTreeNodes[From] = VirtualRoot->addChild(
std::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
.get();
DT.Roots.push_back(From);
}
DT.DFSInfoValid = false;
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN)
InsertUnreachable(DT, BUI, FromTN, To);
else
InsertReachable(DT, BUI, FromTN, ToTN);
}
// Determines if some existing root becomes reverse-reachable after the
// insertion. Rebuilds the whole tree if that situation happens.
static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From,
const TreeNodePtr To) {
assert(IsPostDom && "This function is only for postdominators");
// Destination node is not attached to the virtual root, so it cannot be a
// root.
if (!DT.isVirtualRoot(To->getIDom())) return false;
auto RIt = llvm::find(DT.Roots, To->getBlock());
if (RIt == DT.Roots.end())
return false; // To is not a root, nothing to update.
LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
<< " is no longer a root\n\t\tRebuilding the tree!!!\n");
CalculateFromScratch(DT, BUI);
return true;
}
static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
const SmallVectorImpl<NodePtr> &B) {
if (A.size() != B.size())
return false;
SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
for (NodePtr N : B)
if (Set.count(N) == 0)
return false;
return true;
}
// Updates the set of roots after insertion or deletion. This ensures that
// roots are the same when after a series of updates and when the tree would
// be built from scratch.
static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
assert(IsPostDom && "This function is only for postdominators");
// The tree has only trivial roots -- nothing to update.
if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
return HasForwardSuccessors(N, BUI);
}))
return;
// Recalculate the set of roots.
RootsT Roots = FindRoots(DT, BUI);
if (!isPermutation(DT.Roots, Roots)) {
// The roots chosen in the CFG have changed. This is because the
// incremental algorithm does not really know or use the set of roots and
// can make a different (implicit) decision about which node within an
// infinite loop becomes a root.
LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
<< "The entire tree needs to be rebuilt\n");
// It may be possible to update the tree without recalculating it, but
// we do not know yet how to do it, and it happens rarely in practise.
CalculateFromScratch(DT, BUI);
}
}
// Handles insertion to a node already in the dominator tree.
static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From, const TreeNodePtr To) {
LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
// DT.findNCD expects both pointers to be valid. When From is a virtual
// root, then its CFG block pointer is a nullptr, so we have to 'compute'
// the NCD manually.
const NodePtr NCDBlock =
(From->getBlock() && To->getBlock())
? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
: nullptr;
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
const unsigned NCDLevel = NCD->getLevel();
// Based on Lemma 2.5 from the second paper, after insertion of (From,To), v
// is affected iff depth(NCD)+1 < depth(v) && a path P from To to v exists
// where every w on P s.t. depth(v) <= depth(w)
//
// This reduces to a widest path problem (maximizing the depth of the
// minimum vertex in the path) which can be solved by a modified version of
// Dijkstra with a bucket queue (named depth-based search in the paper).
// To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
// affected if this does not hold.
if (NCDLevel + 1 >= To->getLevel())
return;
InsertionInfo II;
SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
II.Bucket.push(To);
II.Visited.insert(To);
while (!II.Bucket.empty()) {
TreeNodePtr TN = II.Bucket.top();
II.Bucket.pop();
II.Affected.push_back(TN);
const unsigned CurrentLevel = TN->getLevel();
LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
"as affected, CurrentLevel " << CurrentLevel << "\n");
assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
while (true) {
// Unlike regular Dijkstra, we have an inner loop to expand more
// vertices. The first iteration is for the (affected) vertex popped
// from II.Bucket and the rest are for vertices in
// UnaffectedOnCurrentLevel, which may eventually expand to affected
// vertices.
//
// Invariant: there is an optimal path from `To` to TN with the minimum
// depth being CurrentLevel.
for (const NodePtr Succ :
ChildrenGetter<IsPostDom>::Get(TN->getBlock(), BUI)) {
const TreeNodePtr SuccTN = DT.getNode(Succ);
assert(SuccTN &&
"Unreachable successor found at reachable insertion");
const unsigned SuccLevel = SuccTN->getLevel();
LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
<< ", level = " << SuccLevel << "\n");
// There is an optimal path from `To` to Succ with the minimum depth
// being min(CurrentLevel, SuccLevel).
//
// If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
// and no affected vertex may be reached by a path passing through it.
