reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
//===- llvm/MC/MCTargetAsmParser.h - Target Assembly Parser -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
#define LLVM_MC_MCPARSER_MCTARGETASMPARSER_H

#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/SMLoc.h"
#include <cstdint>
#include <memory>

namespace llvm {

class MCInst;
class MCParsedAsmOperand;
class MCStreamer;
class MCSubtargetInfo;
template <typename T> class SmallVectorImpl;

using OperandVector = SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>>;

enum AsmRewriteKind {
  AOK_Align,          // Rewrite align as .align.
  AOK_EVEN,           // Rewrite even as .even.
  AOK_Emit,           // Rewrite _emit as .byte.
  AOK_Input,          // Rewrite in terms of $N.
  AOK_Output,         // Rewrite in terms of $N.
  AOK_SizeDirective,  // Add a sizing directive (e.g., dword ptr).
  AOK_Label,          // Rewrite local labels.
  AOK_EndOfStatement, // Add EndOfStatement (e.g., "\n\t").
  AOK_Skip,           // Skip emission (e.g., offset/type operators).
  AOK_IntelExpr       // SizeDirective SymDisp [BaseReg + IndexReg * Scale + ImmDisp]
};

const char AsmRewritePrecedence [] = {
  2, // AOK_Align
  2, // AOK_EVEN
  2, // AOK_Emit
  3, // AOK_Input
  3, // AOK_Output
  5, // AOK_SizeDirective
  1, // AOK_Label
  5, // AOK_EndOfStatement
  2, // AOK_Skip
  2  // AOK_IntelExpr
};

// Represnt the various parts which makes up an intel expression,
// used for emitting compound intel expressions
struct IntelExpr {
  bool NeedBracs;
  int64_t Imm;
  StringRef BaseReg;
  StringRef IndexReg;
  unsigned Scale;

  IntelExpr(bool needBracs = false) : NeedBracs(needBracs), Imm(0),
    BaseReg(StringRef()), IndexReg(StringRef()),
    Scale(1) {}
  // Compund immediate expression
  IntelExpr(int64_t imm, bool needBracs) : IntelExpr(needBracs) {
    Imm = imm;
  }
  // [Reg + ImmediateExpression]
  // We don't bother to emit an immediate expression evaluated to zero
  IntelExpr(StringRef reg, int64_t imm = 0, unsigned scale = 0,
    bool needBracs = true) :
    IntelExpr(imm, needBracs) {
    IndexReg = reg;
    if (scale)
      Scale = scale;
  }
  // [BaseReg + IndexReg * ScaleExpression + ImmediateExpression]
  IntelExpr(StringRef baseReg, StringRef indexReg, unsigned scale = 0,
    int64_t imm = 0, bool needBracs = true) :
    IntelExpr(indexReg, imm, scale, needBracs) {
    BaseReg = baseReg;
  }
  bool hasBaseReg() const {
    return BaseReg.size();
  }
  bool hasIndexReg() const {
    return IndexReg.size();
  }
  bool hasRegs() const {
    return hasBaseReg() || hasIndexReg();
  }
  bool isValid() const {
    return (Scale == 1) ||
           (hasIndexReg() && (Scale == 2 || Scale == 4 || Scale == 8));
  }
};

struct AsmRewrite {
  AsmRewriteKind Kind;
  SMLoc Loc;
  unsigned Len;
  int64_t Val;
  StringRef Label;
  IntelExpr IntelExp;

public:
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len = 0, int64_t val = 0)
    : Kind(kind), Loc(loc), Len(len), Val(val) {}
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len, StringRef label)
    : AsmRewrite(kind, loc, len) { Label = label; }
  AsmRewrite(SMLoc loc, unsigned len, IntelExpr exp)
    : AsmRewrite(AOK_IntelExpr, loc, len) { IntelExp = exp; }
};

struct ParseInstructionInfo {
  SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;

  ParseInstructionInfo() = default;
  ParseInstructionInfo(SmallVectorImpl<AsmRewrite> *rewrites)
    : AsmRewrites(rewrites) {}
};

enum OperandMatchResultTy {
  MatchOperand_Success,  // operand matched successfully
  MatchOperand_NoMatch,  // operand did not match
  MatchOperand_ParseFail // operand matched but had errors
};

enum class DiagnosticPredicateTy {
  Match,
  NearMatch,
  NoMatch,
};

