1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
| //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTStructuralEquivalence.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateInstCallback.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
enum TypeDiagSelector {
TDS_Function,
TDS_Pointer,
TDS_ObjCObjOrBlock
};
/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
D.getDeclSpec().hasTypeSpecifier())
return false;
if (D.getNumTypeObjects() == 0)
return true; // ^{ ... }
if (D.getNumTypeObjects() == 1 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
return true; // ^(int X, float Y) { ... }
return false;
}
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
QualType type) {
TypeDiagSelector WhichType;
bool useExpansionLoc = true;
switch (attr.getKind()) {
case ParsedAttr::AT_ObjCGC:
WhichType = TDS_Pointer;
break;
case ParsedAttr::AT_ObjCOwnership:
WhichType = TDS_ObjCObjOrBlock;
break;
default:
// Assume everything else was a function attribute.
WhichType = TDS_Function;
useExpansionLoc = false;
break;
}
SourceLocation loc = attr.getLoc();
StringRef name = attr.getAttrName()->getName();
// The GC attributes are usually written with macros; special-case them.
IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
: nullptr;
if (useExpansionLoc && loc.isMacroID() && II) {
if (II->isStr("strong")) {
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
} else if (II->isStr("weak")) {
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
}
}
S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
<< type;
}
// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_ObjCGC: \
case ParsedAttr::AT_ObjCOwnership
// Calling convention attributes.
#define CALLING_CONV_ATTRS_CASELIST \
case ParsedAttr::AT_CDecl: \
case ParsedAttr::AT_FastCall: \
case ParsedAttr::AT_StdCall: \
case ParsedAttr::AT_ThisCall: \
case ParsedAttr::AT_RegCall: \
case ParsedAttr::AT_Pascal: \
case ParsedAttr::AT_SwiftCall: \
case ParsedAttr::AT_VectorCall: \
case ParsedAttr::AT_AArch64VectorPcs: \
case ParsedAttr::AT_MSABI: \
case ParsedAttr::AT_SysVABI: \
case ParsedAttr::AT_Pcs: \
case ParsedAttr::AT_IntelOclBicc: \
case ParsedAttr::AT_PreserveMost: \
case ParsedAttr::AT_PreserveAll
// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_NSReturnsRetained: \
case ParsedAttr::AT_NoReturn: \
case ParsedAttr::AT_Regparm: \
case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
case ParsedAttr::AT_AnyX86NoCfCheck: \
CALLING_CONV_ATTRS_CASELIST
// Microsoft-specific type qualifiers.
#define MS_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_Ptr32: \
case ParsedAttr::AT_Ptr64: \
case ParsedAttr::AT_SPtr: \
case ParsedAttr::AT_UPtr
// Nullability qualifiers.
#define NULLABILITY_TYPE_ATTRS_CASELIST \
case ParsedAttr::AT_TypeNonNull: \
case ParsedAttr::AT_TypeNullable: \
case ParsedAttr::AT_TypeNullUnspecified
namespace {
/// An object which stores processing state for the entire
/// GetTypeForDeclarator process.
class TypeProcessingState {
Sema &sema;
/// The declarator being processed.
Declarator &declarator;
/// The index of the declarator chunk we're currently processing.
/// May be the total number of valid chunks, indicating the
/// DeclSpec.
unsigned chunkIndex;
/// Whether there are non-trivial modifications to the decl spec.
bool trivial;
/// Whether we saved the attributes in the decl spec.
bool hasSavedAttrs;
/// The original set of attributes on the DeclSpec.
SmallVector<ParsedAttr *, 2> savedAttrs;
/// A list of attributes to diagnose the uselessness of when the
/// processing is complete.
SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
/// Attributes corresponding to AttributedTypeLocs that we have not yet
/// populated.
// FIXME: The two-phase mechanism by which we construct Types and fill
// their TypeLocs makes it hard to correctly assign these. We keep the
// attributes in creation order as an attempt to make them line up
// properly.
using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
SmallVector<TypeAttrPair, 8> AttrsForTypes;
bool AttrsForTypesSorted = true;
/// MacroQualifiedTypes mapping to macro expansion locations that will be
/// stored in a MacroQualifiedTypeLoc.
llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
/// Flag to indicate we parsed a noderef attribute. This is used for
/// validating that noderef was used on a pointer or array.
bool parsedNoDeref;
public:
TypeProcessingState(Sema &sema, Declarator &declarator)
: sema(sema), declarator(declarator),
chunkIndex(declarator.getNumTypeObjects()), trivial(true),
hasSavedAttrs(false), parsedNoDeref(false) {}
Sema &getSema() const {
return sema;
}
Declarator &getDeclarator() const {
return declarator;
}
bool isProcessingDeclSpec() const {
return chunkIndex == declarator.getNumTypeObjects();
}
unsigned getCurrentChunkIndex() const {
return chunkIndex;
}
void setCurrentChunkIndex(unsigned idx) {
assert(idx <= declarator.getNumTypeObjects());
chunkIndex = idx;
}
ParsedAttributesView &getCurrentAttributes() const {
if (isProcessingDeclSpec())
return getMutableDeclSpec().getAttributes();
return declarator.getTypeObject(chunkIndex).getAttrs();
}
/// Save the current set of attributes on the DeclSpec.
void saveDeclSpecAttrs() {
// Don't try to save them multiple times.
if (hasSavedAttrs) return;
DeclSpec &spec = getMutableDeclSpec();
for (ParsedAttr &AL : spec.getAttributes())
savedAttrs.push_back(&AL);
trivial &= savedAttrs.empty();
hasSavedAttrs = true;
}
/// Record that we had nowhere to put the given type attribute.
/// We will diagnose such attributes later.
void addIgnoredTypeAttr(ParsedAttr &attr) {
ignoredTypeAttrs.push_back(&attr);
}
/// Diagnose all the ignored type attributes, given that the
/// declarator worked out to the given type.
void diagnoseIgnoredTypeAttrs(QualType type) const {
for (auto *Attr : ignoredTypeAttrs)
diagnoseBadTypeAttribute(getSema(), *Attr, type);
}
/// Get an attributed type for the given attribute, and remember the Attr
/// object so that we can attach it to the AttributedTypeLoc.
QualType getAttributedType(Attr *A, QualType ModifiedType,
QualType EquivType) {
QualType T =
sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
AttrsForTypesSorted = false;
return T;
}
/// Completely replace the \c auto in \p TypeWithAuto by
/// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
/// necessary.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
// Attributed type still should be an attributed type after replacement.
auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
for (TypeAttrPair &A : AttrsForTypes) {
if (A.first == AttrTy)
A.first = NewAttrTy;
}
AttrsForTypesSorted = false;
}
return T;
}
/// Extract and remove the Attr* for a given attributed type.
const Attr *takeAttrForAttributedType(const AttributedType *AT) {
if (!AttrsForTypesSorted) {
llvm::stable_sort(AttrsForTypes, llvm::less_first());
AttrsForTypesSorted = true;
}
// FIXME: This is quadratic if we have lots of reuses of the same
// attributed type.
for (auto It = std::partition_point(
AttrsForTypes.begin(), AttrsForTypes.end(),
[=](const TypeAttrPair &A) { return A.first < AT; });
It != AttrsForTypes.end() && It->first == AT; ++It) {
if (It->second) {
const Attr *Result = It->second;
It->second = nullptr;
return Result;
}
}
llvm_unreachable("no Attr* for AttributedType*");
}
SourceLocation
getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
auto FoundLoc = LocsForMacros.find(MQT);
assert(FoundLoc != LocsForMacros.end() &&
"Unable to find macro expansion location for MacroQualifedType");
return FoundLoc->second;
}
void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
SourceLocation Loc) {
LocsForMacros[MQT] = Loc;
}
void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
bool didParseNoDeref() const { return parsedNoDeref; }
~TypeProcessingState() {
if (trivial) return;
restoreDeclSpecAttrs();
}
private:
DeclSpec &getMutableDeclSpec() const {
return const_cast<DeclSpec&>(declarator.getDeclSpec());
}
void restoreDeclSpecAttrs() {
assert(hasSavedAttrs);
getMutableDeclSpec().getAttributes().clearListOnly();
for (ParsedAttr *AL : savedAttrs)
getMutableDeclSpec().getAttributes().addAtEnd(AL);
}
};
} // end anonymous namespace
static void moveAttrFromListToList(ParsedAttr &attr,
ParsedAttributesView &fromList,
ParsedAttributesView &toList) {
fromList.remove(&attr);
toList.addAtEnd(&attr);
}
/// The location of a type attribute.
enum TypeAttrLocation {
/// The attribute is in the decl-specifier-seq.
TAL_DeclSpec,
/// The attribute is part of a DeclaratorChunk.
TAL_DeclChunk,
/// The attribute is immediately after the declaration's name.
TAL_DeclName
};
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL, ParsedAttributesView &attrs);
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type);
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type);
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type);
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type);
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type) {
if (attr.getKind() == ParsedAttr::AT_ObjCGC)
return handleObjCGCTypeAttr(state, attr, type);
assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
return handleObjCOwnershipTypeAttr(state, attr, type);
}
/// Given the index of a declarator chunk, check whether that chunk
/// directly specifies the return type of a function and, if so, find
/// an appropriate place for it.
///
/// \param i - a notional index which the search will start
/// immediately inside
///
/// \param onlyBlockPointers Whether we should only look into block
/// pointer types (vs. all pointer types).
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
unsigned i,
bool onlyBlockPointers) {
assert(i <= declarator.getNumTypeObjects());
DeclaratorChunk *result = nullptr;
// First, look inwards past parens for a function declarator.
for (; i != 0; --i) {
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
switch (fnChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
// If we find anything except a function, bail out.
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return result;
// If we do find a function declarator, scan inwards from that,
// looking for a (block-)pointer declarator.
case DeclaratorChunk::Function:
for (--i; i != 0; --i) {
DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
switch (ptrChunk.Kind) {
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pipe:
continue;
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pointer:
if (onlyBlockPointers)
continue;
LLVM_FALLTHROUGH;
case DeclaratorChunk::BlockPointer:
result = &ptrChunk;
goto continue_outer;
}
llvm_unreachable("bad declarator chunk kind");
}
// If we run out of declarators doing that, we're done.
return result;
}
llvm_unreachable("bad declarator chunk kind");
// Okay, reconsider from our new point.
continue_outer: ;
}
// Ran out of chunks, bail out.
return result;
}
/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType type) {
Declarator &declarator = state.getDeclarator();
// Move it to the outermost normal or block pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer: {
// But don't move an ARC ownership attribute to the return type
// of a block.
DeclaratorChunk *destChunk = nullptr;
if (state.isProcessingDeclSpec() &&
attr.getKind() == ParsedAttr::AT_ObjCOwnership)
destChunk = maybeMovePastReturnType(declarator, i - 1,
/*onlyBlockPointers=*/true);
if (!destChunk) destChunk = &chunk;
moveAttrFromListToList(attr, state.getCurrentAttributes(),
destChunk->getAttrs());
return;
}
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
// We may be starting at the return type of a block.
case DeclaratorChunk::Function:
if (state.isProcessingDeclSpec() &&
attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/true)) {
moveAttrFromListToList(attr, state.getCurrentAttributes(),
dest->getAttrs());
return;
}
}
goto error;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
goto error;
}
}
error:
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void distributeObjCPointerTypeAttrFromDeclarator(
TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// objc_gc goes on the innermost pointer to something that's not a
// pointer.
unsigned innermost = -1U;
bool considerDeclSpec = true;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
innermost = i;
continue;
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
case DeclaratorChunk::Pipe:
continue;
case DeclaratorChunk::Function:
considerDeclSpec = false;
goto done;
}
}
done:
// That might actually be the decl spec if we weren't blocked by
// anything in the declarator.
if (considerDeclSpec) {
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
// Splice the attribute into the decl spec. Prevents the
// attribute from being applied multiple times and gives
// the source-location-filler something to work with.
state.saveDeclSpecAttrs();
declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
declarator.getAttributes(), &attr);
return;
}
}
// Otherwise, if we found an appropriate chunk, splice the attribute
// into it.
if (innermost != -1U) {
moveAttrFromListToList(attr, declarator.getAttributes(),
declarator.getTypeObject(innermost).getAttrs());
return;
}
// Otherwise, diagnose when we're done building the type.
declarator.getAttributes().remove(&attr);
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec. Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType type) {
Declarator &declarator = state.getDeclarator();
// Try to push the attribute from the return type of a function to
// the function itself.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Function:
moveAttrFromListToList(attr, state.getCurrentAttributes(),
chunk.getAttrs());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
continue;
}
}
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Try to distribute a function type attribute to the innermost
/// function chunk or type. Returns true if the attribute was
/// distributed, false if no location was found.
static bool distributeFunctionTypeAttrToInnermost(
TypeProcessingState &state, ParsedAttr &attr,
ParsedAttributesView &attrList, QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Put it on the innermost function chunk, if there is one.