// Stop here. Also, Succ may be visited by other predecessors but the
// first visit has the optimal path. Stop if Succ has been visited.
if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
continue;
if (SuccLevel > CurrentLevel) {
// Succ is unaffected but it may (transitively) expand to affected
// vertices. Store it in UnaffectedOnCurrentLevel.
LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
<< BlockNamePrinter(Succ) << "\n");
UnaffectedOnCurrentLevel.push_back(SuccTN);
#ifndef NDEBUG
II.VisitedUnaffected.push_back(SuccTN);
#endif
} else {
// The condition is satisfied (Succ is affected). Add Succ to the
// bucket queue.
LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
<< " to a Bucket\n");
II.Bucket.push(SuccTN);
}
}
if (UnaffectedOnCurrentLevel.empty())
break;
TN = UnaffectedOnCurrentLevel.pop_back_val();
LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
}
}
// Finish by updating immediate dominators and levels.
UpdateInsertion(DT, BUI, NCD, II);
}
// Updates immediate dominators and levels after insertion.
static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr NCD, InsertionInfo &II) {
LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
for (const TreeNodePtr TN : II.Affected) {
LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
<< ") = " << BlockNamePrinter(NCD) << "\n");
TN->setIDom(NCD);
}
#ifndef NDEBUG
for (const TreeNodePtr TN : II.VisitedUnaffected)
assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
"TN should have been updated by an affected ancestor");
#endif
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
}
// Handles insertion to previously unreachable nodes.
static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From, const NodePtr To) {
LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
// Collect discovered edges to already reachable nodes.
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
// Discover and connect nodes that became reachable with the insertion.
ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
<< " -> (prev unreachable) " << BlockNamePrinter(To)
<< "\n");
// Used the discovered edges and inset discovered connecting (incoming)
// edges.
for (const auto &Edge : DiscoveredEdgesToReachable) {
LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
<< BlockNamePrinter(Edge.first) << " -> "
<< BlockNamePrinter(Edge.second) << "\n");
InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
}
}
// Connects nodes that become reachable with an insertion.
static void ComputeUnreachableDominators(
DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
const TreeNodePtr Incoming,
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
&DiscoveredConnectingEdges) {
assert(!DT.getNode(Root) && "Root must not be reachable");
// Visit only previously unreachable nodes.
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN) return true;
DiscoveredConnectingEdges.push_back({From, ToTN});
return false;
};
SemiNCAInfo SNCA(BUI);
SNCA.runDFS(Root, 0, UnreachableDescender, 0);
SNCA.runSemiNCA(DT);
SNCA.attachNewSubtree(DT, Incoming);
LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
}
static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
const NodePtr From, const NodePtr To) {
assert(From && To && "Cannot disconnect nullptrs");
LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
#ifndef NDEBUG
// Ensure that the edge was in fact deleted from the CFG before informing
// the DomTree about it.
// The check is O(N), so run it only in debug configuration.
auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
return llvm::find(Successors, SuccCandidate) != Successors.end();
};
(void)IsSuccessor;
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
#endif
const TreeNodePtr FromTN = DT.getNode(From);
// Deletion in an unreachable subtree -- nothing to do.
if (!FromTN) return;
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN) {
LLVM_DEBUG(
dbgs() << "\tTo (" << BlockNamePrinter(To)
<< ") already unreachable -- there is no edge to delete\n");
return;
}
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
const TreeNodePtr NCD = DT.getNode(NCDBlock);
// If To dominates From -- nothing to do.
if (ToTN != NCD) {
DT.DFSInfoValid = false;
const TreeNodePtr ToIDom = ToTN->getIDom();
LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
<< BlockNamePrinter(ToIDom) << "\n");
// To remains reachable after deletion.
// (Based on the caption under Figure 4. from the second paper.)
if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
DeleteReachable(DT, BUI, FromTN, ToTN);
else
DeleteUnreachable(DT, BUI, ToTN);
}
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
}
// Handles deletions that leave destination nodes reachable.
static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr FromTN,
const TreeNodePtr ToTN) {
LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
<< " -> " << BlockNamePrinter(ToTN) << "\n");
LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
// Find the top of the subtree that needs to be rebuilt.