// When an operand is parsed, the assembler will try to iterate through a set of
// possible operand classes that the operand might match and call the
// corresponding PredicateMethod to determine that.
//
// If there are two AsmOperands that would give a specific diagnostic if there
// is no match, there is currently no mechanism to distinguish which operand is
// a closer match. The DiagnosticPredicate distinguishes between 'completely
// no match' and 'near match', so the assembler can decide whether to give a
// specific diagnostic, or use 'InvalidOperand' and continue to find a
// 'better matching' diagnostic.
//
// For example:
//    opcode opnd0, onpd1, opnd2
//
// where:
//    opnd2 could be an 'immediate of range [-8, 7]'
//    opnd2 could be a  'register + shift/extend'.
//
// If opnd2 is a valid register, but with a wrong shift/extend suffix, it makes
// little sense to give a diagnostic that the operand should be an immediate
// in range [-8, 7].
//
// This is a light-weight alternative to the 'NearMissInfo' approach
// below which collects *all* possible diagnostics. This alternative
// is optional and fully backward compatible with existing
// PredicateMethods that return a 'bool' (match or no match).
struct DiagnosticPredicate {
  DiagnosticPredicateTy Type;

  explicit DiagnosticPredicate(bool Match)
      : Type(Match ? DiagnosticPredicateTy::Match
                   : DiagnosticPredicateTy::NearMatch) {}
  DiagnosticPredicate(DiagnosticPredicateTy T) : Type(T) {}
  DiagnosticPredicate(const DiagnosticPredicate &) = default;

  operator bool() const { return Type == DiagnosticPredicateTy::Match; }
  bool isMatch() const { return Type == DiagnosticPredicateTy::Match; }
  bool isNearMatch() const { return Type == DiagnosticPredicateTy::NearMatch; }
  bool isNoMatch() const { return Type == DiagnosticPredicateTy::NoMatch; }
};

// When matching of an assembly instruction fails, there may be multiple
// encodings that are close to being a match. It's often ambiguous which one
// the programmer intended to use, so we want to report an error which mentions
// each of these "near-miss" encodings. This struct contains information about
// one such encoding, and why it did not match the parsed instruction.
class NearMissInfo {
public:
  enum NearMissKind {
    NoNearMiss,
    NearMissOperand,
    NearMissFeature,
    NearMissPredicate,
    NearMissTooFewOperands,
  };

  // The encoding is valid for the parsed assembly string. This is only used
  // internally to the table-generated assembly matcher.
  static NearMissInfo getSuccess() { return NearMissInfo(); }

  // The instruction encoding is not valid because it requires some target
  // features that are not currently enabled. MissingFeatures has a bit set for
  // each feature that the encoding needs but which is not enabled.
  static NearMissInfo getMissedFeature(const FeatureBitset &MissingFeatures) {
    NearMissInfo Result;
    Result.Kind = NearMissFeature;
    Result.Features = MissingFeatures;
    return Result;
  }

  // The instruction encoding is not valid because the target-specific
  // predicate function returned an error code. FailureCode is the
  // target-specific error code returned by the predicate.
  static NearMissInfo getMissedPredicate(unsigned FailureCode) {
    NearMissInfo Result;
    Result.Kind = NearMissPredicate;
    Result.PredicateError = FailureCode;
    return Result;
  }

  // The instruction encoding is not valid because one (and only one) parsed
  // operand is not of the correct type. OperandError is the error code
  // relating to the operand class expected by the encoding. OperandClass is
  // the type of the expected operand. Opcode is the opcode of the encoding.
  // OperandIndex is the index into the parsed operand list.
  static NearMissInfo getMissedOperand(unsigned OperandError,
                                       unsigned OperandClass, unsigned Opcode,
                                       unsigned OperandIndex) {
    NearMissInfo Result;
    Result.Kind = NearMissOperand;
    Result.MissedOperand.Error = OperandError;
    Result.MissedOperand.Class = OperandClass;
    Result.MissedOperand.Opcode = Opcode;
    Result.MissedOperand.Index = OperandIndex;
    return Result;
  }