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
if (chunk.Kind != DeclaratorChunk::Function) continue;
moveAttrFromListToList(attr, attrList, chunk.getAttrs());
return true;
}
return handleFunctionTypeAttr(state, attr, declSpecType);
}
/// A function type attribute was written in the decl spec. Try to
/// apply it somewhere.
static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
ParsedAttr &attr,
QualType &declSpecType) {
state.saveDeclSpecAttrs();
// C++11 attributes before the decl specifiers actually appertain to
// the declarators. Move them straight there. We don't support the
// 'put them wherever you like' semantics we allow for GNU attributes.
if (attr.isCXX11Attribute()) {
moveAttrFromListToList(attr, state.getCurrentAttributes(),
state.getDeclarator().getAttributes());
return;
}
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(
state, attr, state.getCurrentAttributes(), declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written on the declarator. Try to
/// apply it somewhere.
static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
ParsedAttr &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(
state, attr, declarator.getAttributes(), declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
declarator.getAttributes().remove(&attr);
state.addIgnoredTypeAttr(attr);
}
/// Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
/// int f ATTR;
/// int (f ATTR)();
/// but not necessarily this:
/// int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
QualType &declSpecType) {
// Collect all the type attributes from the declarator itself.
assert(!state.getDeclarator().getAttributes().empty() &&
"declarator has no attrs!");
// The called functions in this loop actually remove things from the current
// list, so iterating over the existing list isn't possible. Instead, make a
// non-owning copy and iterate over that.
ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
for (ParsedAttr &attr : AttrsCopy) {
// Do not distribute C++11 attributes. They have strict rules for what
// they appertain to.
if (attr.isCXX11Attribute())
continue;
switch (attr.getKind()) {
OBJC_POINTER_TYPE_ATTRS_CASELIST:
distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
break;
FUNCTION_TYPE_ATTRS_CASELIST:
distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
break;
MS_TYPE_ATTRS_CASELIST:
// Microsoft type attributes cannot go after the declarator-id.
continue;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Nullability specifiers cannot go after the declarator-id.
// Objective-C __kindof does not get distributed.
case ParsedAttr::AT_ObjCKindOf:
continue;
default:
break;
}
}
}
/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
QualType declSpecType) {
Declarator &declarator = state.getDeclarator();
// First, check whether the declarator would produce a function,
// i.e. whether the innermost semantic chunk is a function.
if (declarator.isFunctionDeclarator()) {
// If so, make that declarator a prototyped declarator.
declarator.getFunctionTypeInfo().hasPrototype = true;
return;
}
// If there are any type objects, the type as written won't name a
// function, regardless of the decl spec type. This is because a
// block signature declarator is always an abstract-declarator, and
// abstract-declarators can't just be parentheses chunks. Therefore
// we need to build a function chunk unless there are no type
// objects and the decl spec type is a function.
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
return;
// Note that there *are* cases with invalid declarators where
// declarators consist solely of parentheses. In general, these
// occur only in failed efforts to make function declarators, so
// faking up the function chunk is still the right thing to do.
// Otherwise, we need to fake up a function declarator.
SourceLocation loc = declarator.getBeginLoc();
// ...and *prepend* it to the declarator.
SourceLocation NoLoc;
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*LParenLoc=*/NoLoc,
/*ArgInfo=*/nullptr,
/*NumParams=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc, EST_None,
/*ESpecRange=*/SourceRange(),
/*Exceptions=*/nullptr,
/*ExceptionRanges=*/nullptr,
/*NumExceptions=*/0,
/*NoexceptExpr=*/nullptr,
/*ExceptionSpecTokens=*/nullptr,
/*DeclsInPrototype=*/None, loc, loc, declarator));
// For consistency, make sure the state still has us as processing
// the decl spec.
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
unsigned &TypeQuals,
QualType TypeSoFar,
unsigned RemoveTQs,
unsigned DiagID) {
// If this occurs outside a template instantiation, warn the user about
// it; they probably didn't mean to specify a redundant qualifier.
typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
if (!(RemoveTQs & Qual.first))
continue;
if (!S.inTemplateInstantiation()) {
if (TypeQuals & Qual.first)
S.Diag(Qual.second, DiagID)
<< DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
<< FixItHint::CreateRemoval(Qual.second);
}
TypeQuals &= ~Qual.first;
}
}
/// Return true if this is omitted block return type. Also check type
/// attributes and type qualifiers when returning true.
static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
QualType Result) {
if (!isOmittedBlockReturnType(declarator))
return false;
// Warn if we see type attributes for omitted return type on a block literal.
SmallVector<ParsedAttr *, 2> ToBeRemoved;
for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
if (AL.isInvalid() || !AL.isTypeAttr())
continue;
S.Diag(AL.getLoc(),
diag::warn_block_literal_attributes_on_omitted_return_type)
<< AL;
ToBeRemoved.push_back(&AL);
}
// Remove bad attributes from the list.
for (ParsedAttr *AL : ToBeRemoved)
declarator.getMutableDeclSpec().getAttributes().remove(AL);
// Warn if we see type qualifiers for omitted return type on a block literal.
const DeclSpec &DS = declarator.getDeclSpec();
unsigned TypeQuals = DS.getTypeQualifiers();
diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
diag::warn_block_literal_qualifiers_on_omitted_return_type);
declarator.getMutableDeclSpec().ClearTypeQualifiers();
return true;
}
/// Apply Objective-C type arguments to the given type.
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
ArrayRef<TypeSourceInfo *> typeArgs,
SourceRange typeArgsRange,
bool failOnError = false) {
// We can only apply type arguments to an Objective-C class type.
const auto *objcObjectType = type->getAs<ObjCObjectType>();
if (!objcObjectType || !objcObjectType->getInterface()) {
S.Diag(loc, diag::err_objc_type_args_non_class)
<< type
<< typeArgsRange;
if (failOnError)
return QualType();
return type;
}
// The class type must be parameterized.
ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
if (!typeParams) {
S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
<< objcClass->getDeclName()
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// The type must not already be specialized.
if (objcObjectType->isSpecialized()) {
S.Diag(loc, diag::err_objc_type_args_specialized_class)
<< type
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// Check the type arguments.
SmallVector<QualType, 4> finalTypeArgs;
unsigned numTypeParams = typeParams->size();
bool anyPackExpansions = false;
for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
TypeSourceInfo *typeArgInfo = typeArgs[i];
QualType typeArg = typeArgInfo->getType();
// Type arguments cannot have explicit qualifiers or nullability.
// We ignore indirect sources of these, e.g. behind typedefs or
// template arguments.
if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
bool diagnosed = false;
SourceRange rangeToRemove;
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
rangeToRemove = attr.getLocalSourceRange();
if (attr.getTypePtr()->getImmediateNullability()) {
typeArg = attr.getTypePtr()->getModifiedType();
S.Diag(attr.getBeginLoc(),
diag::err_objc_type_arg_explicit_nullability)
<< typeArg << FixItHint::CreateRemoval(rangeToRemove);
diagnosed = true;
}
}
if (!diagnosed) {
S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
<< typeArg << typeArg.getQualifiers().getAsString()
<< FixItHint::CreateRemoval(rangeToRemove);
}
}
// Remove qualifiers even if they're non-local.
typeArg = typeArg.getUnqualifiedType();
finalTypeArgs.push_back(typeArg);
if (typeArg->getAs<PackExpansionType>())
anyPackExpansions = true;
// Find the corresponding type parameter, if there is one.
ObjCTypeParamDecl *typeParam = nullptr;
if (!anyPackExpansions) {
if (i < numTypeParams) {
typeParam = typeParams->begin()[i];
} else {
// Too many arguments.
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< false
<< objcClass->getDeclName()
<< (unsigned)typeArgs.size()
<< numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
}
// Objective-C object pointer types must be substitutable for the bounds.
if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
// Determine whether the type argument is substitutable for the bound.
if (typeArgObjC->isObjCIdType()) {
// When the type argument is 'id', the only acceptable type
// parameter bound is 'id'.
if (boundObjC->isObjCIdType())
continue;
} else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
// Otherwise, we follow the assignability rules.
continue;
}
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Block pointer types are permitted for unqualified 'id' bounds.
if (typeArg->isBlockPointerType()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
if (bound->isBlockCompatibleObjCPointerType(S.Context))
continue;
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Dependent types will be checked at instantiation time.
if (typeArg->isDependentType()) {
continue;
}
// Diagnose non-id-compatible type arguments.
S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_arg_not_id_compatible)
<< typeArg << typeArgInfo->getTypeLoc().getSourceRange();
if (failOnError)
return QualType();
return type;
}
// Make sure we didn't have the wrong number of arguments.
if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< (typeArgs.size() < typeParams->size())
<< objcClass->getDeclName()
<< (unsigned)finalTypeArgs.size()
<< (unsigned)numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
// Success. Form the specialized type.
return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
}
QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError) {
QualType Result = QualType(Decl->getTypeForDecl(), 0);
if (!Protocols.empty()) {
bool HasError;
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
HasError);
if (HasError) {
Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
if (FailOnError) Result = QualType();
}
if (FailOnError && Result.isNull())
return QualType();
}
return Result;
}
QualType Sema::BuildObjCObjectType(QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError) {
QualType Result = BaseType;
if (!TypeArgs.empty()) {
Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
SourceRange(TypeArgsLAngleLoc,
TypeArgsRAngleLoc),
FailOnError);
if (FailOnError && Result.isNull())
return QualType();
}
if (!Protocols.empty()) {
bool HasError;
Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
HasError);
if (HasError) {
Diag(Loc, diag::err_invalid_protocol_qualifiers)
<< SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
if (FailOnError) Result = QualType();
}
if (FailOnError && Result.isNull())
return QualType();
}
return Result;
}
TypeResult Sema::actOnObjCProtocolQualifierType(
SourceLocation lAngleLoc,
ArrayRef<Decl *> protocols,
ArrayRef<SourceLocation> protocolLocs,
SourceLocation rAngleLoc) {
// Form id<protocol-list>.
QualType Result = Context.getObjCObjectType(
Context.ObjCBuiltinIdTy, { },
llvm::makeArrayRef(
(ObjCProtocolDecl * const *)protocols.data(),
protocols.size()),
false);
Result = Context.getObjCObjectPointerType(Result);
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
.castAs<ObjCObjectTypeLoc>();
ObjCObjectTL.setHasBaseTypeAsWritten(false);
ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
// No type arguments.
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
// Fill in protocol qualifiers.
ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
for (unsigned i = 0, n = protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
Scope *S,
SourceLocation Loc,
ParsedType BaseType,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<ParsedType> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<Decl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc) {
TypeSourceInfo *BaseTypeInfo = nullptr;
QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
if (T.isNull())
return true;
// Handle missing type-source info.
if (!BaseTypeInfo)
BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
// Extract type arguments.
SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
TypeSourceInfo *TypeArgInfo = nullptr;
QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
if (TypeArg.isNull()) {
ActualTypeArgInfos.clear();
break;
}
assert(TypeArgInfo && "No type source info?");
ActualTypeArgInfos.push_back(TypeArgInfo);
}
// Build the object type.