// (Based on the lemma 2.6 from the second paper.)
const NodePtr ToIDom =
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
assert(ToIDom || DT.isPostDominator());
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
assert(ToIDomTN);
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
// Top of the subtree to rebuild is the root node. Rebuild the tree from
// scratch.
if (!PrevIDomSubTree) {
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
CalculateFromScratch(DT, BUI);
return;
}
// Only visit nodes in the subtree starting at To.
const unsigned Level = ToIDomTN->getLevel();
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
return DT.getNode(To)->getLevel() > Level;
};
LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
<< "\n");
SemiNCAInfo SNCA(BUI);
SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
SNCA.runSemiNCA(DT, Level);
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
}
// Checks if a node has proper support, as defined on the page 3 and later
// explained on the page 7 of the second paper.
static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr TN) {
LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
<< "\n");
for (const NodePtr Pred :
ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
if (!DT.getNode(Pred)) continue;
const NodePtr Support =
DT.findNearestCommonDominator(TN->getBlock(), Pred);
LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
if (Support != TN->getBlock()) {
LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
<< " is reachable from support "
<< BlockNamePrinter(Support) << "\n");
return true;
}
}
return false;
}
// Handle deletions that make destination node unreachable.
// (Based on the lemma 2.7 from the second paper.)
static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr ToTN) {
LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
<< BlockNamePrinter(ToTN) << "\n");
assert(ToTN);
assert(ToTN->getBlock());
if (IsPostDom) {
// Deletion makes a region reverse-unreachable and creates a new root.
// Simulate that by inserting an edge from the virtual root to ToTN and
// adding it as a new root.
LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
<< "\n");
DT.Roots.push_back(ToTN->getBlock());
InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
return;
}
SmallVector<NodePtr, 16> AffectedQueue;
const unsigned Level = ToTN->getLevel();
// Traverse destination node's descendants with greater level in the tree
// and collect visited nodes.
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
const TreeNodePtr TN = DT.getNode(To);
assert(TN);
if (TN->getLevel() > Level) return true;
if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
AffectedQueue.push_back(To);
return false;
};
SemiNCAInfo SNCA(BUI);
unsigned LastDFSNum =
SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
TreeNodePtr MinNode = ToTN;
// Identify the top of the subtree to rebuild by finding the NCD of all
// the affected nodes.
for (const NodePtr N : AffectedQueue) {
const TreeNodePtr TN = DT.getNode(N);
const NodePtr NCDBlock =
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
<< " with NCD = " << BlockNamePrinter(NCD)
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
}
// Root reached, rebuild the whole tree from scratch.
if (!MinNode->getIDom()) {
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
CalculateFromScratch(DT, BUI);
return;
}
// Erase the unreachable subtree in reverse preorder to process all children
// before deleting their parent.
for (unsigned i = LastDFSNum; i > 0; --i) {
const NodePtr N = SNCA.NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
EraseNode(DT, TN);
}
// The affected subtree start at the To node -- there's no extra work to do.
if (MinNode == ToTN) return;
LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
<< BlockNamePrinter(MinNode) << "\n");
const unsigned MinLevel = MinNode->getLevel();
const TreeNodePtr PrevIDom = MinNode->getIDom();
assert(PrevIDom);
SNCA.clear();
// Identify nodes that remain in the affected subtree.
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
return ToTN && ToTN->getLevel() > MinLevel;
};
SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
<< BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
// Rebuild the remaining part of affected subtree.
SNCA.runSemiNCA(DT, MinLevel);
SNCA.reattachExistingSubtree(DT, PrevIDom);
}
// Removes leaf tree nodes from the dominator tree.
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
assert(TN);
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
const TreeNodePtr IDom = TN->getIDom();
assert(IDom);
auto ChIt = llvm::find(IDom->Children, TN);
assert(ChIt != IDom->Children.end());
std::swap(*ChIt, IDom->Children.back());
IDom->Children.pop_back();
DT.DomTreeNodes.erase(TN->getBlock());
}
//~~
//===--------------------- DomTree Batch Updater --------------------------===
//~~
static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
const size_t NumUpdates = Updates.size();
if (NumUpdates == 0)
return;
// Take the fast path for a single update and avoid running the batch update
// machinery.