  // The instruction encoding is not valid because it expects more operands
  // than were parsed. OperandClass is the class of the expected operand that
  // was not provided. Opcode is the instruction encoding.
  static NearMissInfo getTooFewOperands(unsigned OperandClass,
                                        unsigned Opcode) {
    NearMissInfo Result;
    Result.Kind = NearMissTooFewOperands;
    Result.TooFewOperands.Class = OperandClass;
    Result.TooFewOperands.Opcode = Opcode;
    return Result;
  }

  operator bool() const { return Kind != NoNearMiss; }

  NearMissKind getKind() const { return Kind; }

  // Feature flags required by the instruction, that the current target does
  // not have.
  const FeatureBitset& getFeatures() const {
    assert(Kind == NearMissFeature);
    return Features;
  }
  // Error code returned by the target predicate when validating this
  // instruction encoding.
  unsigned getPredicateError() const {
    assert(Kind == NearMissPredicate);
    return PredicateError;
  }
  // MatchClassKind of the operand that we expected to see.
  unsigned getOperandClass() const {
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
    return MissedOperand.Class;
  }
  // Opcode of the encoding we were trying to match.
  unsigned getOpcode() const {
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
    return MissedOperand.Opcode;
  }
  // Error code returned when validating the operand.
  unsigned getOperandError() const {
    assert(Kind == NearMissOperand);
    return MissedOperand.Error;
  }
  // Index of the actual operand we were trying to match in the list of parsed
  // operands.
  unsigned getOperandIndex() const {
    assert(Kind == NearMissOperand);
    return MissedOperand.Index;
  }

private:
  NearMissKind Kind;

  // These two structs share a common prefix, so we can safely rely on the fact
  // that they overlap in the union.
  struct MissedOpInfo {
    unsigned Class;
    unsigned Opcode;
    unsigned Error;
    unsigned Index;
  };

  struct TooFewOperandsInfo {
    unsigned Class;
    unsigned Opcode;
  };

  union {
    FeatureBitset Features;
    unsigned PredicateError;
    MissedOpInfo MissedOperand;
    TooFewOperandsInfo TooFewOperands;
  };

  NearMissInfo() : Kind(NoNearMiss) {}
};

/// MCTargetAsmParser - Generic interface to target specific assembly parsers.
class MCTargetAsmParser : public MCAsmParserExtension {
public:
  enum MatchResultTy {
    Match_InvalidOperand,
    Match_InvalidTiedOperand,
    Match_MissingFeature,
    Match_MnemonicFail,
    Match_Success,
    Match_NearMisses,
    FIRST_TARGET_MATCH_RESULT_TY
  };

protected: // Can only create subclasses.
  MCTargetAsmParser(MCTargetOptions const &, const MCSubtargetInfo &STI,
                    const MCInstrInfo &MII);

  /// Create a copy of STI and return a non-const reference to it.
  MCSubtargetInfo &copySTI();

  /// AvailableFeatures - The current set of available features.
  FeatureBitset AvailableFeatures;

  /// ParsingInlineAsm - Are we parsing ms-style inline assembly?
  bool ParsingInlineAsm = false;

  /// SemaCallback - The Sema callback implementation.  Must be set when parsing
  /// ms-style inline assembly.
  MCAsmParserSemaCallback *SemaCallback;

  /// Set of options which affects instrumentation of inline assembly.
  MCTargetOptions MCOptions;

  /// Current STI.
  const MCSubtargetInfo *STI;

  const MCInstrInfo &MII;

public:
  MCTargetAsmParser(const MCTargetAsmParser &) = delete;
  MCTargetAsmParser &operator=(const MCTargetAsmParser &) = delete;

  ~MCTargetAsmParser() override;

  const MCSubtargetInfo &getSTI() const;

  const FeatureBitset& getAvailableFeatures() const {
    return AvailableFeatures;
  }
  void setAvailableFeatures(const FeatureBitset& Value) {
    AvailableFeatures = Value;
  }

  bool isParsingInlineAsm () { return ParsingInlineAsm; }
  void setParsingInlineAsm (bool Value) { ParsingInlineAsm = Value; }

  MCTargetOptions getTargetOptions() const { return MCOptions; }

  void setSemaCallback(MCAsmParserSemaCallback *Callback) {
    SemaCallback = Callback;
  }

  // Target-specific parsing of expression.
  virtual bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
    return getParser().parsePrimaryExpr(Res, EndLoc);
  }

  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                             SMLoc &EndLoc) = 0;