QualType Result = BuildObjCObjectType(
T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
ProtocolLAngleLoc,
llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
Protocols.size()),
ProtocolLocs, ProtocolRAngleLoc,
/*FailOnError=*/false);
if (Result == T)
return BaseType;
// Create source information for this type.
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
// For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
// object pointer type. Fill in source information for it.
if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
// The '*' is implicit.
ObjCObjectPointerTL.setStarLoc(SourceLocation());
ResultTL = ObjCObjectPointerTL.getPointeeLoc();
}
if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
// Protocol qualifier information.
if (OTPTL.getNumProtocols() > 0) {
assert(OTPTL.getNumProtocols() == Protocols.size());
OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
}
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
// Type argument information.
if (ObjCObjectTL.getNumTypeArgs() > 0) {
assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
} else {
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
}
// Protocol qualifier information.
if (ObjCObjectTL.getNumProtocols() > 0) {
assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
} else {
ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
}
// Base type.
ObjCObjectTL.setHasBaseTypeAsWritten(true);
if (ObjCObjectTL.getType() == T)
ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
else
ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
static OpenCLAccessAttr::Spelling
getImageAccess(const ParsedAttributesView &Attrs) {
for (const ParsedAttr &AL : Attrs)
if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
return OpenCLAccessAttr::Keyword_read_only;
}
/// Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers. This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
DeclSpec &DS = declarator.getMutableDeclSpec();
SourceLocation DeclLoc = declarator.getIdentifierLoc();
if (DeclLoc.isInvalid())
DeclLoc = DS.getBeginLoc();
ASTContext &Context = S.Context;
QualType Result;
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_void:
Result = Context.VoidTy;
break;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
Result = Context.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
Result = Context.UnsignedCharTy;
}
break;
case DeclSpec::TST_wchar:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.WCharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getSignedWCharType();
} else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getUnsignedWCharType();
}
break;
case DeclSpec::TST_char8:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char8Ty;
break;
case DeclSpec::TST_char16:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char16Ty;
break;
case DeclSpec::TST_char32:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char32Ty;
break;
case DeclSpec::TST_unspecified:
// If this is a missing declspec in a block literal return context, then it
// is inferred from the return statements inside the block.
// The declspec is always missing in a lambda expr context; it is either
// specified with a trailing return type or inferred.
if (S.getLangOpts().CPlusPlus14 &&
declarator.getContext() == DeclaratorContext::LambdaExprContext) {
// In C++1y, a lambda's implicit return type is 'auto'.
Result = Context.getAutoDeductType();
break;
} else if (declarator.getContext() ==
DeclaratorContext::LambdaExprContext ||
checkOmittedBlockReturnType(S, declarator,
Context.DependentTy)) {
Result = Context.DependentTy;
break;
}
// Unspecified typespec defaults to int in C90. However, the C90 grammar
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
// Note that the one exception to this is function definitions, which are
// allowed to be completely missing a declspec. This is handled in the
// parser already though by it pretending to have seen an 'int' in this
// case.
if (S.getLangOpts().ImplicitInt) {
// In C89 mode, we only warn if there is a completely missing declspec
// when one is not allowed.
if (DS.isEmpty()) {
S.Diag(DeclLoc, diag::ext_missing_declspec)
<< DS.getSourceRange()
<< FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
}
} else if (!DS.hasTypeSpecifier()) {
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
// "At least one type specifier shall be given in the declaration
// specifiers in each declaration, and in the specifier-qualifier list in
// each struct declaration and type name."
if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
S.Diag(DeclLoc, diag::err_missing_type_specifier)
<< DS.getSourceRange();
// When this occurs in C++ code, often something is very broken with the
// value being declared, poison it as invalid so we don't get chains of
// errors.
declarator.setInvalidType(true);
} else if ((S.getLangOpts().OpenCLVersion >= 200 ||
S.getLangOpts().OpenCLCPlusPlus) &&
DS.isTypeSpecPipe()) {
S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
<< DS.getSourceRange();
declarator.setInvalidType(true);
} else {
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
<< DS.getSourceRange();
}
}
LLVM_FALLTHROUGH;
case DeclSpec::TST_int: {
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
case DeclSpec::TSW_long: Result = Context.LongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.LongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.UnsignedLongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
}
break;
}
case DeclSpec::TST_accum: {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_short:
Result = Context.ShortAccumTy;
break;
case DeclSpec::TSW_unspecified:
Result = Context.AccumTy;
break;
case DeclSpec::TSW_long:
Result = Context.LongAccumTy;
break;
case DeclSpec::TSW_longlong:
llvm_unreachable("Unable to specify long long as _Accum width");
}
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.getCorrespondingUnsignedType(Result);
if (DS.isTypeSpecSat())
Result = Context.getCorrespondingSaturatedType(Result);
break;
}
case DeclSpec::TST_fract: {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_short:
Result = Context.ShortFractTy;
break;
case DeclSpec::TSW_unspecified:
Result = Context.FractTy;
break;
case DeclSpec::TSW_long:
Result = Context.LongFractTy;
break;
case DeclSpec::TSW_longlong:
llvm_unreachable("Unable to specify long long as _Fract width");
}
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.getCorrespondingUnsignedType(Result);
if (DS.isTypeSpecSat())
Result = Context.getCorrespondingSaturatedType(Result);
break;
}
case DeclSpec::TST_int128:
if (!S.Context.getTargetInfo().hasInt128Type() &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "__int128";
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.UnsignedInt128Ty;
else
Result = Context.Int128Ty;
break;
case DeclSpec::TST_float16:
// CUDA host and device may have different _Float16 support, therefore
// do not diagnose _Float16 usage to avoid false alarm.
// ToDo: more precise diagnostics for CUDA.
if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "_Float16";
Result = Context.Float16Ty;
break;
case DeclSpec::TST_half: Result = Context.HalfTy; break;
case DeclSpec::TST_float: Result = Context.FloatTy; break;
case DeclSpec::TST_double:
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
Result = Context.LongDoubleTy;
else
Result = Context.DoubleTy;
break;
case DeclSpec::TST_float128:
if (!S.Context.getTargetInfo().hasFloat128Type() &&
!(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
<< "__float128";
Result = Context.Float128Ty;
break;
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
break;
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct:
case DeclSpec::TST_interface: {
TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
if (!D) {
// This can happen in C++ with ambiguous lookups.
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// If the type is deprecated or unavailable, diagnose it.
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
// TypeQuals handled by caller.
Result = Context.getTypeDeclType(D);
// In both C and C++, make an ElaboratedType.
ElaboratedTypeKeyword Keyword
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
DS.isTypeSpecOwned() ? D : nullptr);
break;
}
case DeclSpec::TST_typename: {
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
Result = S.GetTypeFromParser(DS.getRepAsType());
if (Result.isNull()) {
declarator.setInvalidType(true);
}
// TypeQuals handled by caller.
break;
}
case DeclSpec::TST_typeofType:
// FIXME: Preserve type source info.
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for typeof?");
if (!Result->isDependentType())
if (const TagType *TT = Result->getAs<TagType>())
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
// TypeQuals handled by caller.
Result = Context.getTypeOfType(Result);
break;
case DeclSpec::TST_typeofExpr: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_decltype: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for decltype?");
// TypeQuals handled by caller.
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_underlyingType:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
Result = S.BuildUnaryTransformType(Result,
UnaryTransformType::EnumUnderlyingType,
DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_auto:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
break;
case DeclSpec::TST_auto_type:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
break;
case DeclSpec::TST_decltype_auto:
Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
/*IsDependent*/ false);
break;
case DeclSpec::TST_unknown_anytype:
Result = Context.UnknownAnyTy;
break;
case DeclSpec::TST_atomic:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
case DeclSpec::TST_##ImgType##_t: \
switch (getImageAccess(DS.getAttributes())) { \
case OpenCLAccessAttr::Keyword_write_only: \
Result = Context.Id##WOTy; \
break; \
case OpenCLAccessAttr::Keyword_read_write: \
Result = Context.Id##RWTy; \
break; \
case OpenCLAccessAttr::Keyword_read_only: \
Result = Context.Id##ROTy; \
break; \
case OpenCLAccessAttr::SpellingNotCalculated: \
llvm_unreachable("Spelling not yet calculated"); \
} \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case DeclSpec::TST_error:
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
if (S.getLangOpts().OpenCL &&
S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
declarator.setInvalidType(true);
bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
DS.getTypeSpecType() == DeclSpec::TST_fract;
// Only fixed point types can be saturated
if (DS.isTypeSpecSat() && !IsFixedPointType)
S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
// Handle complex types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
if (S.getLangOpts().Freestanding)
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
Result = Context.getComplexType(Result);
} else if (DS.isTypeAltiVecVector()) {
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
if (DS.isTypeAltiVecPixel())
VecKind = VectorType::AltiVecPixel;
else if (DS.isTypeAltiVecBool())
VecKind = VectorType::AltiVecBool;
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
}
// FIXME: Imaginary.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
// Before we process any type attributes, synthesize a block literal
// function declarator if necessary.
if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
maybeSynthesizeBlockSignature(state, Result);
// Apply any type attributes from the decl spec. This may cause the
// list of type attributes to be temporarily saved while the type
// attributes are pushed around.
// pipe attributes will be handled later ( at GetFullTypeForDeclarator )
if (!DS.isTypeSpecPipe())
processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
// Apply const/volatile/restrict qualifiers to T.
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
// Warn about CV qualifiers on function types.
// C99 6.7.3p8:
// If the specification of a function type includes any type qualifiers,
// the behavior is undefined.
// C++11 [dcl.fct]p7:
// The effect of a cv-qualifier-seq in a function declarator is not the
// same as adding cv-qualification on top of the function type. In the
// latter case, the cv-qualifiers are ignored.
if (TypeQuals && Result->isFunctionType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
S.getLangOpts().CPlusPlus
? diag::warn_typecheck_function_qualifiers_ignored
: diag::warn_typecheck_function_qualifiers_unspecified);
// No diagnostic for 'restrict' or '_Atomic' applied to a
// function type; we'll diagnose those later, in BuildQualifiedType.
}
// C++11 [dcl.ref]p1:
// Cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef-name
// or decltype-specifier, in which case the cv-qualifiers are ignored.
//
// There don't appear to be any other contexts in which a cv-qualified
// reference type could be formed, so the 'ill-formed' clause here appears
// to never happen.
if (TypeQuals && Result->isReferenceType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result,
DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
diag::warn_typecheck_reference_qualifiers);
}
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
// than once in the same specifier-list or qualifier-list, either directly
// or via one or more typedefs."
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
&& TypeQuals & Result.getCVRQualifiers()) {
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
<< "const";
}
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
<< "volatile";
}
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
// produce a warning in this case.
}
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
// If adding qualifiers fails, just use the unqualified type.
if (Qualified.isNull())
declarator.setInvalidType(true);
else
Result = Qualified;
}
assert(!Result.isNull() && "This function should not return a null type");
return Result;
}
static std::string getPrintableNameForEntity(DeclarationName Entity) {
if (Entity)
return Entity.getAsString();
return "type name";
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
Qualifiers Qs, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Ignore any attempt to form a cv-qualified reference.
if (T->isReferenceType()) {
Qs.removeConst();
Qs.removeVolatile();
}
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
// object or incomplete types shall not be restrict-qualified."
if (Qs.hasRestrict()) {
unsigned DiagID = 0;
QualType ProblemTy;
if (T->isAnyPointerType() || T->isReferenceType() ||
T->isMemberPointerType()) {
QualType EltTy;
if (T->isObjCObjectPointerType())
EltTy = T;
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
EltTy = PTy->getPointeeType();
else
EltTy = T->getPointeeType();
// If we have a pointer or reference, the pointee must have an object
// incomplete type.
if (!EltTy->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = EltTy;
}
} else if (!T->isDependentType()) {
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
ProblemTy = T;
}
if (DiagID) {
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
Qs.removeRestrict();
}
}
return Context.getQualifiedType(T, Qs);
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
unsigned CVRAU, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Ignore any attempt to form a cv-qualified reference.
if (T->isReferenceType())
CVRAU &=
~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
// TQ_unaligned;
unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
// C11 6.7.3/5:
// If the same qualifier appears more than once in the same
// specifier-qualifier-list, either directly or via one or more typedefs,
// the behavior is the same as if it appeared only once.