if (NumUpdates == 1) {
const auto &Update = Updates.front();
if (Update.getKind() == UpdateKind::Insert)
DT.insertEdge(Update.getFrom(), Update.getTo());
else
DT.deleteEdge(Update.getFrom(), Update.getTo());
return;
}
BatchUpdateInfo BUI;
LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
cfg::LegalizeUpdates<NodePtr>(Updates, BUI.Updates, IsPostDom);
const size_t NumLegalized = BUI.Updates.size();
BUI.FutureSuccessors.reserve(NumLegalized);
BUI.FuturePredecessors.reserve(NumLegalized);
// Use the legalized future updates to initialize future successors and
// predecessors. Note that these sets will only decrease size over time, as
// the next CFG snapshots slowly approach the actual (current) CFG.
for (UpdateT &U : BUI.Updates) {
BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
}
#if 0
// FIXME: The LLVM_DEBUG macro only plays well with a modular
// build of LLVM when the header is marked as textual, but doing
// so causes redefinition errors.
LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
: reverse(BUI.Updates)) {
dbgs() << "\t";
U.dump();
dbgs() << "\n";
});
LLVM_DEBUG(dbgs() << "\n");
#endif
// Recalculate the DominatorTree when the number of updates
// exceeds a threshold, which usually makes direct updating slower than
// recalculation. We select this threshold proportional to the
// size of the DominatorTree. The constant is selected
// by choosing the one with an acceptable performance on some real-world
// inputs.
// Make unittests of the incremental algorithm work
if (DT.DomTreeNodes.size() <= 100) {
if (NumLegalized > DT.DomTreeNodes.size())
CalculateFromScratch(DT, &BUI);
} else if (NumLegalized > DT.DomTreeNodes.size() / 40)
CalculateFromScratch(DT, &BUI);
// If the DominatorTree was recalculated at some point, stop the batch
// updates. Full recalculations ignore batch updates and look at the actual
// CFG.
for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
ApplyNextUpdate(DT, BUI);
}
static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
assert(!BUI.Updates.empty() && "No updates to apply!");
UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
#if 0
// FIXME: The LLVM_DEBUG macro only plays well with a modular
// build of LLVM when the header is marked as textual, but doing
// so causes redefinition errors.
LLVM_DEBUG(dbgs() << "Applying update: ");
LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
#endif
// Move to the next snapshot of the CFG by removing the reverse-applied
// current update. Since updates are performed in the same order they are
// legalized it's sufficient to pop the last item here.
auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
FS.back().getInt() == CurrentUpdate.getKind());
FS.pop_back();
if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
FP.back().getInt() == CurrentUpdate.getKind());
FP.pop_back();
if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
if (CurrentUpdate.getKind() == UpdateKind::Insert)
InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
else
DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
}
//~~
//===--------------- DomTree correctness verification ---------------------===
//~~
// Check if the tree has correct roots. A DominatorTree always has a single
// root which is the function's entry node. A PostDominatorTree can have
// multiple roots - one for each node with no successors and for infinite
// loops.
// Running time: O(N).
bool verifyRoots(const DomTreeT &DT) {
if (!DT.Parent && !DT.Roots.empty()) {
errs() << "Tree has no parent but has roots!\n";
errs().flush();
return false;
}
if (!IsPostDom) {
if (DT.Roots.empty()) {
errs() << "Tree doesn't have a root!\n";
errs().flush();
return false;
}
if (DT.getRoot() != GetEntryNode(DT)) {
errs() << "Tree's root is not its parent's entry node!\n";
errs().flush();
return false;
}
}
RootsT ComputedRoots = FindRoots(DT, nullptr);
if (!isPermutation(DT.Roots, ComputedRoots)) {
errs() << "Tree has different roots than freshly computed ones!\n";
errs() << "\tPDT roots: ";
for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
errs() << "\n\tComputed roots: ";
for (const NodePtr N : ComputedRoots)
errs() << BlockNamePrinter(N) << ", ";
errs() << "\n";
errs().flush();
return false;
}
return true;
}
// Checks if the tree contains all reachable nodes in the input graph.
// Running time: O(N).
bool verifyReachability(const DomTreeT &DT) {
clear();
doFullDFSWalk(DT, AlwaysDescend);
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
// Virtual root has a corresponding virtual CFG node.
if (DT.isVirtualRoot(TN)) continue;
if (NodeToInfo.count(BB) == 0) {
errs() << "DomTree node " << BlockNamePrinter(BB)
<< " not found by DFS walk!\n";
errs().flush();
return false;
}
}
for (const NodePtr N : NumToNode) {
if (N && !DT.getNode(N)) {
errs() << "CFG node " << BlockNamePrinter(N)
<< " not found in the DomTree!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if for every parent with a level L in the tree all of its children
// have level L + 1.