  /// ParseInstruction - Parse one assembly instruction.
  ///
  /// The parser is positioned following the instruction name. The target
  /// specific instruction parser should parse the entire instruction and
  /// construct the appropriate MCInst, or emit an error. On success, the entire
  /// line should be parsed up to and including the end-of-statement token. On
  /// failure, the parser is not required to read to the end of the line.
  //
  /// \param Name - The instruction name.
  /// \param NameLoc - The source location of the name.
  /// \param Operands [out] - The list of parsed operands, this returns
  ///        ownership of them to the caller.
  /// \return True on failure.
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                                SMLoc NameLoc, OperandVector &Operands) = 0;
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                                AsmToken Token, OperandVector &Operands) {
    return ParseInstruction(Info, Name, Token.getLoc(), Operands);
  }

  /// ParseDirective - Parse a target specific assembler directive
  ///
  /// The parser is positioned following the directive name.  The target
  /// specific directive parser should parse the entire directive doing or
  /// recording any target specific work, or return true and do nothing if the
  /// directive is not target specific. If the directive is specific for
  /// the target, the entire line is parsed up to and including the
  /// end-of-statement token and false is returned.
  ///
  /// \param DirectiveID - the identifier token of the directive.
  virtual bool ParseDirective(AsmToken DirectiveID) = 0;

  /// MatchAndEmitInstruction - Recognize a series of operands of a parsed
  /// instruction as an actual MCInst and emit it to the specified MCStreamer.
  /// This returns false on success and returns true on failure to match.
  ///
  /// On failure, the target parser is responsible for emitting a diagnostic
  /// explaining the match failure.
  virtual bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                       OperandVector &Operands, MCStreamer &Out,
                                       uint64_t &ErrorInfo,
                                       bool MatchingInlineAsm) = 0;

  /// Allows targets to let registers opt out of clobber lists.
  virtual bool OmitRegisterFromClobberLists(unsigned RegNo) { return false; }

  /// Allow a target to add special case operand matching for things that
  /// tblgen doesn't/can't handle effectively. For example, literal
  /// immediates on ARM. TableGen expects a token operand, but the parser
  /// will recognize them as immediates.
  virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
                                              unsigned Kind) {
    return Match_InvalidOperand;
  }

  /// Validate the instruction match against any complex target predicates
  /// before rendering any operands to it.
  virtual unsigned
  checkEarlyTargetMatchPredicate(MCInst &Inst, const OperandVector &Operands) {
    return Match_Success;
  }

  /// checkTargetMatchPredicate - Validate the instruction match against
  /// any complex target predicates not expressible via match classes.
  virtual unsigned checkTargetMatchPredicate(MCInst &Inst) {
    return Match_Success;
  }

  virtual void convertToMapAndConstraints(unsigned Kind,
                                          const OperandVector &Operands) = 0;

  /// Returns whether two registers are equal and is used by the tied-operands
  /// checks in the AsmMatcher. This method can be overridden allow e.g. a
  /// sub- or super-register as the tied operand.
  virtual bool regsEqual(const MCParsedAsmOperand &Op1,
                         const MCParsedAsmOperand &Op2) const {
    assert(Op1.isReg() && Op2.isReg() && "Operands not all regs");
    return Op1.getReg() == Op2.getReg();
  }

  // Return whether this parser uses assignment statements with equals tokens
  virtual bool equalIsAsmAssignment() { return true; };
  // Return whether this start of statement identifier is a label
  virtual bool isLabel(AsmToken &Token) { return true; };
  // Return whether this parser accept star as start of statement
  virtual bool starIsStartOfStatement() { return false; };

  virtual const MCExpr *applyModifierToExpr(const MCExpr *E,
                                            MCSymbolRefExpr::VariantKind,
                                            MCContext &Ctx) {
    return nullptr;
  }

  // For actions that have to be performed before a label is emitted
  virtual void doBeforeLabelEmit(MCSymbol *Symbol) {}
  
  virtual void onLabelParsed(MCSymbol *Symbol) {}

  /// Ensure that all previously parsed instructions have been emitted to the
  /// output streamer, if the target does not emit them immediately.
  virtual void flushPendingInstructions(MCStreamer &Out) {}

  virtual const MCExpr *createTargetUnaryExpr(const MCExpr *E,
                                              AsmToken::TokenKind OperatorToken,
                                              MCContext &Ctx) {
    return nullptr;
  }

  // For any checks or cleanups at the end of parsing.
  virtual void onEndOfFile() {}
};

} // end namespace llvm

#endif // LLVM_MC_MCPARSER_MCTARGETASMPARSER_H