//
// It's not specified what happens when the _Atomic qualifier is applied to
// a type specified with the _Atomic specifier, but we assume that this
// should be treated as if the _Atomic qualifier appeared multiple times.
if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
// C11 6.7.3/5:
// If other qualifiers appear along with the _Atomic qualifier in a
// specifier-qualifier-list, the resulting type is the so-qualified
// atomic type.
//
// Don't need to worry about array types here, since _Atomic can't be
// applied to such types.
SplitQualType Split = T.getSplitUnqualifiedType();
T = BuildAtomicType(QualType(Split.Ty, 0),
DS ? DS->getAtomicSpecLoc() : Loc);
if (T.isNull())
return T;
Split.Quals.addCVRQualifiers(CVR);
return BuildQualifiedType(T, Loc, Split.Quals);
}
Qualifiers Q = Qualifiers::fromCVRMask(CVR);
Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
return BuildQualifiedType(T, Loc, Q, DS);
}
/// Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
return Context.getParenType(T);
}
/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
SourceLocation loc,
bool isReference) {
// Bail out if retention is unrequired or already specified.
if (!type->isObjCLifetimeType() ||
type.getObjCLifetime() != Qualifiers::OCL_None)
return type;
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
// If the object type is const-qualified, we can safely use
// __unsafe_unretained. This is safe (because there are no read
// barriers), and it'll be safe to coerce anything but __weak* to
// the resulting type.
if (type.isConstQualified()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// Otherwise, check whether the static type does not require
// retaining. This currently only triggers for Class (possibly
// protocol-qualifed, and arrays thereof).
} else if (type->isObjCARCImplicitlyUnretainedType()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// If we are in an unevaluated context, like sizeof, skip adding a
// qualification.
} else if (S.isUnevaluatedContext()) {
return type;
// If that failed, give an error and recover using __strong. __strong
// is the option most likely to prevent spurious second-order diagnostics,
// like when binding a reference to a field.
} else {
// These types can show up in private ivars in system headers, so
// we need this to not be an error in those cases. Instead we
// want to delay.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(loc,
diag::err_arc_indirect_no_ownership, type, isReference));
} else {
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
}
implicitLifetime = Qualifiers::OCL_Strong;
}
assert(implicitLifetime && "didn't infer any lifetime!");
Qualifiers qs;
qs.addObjCLifetime(implicitLifetime);
return S.Context.getQualifiedType(type, qs);
}
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
std::string Quals = FnTy->getMethodQuals().getAsString();
switch (FnTy->getRefQualifier()) {
case RQ_None:
break;
case RQ_LValue:
if (!Quals.empty())
Quals += ' ';
Quals += '&';
break;
case RQ_RValue:
if (!Quals.empty())
Quals += ' ';
Quals += "&&";
break;
}
return Quals;
}
namespace {
/// Kinds of declarator that cannot contain a qualified function type.
///
/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
/// a function type with a cv-qualifier or a ref-qualifier can only appear
/// at the topmost level of a type.
///
/// Parens and member pointers are permitted. We don't diagnose array and
/// function declarators, because they don't allow function types at all.
///
/// The values of this enum are used in diagnostics.
enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
} // end anonymous namespace
/// Check whether the type T is a qualified function type, and if it is,
/// diagnose that it cannot be contained within the given kind of declarator.
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
QualifiedFunctionKind QFK) {
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT ||
(FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
return false;
S.Diag(Loc, diag::err_compound_qualified_function_type)
<< QFK << isa<FunctionType>(T.IgnoreParens()) << T
<< getFunctionQualifiersAsString(FPT);
return true;
}
bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT ||
(FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
return false;
Diag(Loc, diag::err_qualified_function_typeid)
<< T << getFunctionQualifiersAsString(FPT);
return true;
}
/// Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity) {
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isFunctionType() && getLangOpts().OpenCL) {
Diag(Loc, diag::err_opencl_function_pointer);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
return QualType();
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
// In ARC, it is forbidden to build pointers to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
// Build the pointer type.
return Context.getPointerType(T);
}
/// Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
SourceLocation Loc,
DeclarationName Entity) {
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type");
// C++0x [dcl.ref]p6:
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
// type T, an attempt to create the type "lvalue reference to cv TR" creates
// the type "lvalue reference to T", while an attempt to create the type
// "rvalue reference to cv TR" creates the type TR.
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
// C++ [dcl.ref]p4: There shall be no references to references.
//
// According to C++ DR 106, references to references are only
// diagnosed when they are written directly (e.g., "int & &"),
// but not when they happen via a typedef:
//
// typedef int& intref;
// typedef intref& intref2;
//
// Parser::ParseDeclaratorInternal diagnoses the case where
// references are written directly; here, we handle the
// collapsing of references-to-references as described in C++0x.
// DR 106 and 540 introduce reference-collapsing into C++98/03.
// C++ [dcl.ref]p1:
// A declarator that specifies the type "reference to cv void"
// is ill-formed.
if (T->isVoidType()) {
Diag(Loc, diag::err_reference_to_void);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
return QualType();
// In ARC, it is forbidden to build references to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
// Handle restrict on references.
if (LValueRef)
return Context.getLValueReferenceType(T, SpelledAsLValue);
return Context.getRValueReferenceType(T);
}
/// Build a Read-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
/// NULL type.
QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
return Context.getReadPipeType(T);
}
/// Build a Write-only Pipe type.
///
/// \param T The type to which we'll be building a Pipe.
///
/// \param Loc We do not use it for now.
///
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
/// NULL type.
QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
return Context.getWritePipeType(T);
}
/// Check whether the specified array size makes the array type a VLA. If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
// (like gnu99, but not c99) accept any evaluatable value as an extension.
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
public:
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
}
void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
}
} Diagnoser;
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
S.LangOpts.GNUMode ||
S.LangOpts.OpenCL).isInvalid();
}
/// Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity) {
SourceLocation Loc = Brackets.getBegin();
if (getLangOpts().CPlusPlus) {
// C++ [dcl.array]p1:
// T is called the array element type; this type shall not be a reference
// type, the (possibly cv-qualified) type void, a function type or an
// abstract class type.
//
// C++ [dcl.array]p3:
// When several "array of" specifications are adjacent, [...] only the
// first of the constant expressions that specify the bounds of the arrays
// may be omitted.
//
// Note: function types are handled in the common path with C.
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_array_of_references)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType() || T->isIncompleteArrayType()) {
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
return QualType();
}
if (RequireNonAbstractType(Brackets.getBegin(), T,
diag::err_array_of_abstract_type))
return QualType();
// Mentioning a member pointer type for an array type causes us to lock in
// an inheritance model, even if it's inside an unused typedef.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
if (!MPTy->getClass()->isDependentType())
(void)isCompleteType(Loc, T);
} else {
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (RequireCompleteType(Loc, T,
diag::err_illegal_decl_array_incomplete_type))
return QualType();
}
if (T->isFunctionType()) {
Diag(Loc, diag::err_illegal_decl_array_of_functions)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (const RecordType *EltTy = T->getAs<RecordType>()) {
// If the element type is a struct or union that contains a variadic
// array, accept it as a GNU extension: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember())
Diag(Loc, diag::ext_flexible_array_in_array) << T;
} else if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
return QualType();
}
// Do placeholder conversions on the array size expression.
if (ArraySize && ArraySize->hasPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(ArraySize);
if (Result.isInvalid()) return QualType();
ArraySize = Result.get();
}
// Do lvalue-to-rvalue conversions on the array size expression.
if (ArraySize && !ArraySize->isRValue()) {
ExprResult Result = DefaultLvalueConversion(ArraySize);
if (Result.isInvalid())
return QualType();
ArraySize = Result.get();
}
// C99 6.7.5.2p1: The size expression shall have integer type.
// C++11 allows contextual conversions to such types.
if (!getLangOpts().CPlusPlus11 &&
ArraySize && !ArraySize->isTypeDependent() &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
if (!ArraySize) {
if (ASM == ArrayType::Star)
T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
else
T = Context.getIncompleteArrayType(T, ASM, Quals);
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
!T->isConstantSizeType()) ||
isArraySizeVLA(*this, ArraySize, ConstVal)) {
// Even in C++11, don't allow contextual conversions in the array bound
// of a VLA.
if (getLangOpts().CPlusPlus11 &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
// C99: an array with an element type that has a non-constant-size is a VLA.
// C99: an array with a non-ICE size is a VLA. We accept any expression
// that we can fold to a non-zero positive value as an extension.
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
} else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned() && ConstVal.isNegative()) {
if (Entity)
Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
else
Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (ConstVal == 0) {
// GCC accepts zero sized static arrays. We allow them when
// we're not in a SFINAE context.
Diag(ArraySize->getBeginLoc(), isSFINAEContext()
? diag::err_typecheck_zero_array_size
: diag::ext_typecheck_zero_array_size)
<< ArraySize->getSourceRange();
if (ASM == ArrayType::Static) {
Diag(ArraySize->getBeginLoc(),
diag::warn_typecheck_zero_static_array_size)
<< ArraySize->getSourceRange();
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType() && !T->isUndeducedType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
<< ConstVal.toString(10) << ArraySize->getSourceRange();
return QualType();
}
}
T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
}
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
Diag(Loc, diag::err_opencl_vla);
return QualType();
}
if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
// CUDA device code and some other targets don't support VLAs.
targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
? diag::err_cuda_vla
: diag::err_vla_unsupported)
<< ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
? CurrentCUDATarget()
: CFT_InvalidTarget);
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOpts().C99) {
if (T->isVariableArrayType()) {
// Prohibit the use of VLAs during template argument deduction.
if (isSFINAEContext()) {
Diag(Loc, diag::err_vla_in_sfinae);
return QualType();
}
// Just extwarn about VLAs.
else
Diag(Loc, diag::ext_vla);
} else if (ASM != ArrayType::Normal || Quals != 0)
Diag(Loc,
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
: diag::ext_c99_array_usage) << ASM;
}
if (T->isVariableArrayType()) {
// Warn about VLAs for -Wvla.