// Running time: O(N).
static bool VerifyLevels(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB) continue;
const TreeNodePtr IDom = TN->getIDom();
if (!IDom && TN->getLevel() != 0) {
errs() << "Node without an IDom " << BlockNamePrinter(BB)
<< " has a nonzero level " << TN->getLevel() << "!\n";
errs().flush();
return false;
}
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
errs() << "Node " << BlockNamePrinter(BB) << " has level "
<< TN->getLevel() << " while its IDom "
<< BlockNamePrinter(IDom->getBlock()) << " has level "
<< IDom->getLevel() << "!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if the computed DFS numbers are correct. Note that DFS info may not
// be valid, and when that is the case, we don't verify the numbers.
// Running time: O(N log(N)).
static bool VerifyDFSNumbers(const DomTreeT &DT) {
if (!DT.DFSInfoValid || !DT.Parent)
return true;
const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
const TreeNodePtr Root = DT.getNode(RootBB);
auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
<< TN->getDFSNumOut() << '}';
};
// Verify the root's DFS In number. Although DFS numbering would also work
// if we started from some other value, we assume 0-based numbering.
if (Root->getDFSNumIn() != 0) {
errs() << "DFSIn number for the tree root is not:\n\t";
PrintNodeAndDFSNums(Root);
errs() << '\n';
errs().flush();
return false;
}
// For each tree node verify if children's DFS numbers cover their parent's
// DFS numbers with no gaps.
for (const auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr Node = NodeToTN.second.get();
// Handle tree leaves.
if (Node->getChildren().empty()) {
if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
PrintNodeAndDFSNums(Node);
errs() << '\n';
errs().flush();
return false;
}
continue;
}
// Make a copy and sort it such that it is possible to check if there are
// no gaps between DFS numbers of adjacent children.
SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
});
auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
assert(FirstCh);
errs() << "Incorrect DFS numbers for:\n\tParent ";
PrintNodeAndDFSNums(Node);
errs() << "\n\tChild ";
PrintNodeAndDFSNums(FirstCh);
if (SecondCh) {
errs() << "\n\tSecond child ";
PrintNodeAndDFSNums(SecondCh);
}
errs() << "\nAll children: ";
for (const TreeNodePtr Ch : Children) {
PrintNodeAndDFSNums(Ch);
errs() << ", ";
}
errs() << '\n';
errs().flush();
};
if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
PrintChildrenError(Children.front(), nullptr);
return false;
}
if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
PrintChildrenError(Children.back(), nullptr);
return false;
}
for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
PrintChildrenError(Children[i], Children[i + 1]);
return false;
}
}
}
return true;
}
// The below routines verify the correctness of the dominator tree relative to
// the CFG it's coming from. A tree is a dominator tree iff it has two
// properties, called the parent property and the sibling property. Tarjan
// and Lengauer prove (but don't explicitly name) the properties as part of
// the proofs in their 1972 paper, but the proofs are mostly part of proving
// things about semidominators and idoms, and some of them are simply asserted
// based on even earlier papers (see, e.g., lemma 2). Some papers refer to
// these properties as "valid" and "co-valid". See, e.g., "Dominators,
// directed bipolar orders, and independent spanning trees" by Loukas
// Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
// and Vertex-Disjoint Paths " by the same authors.
// A very simple and direct explanation of these properties can be found in
// "An Experimental Study of Dynamic Dominators", found at
// https://arxiv.org/abs/1604.02711
// The easiest way to think of the parent property is that it's a requirement
// of being a dominator. Let's just take immediate dominators. For PARENT to
// be an immediate dominator of CHILD, all paths in the CFG must go through
// PARENT before they hit CHILD. This implies that if you were to cut PARENT
// out of the CFG, there should be no paths to CHILD that are reachable. If
// there are, then you now have a path from PARENT to CHILD that goes around
// PARENT and still reaches CHILD, which by definition, means PARENT can't be
// a dominator of CHILD (let alone an immediate one).
// The sibling property is similar. It says that for each pair of sibling
// nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
// other. If sibling LEFT dominated sibling RIGHT, it means there are no
// paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
// LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
// RIGHT, not a sibling.
// It is possible to verify the parent and sibling properties in
// linear time, but the algorithms are complex. Instead, we do it in a
// straightforward N^2 and N^3 way below, using direct path reachability.