Diag(Loc, diag::warn_vla_used);
}
// OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
// OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
// OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
if (getLangOpts().OpenCL) {
const QualType ArrType = Context.getBaseElementType(T);
if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
ArrType->isSamplerT() || ArrType->isImageType()) {
Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
return QualType();
}
}
return T;
}
QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
SourceLocation AttrLoc) {
// The base type must be integer (not Boolean or enumeration) or float, and
// can't already be a vector.
if (!CurType->isDependentType() &&
(!CurType->isBuiltinType() || CurType->isBooleanType() ||
(!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
return QualType();
}
if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
VectorType::GenericVector);
llvm::APSInt VecSize(32);
if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "vector_size" << AANT_ArgumentIntegerConstant
<< SizeExpr->getSourceRange();
return QualType();
}
if (CurType->isDependentType())
return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
VectorType::GenericVector);
unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
if (VectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
return QualType();
}
// vecSize is specified in bytes - convert to bits.
if (VectorSize % TypeSize) {
Diag(AttrLoc, diag::err_attribute_invalid_size)
<< SizeExpr->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< SizeExpr->getSourceRange();
return QualType();
}
return Context.getVectorType(CurType, VectorSize / TypeSize,
VectorType::GenericVector);
}
/// Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc) {
// Unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
//
// Additionally, OpenCL prohibits vectors of booleans (they're considered a
// reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
// on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
// of bool aren't allowed.
if ((!T->isDependentType() && !T->isIntegerType() &&
!T->isRealFloatingType()) ||
T->isBooleanType()) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
return QualType();
}
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
llvm::APSInt vecSize(32);
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "ext_vector_type" << AANT_ArgumentIntegerConstant
<< ArraySize->getSourceRange();
return QualType();
}
// Unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(vectorSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< ArraySize->getSourceRange();
return QualType();
}
return Context.getExtVectorType(T, vectorSize);
}
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}
bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
if (T->isArrayType() || T->isFunctionType()) {
Diag(Loc, diag::err_func_returning_array_function)
<< T->isFunctionType() << T;
return true;
}
// Functions cannot return half FP.
if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
FixItHint::CreateInsertion(Loc, "*");
return true;
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T << FixItHint::CreateInsertion(Loc, "*");
return true;
}
if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
T.hasNonTrivialToPrimitiveCopyCUnion())
checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
NTCUK_Destruct|NTCUK_Copy);
// C++2a [dcl.fct]p12:
// A volatile-qualified return type is deprecated
if (T.isVolatileQualified() && getLangOpts().CPlusPlus2a)
Diag(Loc, diag::warn_deprecated_volatile_return) << T;
return false;
}
/// Check the extended parameter information. Most of the necessary
/// checking should occur when applying the parameter attribute; the
/// only other checks required are positional restrictions.
static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
const FunctionProtoType::ExtProtoInfo &EPI,
llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
bool hasCheckedSwiftCall = false;
auto checkForSwiftCC = [&](unsigned paramIndex) {
// Only do this once.
if (hasCheckedSwiftCall) return;
hasCheckedSwiftCall = true;
if (EPI.ExtInfo.getCC() == CC_Swift) return;
S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
<< getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
};
for (size_t paramIndex = 0, numParams = paramTypes.size();
paramIndex != numParams; ++paramIndex) {
switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
// Nothing interesting to check for orindary-ABI parameters.
case ParameterABI::Ordinary:
continue;
// swift_indirect_result parameters must be a prefix of the function
// arguments.
case ParameterABI::SwiftIndirectResult:
checkForSwiftCC(paramIndex);
if (paramIndex != 0 &&
EPI.ExtParameterInfos[paramIndex - 1].getABI()
!= ParameterABI::SwiftIndirectResult) {
S.Diag(getParamLoc(paramIndex),
diag::err_swift_indirect_result_not_first);
}
continue;
case ParameterABI::SwiftContext:
checkForSwiftCC(paramIndex);
continue;
// swift_error parameters must be preceded by a swift_context parameter.
case ParameterABI::SwiftErrorResult:
checkForSwiftCC(paramIndex);
if (paramIndex == 0 ||
EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
ParameterABI::SwiftContext) {
S.Diag(getParamLoc(paramIndex),
diag::err_swift_error_result_not_after_swift_context);
}
continue;
}
llvm_unreachable("bad ABI kind");
}
}
QualType Sema::BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI) {
bool Invalid = false;
Invalid |= CheckFunctionReturnType(T, Loc);
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
// FIXME: Loc is too inprecise here, should use proper locations for args.
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
if (ParamType->isVoidType()) {
Diag(Loc, diag::err_param_with_void_type);
Invalid = true;
} else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
// Disallow half FP arguments.
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
FixItHint::CreateInsertion(Loc, "*");
Invalid = true;
}
// C++2a [dcl.fct]p4:
// A parameter with volatile-qualified type is deprecated
if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus2a)
Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
ParamTypes[Idx] = ParamType;
}
if (EPI.ExtParameterInfos) {
checkExtParameterInfos(*this, ParamTypes, EPI,
[=](unsigned i) { return Loc; });
}
if (EPI.ExtInfo.getProducesResult()) {
// This is just a warning, so we can't fail to build if we see it.
checkNSReturnsRetainedReturnType(Loc, T);
}
if (Invalid)
return QualType();
return Context.getFunctionType(T, ParamTypes, EPI);
}
/// Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity) {
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (CheckDistantExceptionSpec(T)) {
Diag(Loc, diag::err_distant_exception_spec);
return QualType();
}
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
// with reference type, or "cv void."
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
<< getPrintableNameForEntity(Entity);
return QualType();
}
if (!Class->isDependentType() && !Class->isRecordType()) {
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
return QualType();
}
// Adjust the default free function calling convention to the default method
// calling convention.
bool IsCtorOrDtor =
(Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
(Entity.getNameKind() == DeclarationName::CXXDestructorName);
if (T->isFunctionType())
adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
return Context.getMemberPointerType(T, Class.getTypePtr());
}
/// Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
SourceLocation Loc,
DeclarationName Entity) {
if (!T->isFunctionType()) {
Diag(Loc, diag::err_nonfunction_block_type);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
return QualType();
return Context.getBlockPointerType(T);
}
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
QualType QT = Ty.get();
if (QT.isNull()) {
if (TInfo) *TInfo = nullptr;
return QualType();
}
TypeSourceInfo *DI = nullptr;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
QT = LIT->getType();
DI = LIT->getTypeSourceInfo();
}
if (TInfo) *TInfo = DI;
return QT;
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex);
/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
QualType &declSpecType) {
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
// TODO: should we care about decl qualifiers?
// Check whether the declarator has the expected form. We walk
// from the inside out in order to make the block logic work.
unsigned outermostPointerIndex = 0;
bool isBlockPointer = false;
unsigned numPointers = 0;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = i;
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
// Count the number of pointers. Treat references
// interchangeably as pointers; if they're mis-ordered, normal
// type building will discover that.
outermostPointerIndex = chunkIndex;
numPointers++;
break;
case DeclaratorChunk::BlockPointer:
// If we have a pointer to block pointer, that's an acceptable
// indirect reference; anything else is not an application of
// the rules.
if (numPointers != 1) return;
numPointers++;
outermostPointerIndex = chunkIndex;
isBlockPointer = true;
// We don't care about pointer structure in return values here.
goto done;
case DeclaratorChunk::Array: // suppress if written (id[])?
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return;
}
}
done:
// If we have *one* pointer, then we want to throw the qualifier on
// the declaration-specifiers, which means that it needs to be a
// retainable object type.
if (numPointers == 1) {
// If it's not a retainable object type, the rule doesn't apply.
if (!declSpecType->isObjCRetainableType()) return;
// If it already has lifetime, don't do anything.
if (declSpecType.getObjCLifetime()) return;
// Otherwise, modify the type in-place.
Qualifiers qs;
if (declSpecType->isObjCARCImplicitlyUnretainedType())
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
else
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
// If we have *two* pointers, then we want to throw the qualifier on
// the outermost pointer.
} else if (numPointers == 2) {
// If we don't have a block pointer, we need to check whether the
// declaration-specifiers gave us something that will turn into a
// retainable object pointer after we slap the first pointer on it.
if (!isBlockPointer && !declSpecType->isObjCObjectType())
return;
// Look for an explicit lifetime attribute there.
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
if (chunk.Kind != DeclaratorChunk::Pointer &&
chunk.Kind != DeclaratorChunk::BlockPointer)
return;
for (const ParsedAttr &AL : chunk.getAttrs())
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
return;
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
outermostPointerIndex);
// Any other number of pointers/references does not trigger the rule.
} else return;
// TODO: mark whether we did this inference?
}
void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
SourceLocation AtomicQualLoc,
SourceLocation UnalignedQualLoc) {
if (!Quals)
return;
struct Qual {
const char *Name;
unsigned Mask;
SourceLocation Loc;
} const QualKinds[5] = {
{ "const", DeclSpec::TQ_const, ConstQualLoc },
{ "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
{ "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
{ "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
{ "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
};
SmallString<32> QualStr;
unsigned NumQuals = 0;
SourceLocation Loc;
FixItHint FixIts[5];
// Build a string naming the redundant qualifiers.
for (auto &E : QualKinds) {
if (Quals & E.Mask) {
if (!QualStr.empty()) QualStr += ' ';
QualStr += E.Name;
// If we have a location for the qualifier, offer a fixit.
SourceLocation QualLoc = E.Loc;
if (QualLoc.isValid()) {
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
if (Loc.isInvalid() ||
getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
Loc = QualLoc;
}
++NumQuals;
}
}
Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
}
// Diagnose pointless type qualifiers on the return type of a function.
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
Declarator &D,
unsigned FunctionChunkIndex) {
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
// FIXME: TypeSourceInfo doesn't preserve location information for
// qualifiers.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getLocalCVRQualifiers(),
D.getIdentifierLoc());
return;
}
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
End = D.getNumTypeObjects();
OuterChunkIndex != End; ++OuterChunkIndex) {
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
switch (OuterChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer: {
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
S.diagnoseIgnoredQualifiers(
diag::warn_qual_return_type,
PTI.TypeQuals,
SourceLocation(),
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
return;
}
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
// FIXME: We can't currently provide an accurate source location and a
// fix-it hint for these.
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getCVRQualifiers() | AtomicQual,
D.getIdentifierLoc());
return;
}
llvm_unreachable("unknown declarator chunk kind");
}
// If the qualifiers come from a conversion function type, don't diagnose
// them -- they're not necessarily redundant, since such a conversion
// operator can be explicitly called as "x.operator const int()".
if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
return;
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
// which are present there.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
D.getDeclSpec().getTypeQualifiers(),
D.getIdentifierLoc(),
D.getDeclSpec().getConstSpecLoc(),
D.getDeclSpec().getVolatileSpecLoc(),
D.getDeclSpec().getRestrictSpecLoc(),
D.getDeclSpec().getAtomicSpecLoc(),
D.getDeclSpec().getUnalignedSpecLoc());
}
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
TypeSourceInfo *&ReturnTypeInfo) {
Sema &SemaRef = state.getSema();
Declarator &D = state.getDeclarator();
QualType T;
ReturnTypeInfo = nullptr;
// The TagDecl owned by the DeclSpec.
TagDecl *OwnedTagDecl = nullptr;
switch (D.getName().getKind()) {
case UnqualifiedIdKind::IK_ImplicitSelfParam:
case UnqualifiedIdKind::IK_OperatorFunctionId:
case UnqualifiedIdKind::IK_Identifier:
case UnqualifiedIdKind::IK_LiteralOperatorId:
case UnqualifiedIdKind::IK_TemplateId:
T = ConvertDeclSpecToType(state);
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
// Owned declaration is embedded in declarator.
OwnedTagDecl->setEmbeddedInDeclarator(true);
}
break;
case UnqualifiedIdKind::IK_ConstructorName:
case UnqualifiedIdKind::IK_ConstructorTemplateId:
case UnqualifiedIdKind::IK_DestructorName:
// Constructors and destructors don't have return types. Use
// "void" instead.
T = SemaRef.Context.VoidTy;
processTypeAttrs(state, T, TAL_DeclSpec,
D.getMutableDeclSpec().getAttributes());
break;
case UnqualifiedIdKind::IK_DeductionGuideName:
// Deduction guides have a trailing return type and no type in their
// decl-specifier sequence. Use a placeholder return type for now.
T = SemaRef.Context.DependentTy;
break;
case UnqualifiedIdKind::IK_ConversionFunctionId:
// The result type of a conversion function is the type that it
// converts to.
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
&ReturnTypeInfo);
break;
}
if (!D.getAttributes().empty())
distributeTypeAttrsFromDeclarator(state, T);
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
if (DeducedType *Deduced = T->getContainedDeducedType()) {
AutoType *Auto = dyn_cast<AutoType>(Deduced);
int Error = -1;
// Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
// class template argument deduction)?
bool IsCXXAutoType =
(Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
bool IsDeducedReturnType = false;
switch (D.getContext()) {
case DeclaratorContext::LambdaExprContext:
// Declared return type of a lambda-declarator is implicit and is always
// 'auto'.
break;
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::PrototypeContext:
Error = 0;
break;
case DeclaratorContext::LambdaExprParameterContext:
// In C++14, generic lambdas allow 'auto' in their parameters.
if (!SemaRef.getLangOpts().CPlusPlus14 ||
!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
Error = 16;
else {
// If auto is mentioned in a lambda parameter context, convert it to a
// template parameter type.
sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
assert(LSI && "No LambdaScopeInfo on the stack!");
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
const unsigned AutoParameterPosition = LSI->TemplateParams.size();
const bool IsParameterPack = D.hasEllipsis();
// Create the TemplateTypeParmDecl here to retrieve the corresponding
// template parameter type. Template parameters are temporarily added
// to the TU until the associated TemplateDecl is created.
TemplateTypeParmDecl *CorrespondingTemplateParam =
TemplateTypeParmDecl::Create(
SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
/*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
TemplateParameterDepth, AutoParameterPosition,
/*Identifier*/ nullptr, false, IsParameterPack);
CorrespondingTemplateParam->setImplicit();
LSI->TemplateParams.push_back(CorrespondingTemplateParam);
// Replace the 'auto' in the function parameter with this invented
// template type parameter.
// FIXME: Retain some type sugar to indicate that this was written
// as 'auto'.
T = state.ReplaceAutoType(
T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
}
break;
case DeclaratorContext::MemberContext: {
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
D.isFunctionDeclarator())
break;
bool Cxx = SemaRef.getLangOpts().CPlusPlus;
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
case TTK_Enum: llvm_unreachable("unhandled tag kind");
case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
case TTK_Class: Error = 5; /* Class member */ break;
case TTK_Interface: Error = 6; /* Interface member */ break;
}
if (D.getDeclSpec().isFriendSpecified())
Error = 20; // Friend type
break;
}
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
Error = 7; // Exception declaration
break;
case DeclaratorContext::TemplateParamContext:
if (isa<DeducedTemplateSpecializationType>(Deduced))
Error = 19; // Template parameter
else if (!SemaRef.getLangOpts().CPlusPlus17)
Error = 8; // Template parameter (until C++17)
break;
case DeclaratorContext::BlockLiteralContext:
Error = 9; // Block literal
break;
case DeclaratorContext::TemplateArgContext:
// Within a template argument list, a deduced template specialization
// type will be reinterpreted as a template template argument.
if (isa<DeducedTemplateSpecializationType>(Deduced) &&
!D.getNumTypeObjects() &&
D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
break;
LLVM_FALLTHROUGH;
case DeclaratorContext::TemplateTypeArgContext:
Error = 10; // Template type argument
break;
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
Error = 12; // Type alias
break;
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
Error = 13; // Function return type
IsDeducedReturnType = true;
break;
case DeclaratorContext::ConversionIdContext:
if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
Error = 14; // conversion-type-id
IsDeducedReturnType = true;
break;
case DeclaratorContext::FunctionalCastContext:
if (isa<DeducedTemplateSpecializationType>(Deduced))
break;
LLVM_FALLTHROUGH;
case DeclaratorContext::TypeNameContext:
Error = 15; // Generic
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::ConditionContext:
// FIXME: P0091R3 (erroneously) does not permit class template argument
// deduction in conditions, for-init-statements, and other declarations
// that are not simple-declarations.
break;
case DeclaratorContext::CXXNewContext:
// FIXME: P0091R3 does not permit class template argument deduction here,
// but we follow GCC and allow it anyway.
if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
Error = 17; // 'new' type
break;
case DeclaratorContext::KNRTypeListContext:
Error = 18; // K&R function parameter
break;
}
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
Error = 11;
// In Objective-C it is an error to use 'auto' on a function declarator
// (and everywhere for '__auto_type').
if (D.isFunctionDeclarator() &&
(!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
Error = 13;
bool HaveTrailing = false;
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
// contains a trailing return type. That is only legal at the outermost
// level. Check all declarator chunks (outermost first) anyway, to give
// better diagnostics.
// We don't support '__auto_type' with trailing return types.
// FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
D.hasTrailingReturnType()) {
HaveTrailing = true;
Error = -1;
}
SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
AutoRange = D.getName().getSourceRange();
if (Error != -1) {
unsigned Kind;
if (Auto) {
switch (Auto->getKeyword()) {
case AutoTypeKeyword::Auto: Kind = 0; break;
case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
}
} else {
assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type");
Kind = 3;
}
auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
<< Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
<< QualType(Deduced, 0) << AutoRange;
if (auto *TD = TN.getAsTemplateDecl())
SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else if (Auto && !HaveTrailing &&
D.getContext() != DeclaratorContext::LambdaExprContext) {
// If there was a trailing return type, we already got
// warn_cxx98_compat_trailing_return_type in the parser.
SemaRef.Diag(AutoRange.getBegin(),
D.getContext() ==
DeclaratorContext::LambdaExprParameterContext
? diag::warn_cxx11_compat_generic_lambda
: IsDeducedReturnType
? diag::warn_cxx11_compat_deduced_return_type
: diag::warn_cxx98_compat_auto_type_specifier)
<< AutoRange;
}
}
if (SemaRef.getLangOpts().CPlusPlus &&
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
// Check the contexts where C++ forbids the declaration of a new class
// or enumeration in a type-specifier-seq.
unsigned DiagID = 0;
switch (D.getContext()) {
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
// Class and enumeration definitions are syntactically not allowed in
// trailing return types.
llvm_unreachable("parser should not have allowed this");
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::MemberContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::LambdaExprContext:
// C++11 [dcl.type]p3:
// A type-specifier-seq shall not define a class or enumeration unless
// it appears in the type-id of an alias-declaration (7.1.3) that is not
// the declaration of a template-declaration.
case DeclaratorContext::AliasDeclContext:
break;
case DeclaratorContext::AliasTemplateContext:
DiagID = diag::err_type_defined_in_alias_template;
break;
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
case DeclaratorContext::ConversionIdContext:
case DeclaratorContext::TemplateParamContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
DiagID = diag::err_type_defined_in_type_specifier;
break;
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::LambdaExprParameterContext:
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::KNRTypeListContext:
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
DiagID = diag::err_type_defined_in_param_type;
break;
case DeclaratorContext::ConditionContext:
// C++ 6.4p2:
// The type-specifier-seq shall not contain typedef and shall not declare
// a new class or enumeration.
DiagID = diag::err_type_defined_in_condition;
break;
}
if (DiagID != 0) {
SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
}
}
assert(!T.isNull() && "This function should not return a null type");
return T;
}
/// Produce an appropriate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
DeclaratorChunk &DeclType, QualType RT) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
// If the return type is void there is no ambiguity.
if (RT->isVoidType())
return;
// An initializer for a non-class type can have at most one argument.
if (!RT->isRecordType() && FTI.NumParams > 1)
return;
// An initializer for a reference must have exactly one argument.
if (RT->isReferenceType() && FTI.NumParams != 1)
return;
// Only warn if this declarator is declaring a function at block scope, and
// doesn't have a storage class (such as 'extern') specified.
if (!D.isFunctionDeclarator() ||
D.getFunctionDefinitionKind() != FDK_Declaration ||
!S.CurContext->isFunctionOrMethod() ||
D.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_unspecified)
return;
// Inside a condition, a direct initializer is not permitted. We allow one to
// be parsed in order to give better diagnostics in condition parsing.
if (D.getContext() == DeclaratorContext::ConditionContext)
return;
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
S.Diag(DeclType.Loc,
FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
: diag::warn_empty_parens_are_function_decl)
<< ParenRange;
// If the declaration looks like:
// T var1,
// f();
// and name lookup finds a function named 'f', then the ',' was
// probably intended to be a ';'.
if (!D.isFirstDeclarator() && D.getIdentifier()) {
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
if (Comma.getFileID() != Name.getFileID() ||
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope()))
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
<< D.getIdentifier();
Result.suppressDiagnostics();
}
}
if (FTI.NumParams > 0) {
// For a declaration with parameters, eg. "T var(T());", suggest adding
// parens around the first parameter to turn the declaration into a
// variable declaration.
SourceRange Range = FTI.Params[0].Param->getSourceRange();
SourceLocation B = Range.getBegin();
SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
// FIXME: Maybe we should suggest adding braces instead of parens
// in C++11 for classes that don't have an initializer_list constructor.
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
<< FixItHint::CreateInsertion(B, "(")
<< FixItHint::CreateInsertion(E, ")");
} else {
// For a declaration without parameters, eg. "T var();", suggest replacing
// the parens with an initializer to turn the declaration into a variable
// declaration.
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
// Empty parens mean value-initialization, and no parens mean
// default initialization. These are equivalent if the default
// constructor is user-provided or if zero-initialization is a
// no-op.
if (RD && RD->hasDefinition() &&
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
<< FixItHint::CreateRemoval(ParenRange);
else {
std::string Init =
S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
if (Init.empty() && S.LangOpts.CPlusPlus11)
Init = "{}";
if (!Init.empty())
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
<< FixItHint::CreateReplacement(ParenRange, Init);
}
}
}
/// Produce an appropriate diagnostic for a declarator with top-level
/// parentheses.
static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
assert(Paren.Kind == DeclaratorChunk::Paren &&
"do not have redundant top-level parentheses");
// This is a syntactic check; we're not interested in cases that arise
// during template instantiation.
if (S.inTemplateInstantiation())
return;
// Check whether this could be intended to be a construction of a temporary
// object in C++ via a function-style cast.
bool CouldBeTemporaryObject =
S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
!D.isInvalidType() && D.getIdentifier() &&
D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
(T->isRecordType() || T->isDependentType()) &&
D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
bool StartsWithDeclaratorId = true;
for (auto &C : D.type_objects()) {
switch (C.Kind) {
case DeclaratorChunk::Paren:
if (&C == &Paren)
continue;
LLVM_FALLTHROUGH;
case DeclaratorChunk::Pointer:
StartsWithDeclaratorId = false;
continue;
case DeclaratorChunk::Array:
if (!C.Arr.NumElts)
CouldBeTemporaryObject = false;
continue;
case DeclaratorChunk::Reference:
// FIXME: Suppress the warning here if there is no initializer; we're
// going to give an error anyway.
// We assume that something like 'T (&x) = y;' is highly likely to not
// be intended to be a temporary object.
CouldBeTemporaryObject = false;
StartsWithDeclaratorId = false;
continue;
case DeclaratorChunk::Function:
// In a new-type-id, function chunks require parentheses.
if (D.getContext() == DeclaratorContext::CXXNewContext)
return;
// FIXME: "A(f())" deserves a vexing-parse warning, not just a
// redundant-parens warning, but we don't know whether the function
// chunk was syntactically valid as an expression here.
CouldBeTemporaryObject = false;
continue;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
// These cannot appear in expressions.
CouldBeTemporaryObject = false;
StartsWithDeclaratorId = false;
continue;
}
}
// FIXME: If there is an initializer, assume that this is not intended to be
// a construction of a temporary object.
// Check whether the name has already been declared; if not, this is not a
// function-style cast.
if (CouldBeTemporaryObject) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (!S.LookupName(Result, S.getCurScope()))
CouldBeTemporaryObject = false;
Result.suppressDiagnostics();
}
SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
if (!CouldBeTemporaryObject) {
// If we have A (::B), the parentheses affect the meaning of the program.
// Suppress the warning in that case. Don't bother looking at the DeclSpec
// here: even (e.g.) "int ::x" is visually ambiguous even though it's
// formally unambiguous.
if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
NNS = NNS->getPrefix()) {
if (NNS->getKind() == NestedNameSpecifier::Global)
return;
}
}
S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
<< ParenRange << FixItHint::CreateRemoval(Paren.Loc)
<< FixItHint::CreateRemoval(Paren.EndLoc);
return;
}
S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
<< ParenRange << D.getIdentifier();
auto *RD = T->getAsCXXRecordDecl();
if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
<< FixItHint::CreateInsertion(Paren.Loc, " varname") << T
<< D.getIdentifier();
// FIXME: A cast to void is probably a better suggestion in cases where it's
// valid (when there is no initializer and we're not in a condition).