// Checks if the tree has the parent property: if for all edges from V to W in
// the input graph, such that V is reachable, the parent of W in the tree is
// an ancestor of V in the tree.
// Running time: O(N^2).
//
// This means that if a node gets disconnected from the graph, then all of
// the nodes it dominated previously will now become unreachable.
bool verifyParentProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB || TN->getChildren().empty()) continue;
LLVM_DEBUG(dbgs() << "Verifying parent property of node "
<< BlockNamePrinter(TN) << "\n");
clear();
doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
return From != BB && To != BB;
});
for (TreeNodePtr Child : TN->getChildren())
if (NodeToInfo.count(Child->getBlock()) != 0) {
errs() << "Child " << BlockNamePrinter(Child)
<< " reachable after its parent " << BlockNamePrinter(BB)
<< " is removed!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if the tree has sibling property: if a node V does not dominate a
// node W for all siblings V and W in the tree.
// Running time: O(N^3).
//
// This means that if a node gets disconnected from the graph, then all of its
// siblings will now still be reachable.
bool verifySiblingProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB || TN->getChildren().empty()) continue;
const auto &Siblings = TN->getChildren();
for (const TreeNodePtr N : Siblings) {
clear();
NodePtr BBN = N->getBlock();
doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
return From != BBN && To != BBN;
});
for (const TreeNodePtr S : Siblings) {
if (S == N) continue;
if (NodeToInfo.count(S->getBlock()) == 0) {
errs() << "Node " << BlockNamePrinter(S)
<< " not reachable when its sibling " << BlockNamePrinter(N)
<< " is removed!\n";
errs().flush();
return false;
}
}
}
}
return true;
}
// Check if the given tree is the same as a freshly computed one for the same
// Parent.
// Running time: O(N^2), but faster in practise (same as tree construction).
//
// Note that this does not check if that the tree construction algorithm is
// correct and should be only used for fast (but possibly unsound)
// verification.
static bool IsSameAsFreshTree(const DomTreeT &DT) {
DomTreeT FreshTree;
FreshTree.recalculate(*DT.Parent);
const bool Different = DT.compare(FreshTree);
if (Different) {
errs() << (DT.isPostDominator() ? "Post" : "")
<< "DominatorTree is different than a freshly computed one!\n"
<< "\tCurrent:\n";
DT.print(errs());
errs() << "\n\tFreshly computed tree:\n";
FreshTree.print(errs());
errs().flush();
}
return !Different;
}
};
template <class DomTreeT>
void Calculate(DomTreeT &DT) {
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
}
template <typename DomTreeT>
void CalculateWithUpdates(DomTreeT &DT,
ArrayRef<typename DomTreeT::UpdateType> Updates) {
// TODO: Move BUI creation in common method, reuse in ApplyUpdates.
typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI;
LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
cfg::LegalizeUpdates<typename DomTreeT::NodePtr>(Updates, BUI.Updates,
DomTreeT::IsPostDominator);
const size_t NumLegalized = BUI.Updates.size();
BUI.FutureSuccessors.reserve(NumLegalized);
BUI.FuturePredecessors.reserve(NumLegalized);
for (auto &U : BUI.Updates) {
BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
}
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
}
template <class DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
}
template <class DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
}
template <class DomTreeT>
void ApplyUpdates(DomTreeT &DT,
ArrayRef<typename DomTreeT::UpdateType> Updates) {
SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
}
template <class DomTreeT>
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
SemiNCAInfo<DomTreeT> SNCA(nullptr);
// Simplist check is to compare against a new tree. This will also
// usefully print the old and new trees, if they are different.
if (!SNCA.IsSameAsFreshTree(DT))
return false;
// Common checks to verify the properties of the tree. O(N log N) at worst
if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
!SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
return false;
// Extra checks depending on VerificationLevel. Up to O(N^3)
if (VL == DomTreeT::VerificationLevel::Basic ||
VL == DomTreeT::VerificationLevel::Full)
if (!SNCA.verifyParentProperty(DT))
return false;
if (VL == DomTreeT::VerificationLevel::Full)
if (!SNCA.verifySiblingProperty(DT))
return false;
return true;
}
} // namespace DomTreeBuilder
} // namespace llvm
#undef DEBUG_TYPE
#endif
|