S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
<< FixItHint::CreateInsertion(D.getBeginLoc(), "(")
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
<< FixItHint::CreateRemoval(Paren.Loc)
<< FixItHint::CreateRemoval(Paren.EndLoc);
}
/// Helper for figuring out the default CC for a function declarator type. If
/// this is the outermost chunk, then we can determine the CC from the
/// declarator context. If not, then this could be either a member function
/// type or normal function type.
static CallingConv getCCForDeclaratorChunk(
Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
// Check for an explicit CC attribute.
for (const ParsedAttr &AL : AttrList) {
switch (AL.getKind()) {
CALLING_CONV_ATTRS_CASELIST : {
// Ignore attributes that don't validate or can't apply to the
// function type. We'll diagnose the failure to apply them in
// handleFunctionTypeAttr.
CallingConv CC;
if (!S.CheckCallingConvAttr(AL, CC) &&
(!FTI.isVariadic || supportsVariadicCall(CC))) {
return CC;
}
break;
}
default:
break;
}
}
bool IsCXXInstanceMethod = false;
if (S.getLangOpts().CPlusPlus) {
// Look inwards through parentheses to see if this chunk will form a
// member pointer type or if we're the declarator. Any type attributes
// between here and there will override the CC we choose here.
unsigned I = ChunkIndex;
bool FoundNonParen = false;
while (I && !FoundNonParen) {
--I;
if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
FoundNonParen = true;
}
if (FoundNonParen) {
// If we're not the declarator, we're a regular function type unless we're
// in a member pointer.
IsCXXInstanceMethod =
D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
} else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
// This can only be a call operator for a lambda, which is an instance
// method.
IsCXXInstanceMethod = true;
} else {
// We're the innermost decl chunk, so must be a function declarator.
assert(D.isFunctionDeclarator());
// If we're inside a record, we're declaring a method, but it could be
// explicitly or implicitly static.
IsCXXInstanceMethod =
D.isFirstDeclarationOfMember() &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
!D.isStaticMember();
}
}
CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
IsCXXInstanceMethod);
// Attribute AT_OpenCLKernel affects the calling convention for SPIR
// and AMDGPU targets, hence it cannot be treated as a calling
// convention attribute. This is the simplest place to infer
// calling convention for OpenCL kernels.
if (S.getLangOpts().OpenCL) {
for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
CC = CC_OpenCLKernel;
break;
}
}
}
return CC;
}
namespace {
/// A simple notion of pointer kinds, which matches up with the various
/// pointer declarators.
enum class SimplePointerKind {
Pointer,
BlockPointer,
MemberPointer,
Array,
};
} // end anonymous namespace
IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
switch (nullability) {
case NullabilityKind::NonNull:
if (!Ident__Nonnull)
Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
return Ident__Nonnull;
case NullabilityKind::Nullable:
if (!Ident__Nullable)
Ident__Nullable = PP.getIdentifierInfo("_Nullable");
return Ident__Nullable;
case NullabilityKind::Unspecified:
if (!Ident__Null_unspecified)
Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
return Ident__Null_unspecified;
}
llvm_unreachable("Unknown nullability kind.");
}
/// Retrieve the identifier "NSError".
IdentifierInfo *Sema::getNSErrorIdent() {
if (!Ident_NSError)
Ident_NSError = PP.getIdentifierInfo("NSError");
return Ident_NSError;
}
/// Check whether there is a nullability attribute of any kind in the given
/// attribute list.
static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
for (const ParsedAttr &AL : attrs) {
if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
AL.getKind() == ParsedAttr::AT_TypeNullable ||
AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
return true;
}
return false;
}
namespace {
/// Describes the kind of a pointer a declarator describes.
enum class PointerDeclaratorKind {
// Not a pointer.
NonPointer,
// Single-level pointer.
SingleLevelPointer,
// Multi-level pointer (of any pointer kind).
MultiLevelPointer,
// CFFooRef*
MaybePointerToCFRef,
// CFErrorRef*
CFErrorRefPointer,
// NSError**
NSErrorPointerPointer,
};
/// Describes a declarator chunk wrapping a pointer that marks inference as
/// unexpected.
// These values must be kept in sync with diagnostics.
enum class PointerWrappingDeclaratorKind {
/// Pointer is top-level.
None = -1,
/// Pointer is an array element.
Array = 0,
/// Pointer is the referent type of a C++ reference.
Reference = 1
};
} // end anonymous namespace
/// Classify the given declarator, whose type-specified is \c type, based on
/// what kind of pointer it refers to.
///
/// This is used to determine the default nullability.
static PointerDeclaratorKind
classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
PointerWrappingDeclaratorKind &wrappingKind) {
unsigned numNormalPointers = 0;
// For any dependent type, we consider it a non-pointer.
if (type->isDependentType())
return PointerDeclaratorKind::NonPointer;
// Look through the declarator chunks to identify pointers.
for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
if (numNormalPointers == 0)
wrappingKind = PointerWrappingDeclaratorKind::Array;
break;
case DeclaratorChunk::Function:
case DeclaratorChunk::Pipe:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
case DeclaratorChunk::Paren:
break;
case DeclaratorChunk::Reference:
if (numNormalPointers == 0)
wrappingKind = PointerWrappingDeclaratorKind::Reference;
break;
case DeclaratorChunk::Pointer:
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
break;
}
}
// Then, dig into the type specifier itself.
unsigned numTypeSpecifierPointers = 0;
do {
// Decompose normal pointers.
if (auto ptrType = type->getAs<PointerType>()) {
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
type = ptrType->getPointeeType();
++numTypeSpecifierPointers;
continue;
}
// Decompose block pointers.
if (type->getAs<BlockPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Decompose member pointers.
if (type->getAs<MemberPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Look at Objective-C object pointers.
if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
++numNormalPointers;
++numTypeSpecifierPointers;
// If this is NSError**, report that.
if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
return PointerDeclaratorKind::NSErrorPointerPointer;
}
}
break;
}
// Look at Objective-C class types.
if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
return PointerDeclaratorKind::NSErrorPointerPointer;
}
break;
}
// If at this point we haven't seen a pointer, we won't see one.
if (numNormalPointers == 0)
return PointerDeclaratorKind::NonPointer;
if (auto recordType = type->getAs<RecordType>()) {
RecordDecl *recordDecl = recordType->getDecl();
bool isCFError = false;
if (S.CFError) {
// If we already know about CFError, test it directly.
isCFError = (S.CFError == recordDecl);
} else {
// Check whether this is CFError, which we identify based on its bridge
// to NSError. CFErrorRef used to be declared with "objc_bridge" but is
// now declared with "objc_bridge_mutable", so look for either one of
// the two attributes.
if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
IdentifierInfo *bridgedType = nullptr;
if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
bridgedType = bridgeAttr->getBridgedType();
else if (auto bridgeAttr =
recordDecl->getAttr<ObjCBridgeMutableAttr>())
bridgedType = bridgeAttr->getBridgedType();
if (bridgedType == S.getNSErrorIdent()) {
S.CFError = recordDecl;
isCFError = true;
}
}
}
// If this is CFErrorRef*, report it as such.
if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
return PointerDeclaratorKind::CFErrorRefPointer;
}
break;
}
break;
} while (true);
switch (numNormalPointers) {
case 0:
return PointerDeclaratorKind::NonPointer;
case 1:
return PointerDeclaratorKind::SingleLevelPointer;
case 2:
return PointerDeclaratorKind::MaybePointerToCFRef;
default:
return PointerDeclaratorKind::MultiLevelPointer;
}
}
static FileID getNullabilityCompletenessCheckFileID(Sema &S,
SourceLocation loc) {
// If we're anywhere in a function, method, or closure context, don't perform
// completeness checks.
for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
if (ctx->isFunctionOrMethod())
return FileID();
if (ctx->isFileContext())
break;
}
// We only care about the expansion location.
loc = S.SourceMgr.getExpansionLoc(loc);
FileID file = S.SourceMgr.getFileID(loc);
if (file.isInvalid())
return FileID();
// Retrieve file information.
bool invalid = false;
const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
if (invalid || !sloc.isFile())
return FileID();
// We don't want to perform completeness checks on the main file or in
// system headers.
const SrcMgr::FileInfo &fileInfo = sloc.getFile();
if (fileInfo.getIncludeLoc().isInvalid())
return FileID();
if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
S.Diags.getSuppressSystemWarnings()) {
return FileID();
}
return file;
}
/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
/// taking into account whitespace before and after.
static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
SourceLocation PointerLoc,
NullabilityKind Nullability) {
assert(PointerLoc.isValid());
if (PointerLoc.isMacroID())
return;
SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
return;
const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
if (!NextChar)
return;
SmallString<32> InsertionTextBuf{" "};
InsertionTextBuf += getNullabilitySpelling(Nullability);
InsertionTextBuf += " ";
StringRef InsertionText = InsertionTextBuf.str();
if (isWhitespace(*NextChar)) {
InsertionText = InsertionText.drop_back();
} else if (NextChar[-1] == '[') {
if (NextChar[0] == ']')
InsertionText = InsertionText.drop_back().drop_front();
else
InsertionText = InsertionText.drop_front();
} else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
!isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
InsertionText = InsertionText.drop_back().drop_front();
}
Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
}
static void emitNullabilityConsistencyWarning(Sema &S,
SimplePointerKind PointerKind,
SourceLocation PointerLoc,
SourceLocation PointerEndLoc) {
assert(PointerLoc.isValid());
if (PointerKind == SimplePointerKind::Array) {
S.Diag(PointerLoc, diag::warn_nullability_missing_array);
} else {
S.Diag(PointerLoc, diag::warn_nullability_missing)
<< static_cast<unsigned>(PointerKind);
}
auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
if (FixItLoc.isMacroID())
return;
auto addFixIt = [&](NullabilityKind Nullability) {
auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
Diag << static_cast<unsigned>(Nullability);
Diag << static_cast<unsigned>(PointerKind);
fixItNullability(S, Diag, FixItLoc, Nullability);
};
addFixIt(NullabilityKind::Nullable);
addFixIt(NullabilityKind::NonNull);
}
/// Complains about missing nullability if the file containing \p pointerLoc
/// has other uses of nullability (either the keywords or the \c assume_nonnull
/// pragma).
///
/// If the file has \e not seen other uses of nullability, this particular
/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
static void
checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
SourceLocation pointerLoc,
SourceLocation pointerEndLoc = SourceLocation()) {
// Determine which file we're performing consistency checking for.
FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
if (file.isInvalid())
return;
// If we haven't seen any type nullability in this file, we won't warn now
// about anything.
FileNullability &fileNullability = S.NullabilityMap[file];
if (!fileNullability.SawTypeNullability) {
// If this is the first pointer declarator in the file, and the appropriate
// warning is on, record it in case we need to diagnose it retroactively.
diag::kind diagKind;
if (pointerKind == SimplePointerKind::Array)
diagKind = diag::warn_nullability_missing_array;
else
diagKind = diag::warn_nullability_missing;
if (fileNullability.PointerLoc.isInvalid() &&
!S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
fileNullability.PointerLoc = pointerLoc;
fileNullability.PointerEndLoc = pointerEndLoc;
fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
}
return;
}
// Complain about missing nullability.
emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
}
/// Marks that a nullability feature has been used in the file containing
/// \p loc.
///
/// If this file already had pointer types in it that were missing nullability,
/// the first such instance is retroactively diagnosed.
///
/// \sa checkNullabilityConsistency
static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
FileID file = getNullabilityCompletenessCheckFileID(S, loc);
if (file.isInvalid())
return;
FileNullability &fileNullability = S.NullabilityMap[file];
if (fileNullability.SawTypeNullability)
return;
fileNullability.SawTypeNullability = true;
// If we haven't seen any type nullability before, now we have. Retroactively
// diagnose the first unannotated pointer, if there was one.
if (fileNullability.PointerLoc.isInvalid())
return;
auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
fileNullability.PointerEndLoc);
}
/// Returns true if any of the declarator chunks before \p endIndex include a
/// level of indirection: array, pointer, reference, or pointer-to-member.
///
/// Because declarator chunks are stored in outer-to-inner order, testing
/// every chunk before \p endIndex is testing all chunks that embed the current
/// chunk as part of their type.
///
/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
/// end index, in which case all chunks are tested.
static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
unsigned i = endIndex;
while (i != 0) {
// Walk outwards along the declarator chunks.
--i;
const DeclaratorChunk &DC = D.getTypeObject(i);
switch (DC.Kind) {
case DeclaratorChunk::Paren:
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
return true;
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Pipe:
// These are invalid anyway, so just ignore.
break;
}
}
return false;
}
static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
return (Chunk.Kind == DeclaratorChunk::Pointer ||
Chunk.Kind == DeclaratorChunk::Array);
}
template<typename AttrT>
static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
AL.setUsedAsTypeAttr();
return ::new (Ctx) AttrT(Ctx, AL);
}
static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
NullabilityKind NK) {
switch (NK) {
case NullabilityKind::NonNull:
return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
case NullabilityKind::Nullable:
return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
case NullabilityKind::Unspecified:
return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
}
llvm_unreachable("unknown NullabilityKind");
}
// Diagnose whether this is a case with the multiple addr spaces.
// Returns true if this is an invalid case.
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
// by qualifiers for two or more different address spaces."
static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
LangAS ASNew,
SourceLocation AttrLoc) {
if (ASOld != LangAS::Default) {
if (ASOld != ASNew) {
S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
return true;
}
// Emit a warning if they are identical; it's likely unintended.
S.Diag(AttrLoc,
diag::warn_attribute_address_multiple_identical_qualifiers);
}
return false;
}
static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
QualType T, TypeSourceInfo *ReturnTypeInfo);
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
QualType declSpecType,
TypeSourceInfo *TInfo) {
// The TypeSourceInfo that this function returns will not be a null type.
// If there is an error, this function will fill in a dummy type as fallback.
QualType T = declSpecType;
Declarator &D = state.getDeclarator();
Sema &S = state.getSema();
ASTContext &Context = S.Context;
const LangOptions &LangOpts = S.getLangOpts();
// The name we're declaring, if any.
DeclarationName Name;
if (D.getIdentifier())
Name = D.getIdentifier();
// Does this declaration declare a typedef-name?
bool IsTypedefName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
D.getContext() == DeclaratorContext::AliasDeclContext ||
D.getContext() == DeclaratorContext::AliasTemplateContext;
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
bool IsQualifiedFunction = T->isFunctionProtoType() &&
(!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
// If T is 'decltype(auto)', the only declarators we can have are parens
// and at most one function declarator if this is a function declaration.
// If T is a deduced class template specialization type, we can have no
// declarator chunks at all.
if (auto *DT = T->getAs<DeducedType>()) {
const AutoType *AT = T->getAs<AutoType>();
bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
unsigned Index = E - I - 1;
DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
unsigned DiagId = IsClassTemplateDeduction
? diag::err_deduced_class_template_compound_type
: diag::err_decltype_auto_compound_type;
unsigned DiagKind = 0;
switch (DeclChunk.Kind) {
case DeclaratorChunk::Paren:
// FIXME: Rejecting this is a little silly.
if (IsClassTemplateDeduction) {
DiagKind = 4;
break;
}
continue;
case DeclaratorChunk::Function: {
if (IsClassTemplateDeduction) {
DiagKind = 3;
break;
}
unsigned FnIndex;
if (D.isFunctionDeclarationContext() &&
D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
continue;
DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
break;
}
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
DiagKind = 0;
break;
case DeclaratorChunk::Reference:
DiagKind = 1;
break;
case DeclaratorChunk::Array:
DiagKind = 2;
break;
case DeclaratorChunk::Pipe:
break;
}
S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
D.setInvalidType(true);
break;
}
}
}
// Determine whether we should infer _Nonnull on pointer types.
Optional<NullabilityKind> inferNullability;
bool inferNullabilityCS = false;
bool inferNullabilityInnerOnly = false;
bool inferNullabilityInnerOnlyComplete = false;
// Are we in an assume-nonnull region?
bool inAssumeNonNullRegion = false;
SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
if (assumeNonNullLoc.isValid()) {
inAssumeNonNullRegion = true;
recordNullabilitySeen(S, assumeNonNullLoc);
}
// Whether to complain about missing nullability specifiers or not.
enum {
/// Never complain.
CAMN_No,
/// Complain on the inner pointers (but not the outermost
/// pointer).
CAMN_InnerPointers,
/// Complain about any pointers that don't have nullability
/// specified or inferred.
CAMN_Yes
} complainAboutMissingNullability = CAMN_No;
unsigned NumPointersRemaining = 0;
auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
if (IsTypedefName) {
// For typedefs, we do not infer any nullability (the default),
// and we only complain about missing nullability specifiers on
// inner pointers.
complainAboutMissingNullability = CAMN_InnerPointers;
if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
!T->getNullability(S.Context)) {
// Note that we allow but don't require nullability on dependent types.
++NumPointersRemaining;
}
for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Pipe:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
++NumPointersRemaining;
break;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Reference:
continue;
case DeclaratorChunk::Pointer:
++NumPointersRemaining;
continue;
}
}
} else {
bool isFunctionOrMethod = false;
switch (auto context = state.getDeclarator().getContext()) {
case DeclaratorContext::ObjCParameterContext:
case DeclaratorContext::ObjCResultContext:
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
isFunctionOrMethod = true;
LLVM_FALLTHROUGH;
case DeclaratorContext::MemberContext:
if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
complainAboutMissingNullability = CAMN_No;
break;
}
// Weak properties are inferred to be nullable.
if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
inferNullability = NullabilityKind::Nullable;
break;
}
LLVM_FALLTHROUGH;
case DeclaratorContext::FileContext:
case DeclaratorContext::KNRTypeListContext: {
complainAboutMissingNullability = CAMN_Yes;
// Nullability inference depends on the type and declarator.
auto wrappingKind = PointerWrappingDeclaratorKind::None;
switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
case PointerDeclaratorKind::NonPointer:
case PointerDeclaratorKind::MultiLevelPointer:
// Cannot infer nullability.
break;
case PointerDeclaratorKind::SingleLevelPointer:
// Infer _Nonnull if we are in an assumes-nonnull region.
if (inAssumeNonNullRegion) {
complainAboutInferringWithinChunk = wrappingKind;
inferNullability = NullabilityKind::NonNull;
inferNullabilityCS =
(context == DeclaratorContext::ObjCParameterContext ||
context == DeclaratorContext::ObjCResultContext);
}
break;
case PointerDeclaratorKind::CFErrorRefPointer:
case PointerDeclaratorKind::NSErrorPointerPointer:
// Within a function or method signature, infer _Nullable at both
// levels.
if (isFunctionOrMethod && inAssumeNonNullRegion)
inferNullability = NullabilityKind::Nullable;
break;
case PointerDeclaratorKind::MaybePointerToCFRef:
if (isFunctionOrMethod) {
// On pointer-to-pointer parameters marked cf_returns_retained or
// cf_returns_not_retained, if the outer pointer is explicit then
// infer the inner pointer as _Nullable.
auto hasCFReturnsAttr =
[](const ParsedAttributesView &AttrList) -> bool {
return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
};
if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
if (hasCFReturnsAttr(D.getAttributes()) ||
hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
inferNullability = NullabilityKind::Nullable;
inferNullabilityInnerOnly = true;
}
}
}
break;
}
break;
}
case DeclaratorContext::ConversionIdContext:
complainAboutMissingNullability = CAMN_Yes;
break;
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::ConditionContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::LambdaExprContext:
case DeclaratorContext::LambdaExprParameterContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::TemplateParamContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
// Don't infer in these contexts.
break;
}
}
// Local function that returns true if its argument looks like a va_list.
auto isVaList = [&S](QualType T) -> bool {
auto *typedefTy = T->getAs<TypedefType>();
if (!typedefTy)
return false;
TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
do {
if (typedefTy->getDecl() == vaListTypedef)
return true;
if (auto *name = typedefTy->getDecl()->getIdentifier())
if (name->isStr("va_list"))
return true;
typedefTy = typedefTy->desugar()->getAs<TypedefType>();
} while (typedefTy);
return false;
};
// Local function that checks the nullability for a given pointer declarator.
// Returns true if _Nonnull was inferred.
auto inferPointerNullability =
[&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
SourceLocation pointerEndLoc,
ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
// We've seen a pointer.
if (NumPointersRemaining > 0)
--NumPointersRemaining;
// If a nullability attribute is present, there's nothing to do.
if (hasNullabilityAttr(attrs))
return nullptr;
// If we're supposed to infer nullability, do so now.
if (inferNullability && !inferNullabilityInnerOnlyComplete) {
ParsedAttr::Syntax syntax = inferNullabilityCS
? ParsedAttr::AS_ContextSensitiveKeyword
: ParsedAttr::AS_Keyword;
ParsedAttr *nullabilityAttr = Pool.create(
S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
nullptr, SourceLocation(), nullptr, 0, syntax);
attrs.addAtEnd(nullabilityAttr);
if (inferNullabilityCS) {
state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
}
if (pointerLoc.isValid() &&
complainAboutInferringWithinChunk !=
PointerWrappingDeclaratorKind::None) {
auto Diag =
S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
Diag << static_cast<int>(complainAboutInferringWithinChunk);
fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
}
if (inferNullabilityInnerOnly)
inferNullabilityInnerOnlyComplete = true;
return nullabilityAttr;
}
// If we're supposed to complain about missing nullability, do so
// now if it's truly missing.
switch (complainAboutMissingNullability) {
case CAMN_No:
break;
case CAMN_InnerPointers:
if (NumPointersRemaining == 0)
break;
LLVM_FALLTHROUGH;
case CAMN_Yes:
checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
}
return nullptr;
};
// If the type itself could have nullability but does not, infer pointer
// nullability and perform consistency checking.
if (S.CodeSynthesisContexts.empty()) {
if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
!T->getNullability(S.Context)) {
if (isVaList(T)) {
// Record that we've seen a pointer, but do nothing else.
if (NumPointersRemaining > 0)
--NumPointersRemaining;
} else {
SimplePointerKind pointerKind = SimplePointerKind::Pointer;
if (T->isBlockPointerType())
pointerKind = SimplePointerKind::BlockPointer;
else if (T->isMemberPointerType())
pointerKind = SimplePointerKind::MemberPointer;
if (auto *attr = inferPointerNullability(
pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getEndLoc(),
D.getMutableDeclSpec().getAttributes(),
D.getMutableDeclSpec().getAttributePool())) {
T = state.getAttributedType(
createNullabilityAttr(Context, *attr, *inferNullability), T, T);
}
}
}
if (complainAboutMissingNullability == CAMN_Yes &&
T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
D.isPrototypeContext() &&
!hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
checkNullabilityConsistency(S, SimplePointerKind::Array,
D.getDeclSpec().getTypeSpecTypeLoc());
}
}
bool ExpectNoDerefChunk =
state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
// Walk the DeclTypeInfo, building the recursive type as we go.
// DeclTypeInfos are ordered from the identifier out, which is
// opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
if (i == 0)
warnAboutRedundantParens(S, D, T);
T = S.BuildParenType(T);
break;
case DeclaratorChunk::BlockPointer:
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
// OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
// qualified with const.
if (LangOpts.OpenCL)
DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
}
break;
case DeclaratorChunk::Pointer:
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
// Handle pointer nullability
inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
T = Context.getObjCObjectPointerType(T);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
}
// OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
// OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
// OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
if (LangOpts.OpenCL) {
if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
T->isBlockPointerType()) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
D.setInvalidType(true);
}
}
T = S.BuildPointerType(T, DeclType.Loc, Name);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference: {
// Verify that we're not building a reference to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
if (DeclType.Ref.HasRestrict)
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
break;
}
case DeclaratorChunk::Array: {
// Verify that we're not building an array of pointers to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
// FIXME: This check isn't quite right: it allows star in prototypes
// for function definitions, and disallows some edge cases detailed
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
ASM = ArrayType::Normal;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
// shall appear only in a declaration of a function parameter with an
// array type, ...
if (ASM == ArrayType::Static || ATI.TypeQuals) {
if (!(D.isPrototypeContext() ||
D.getContext() == DeclaratorContext::KNRTypeListContext)) {
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
// Remove the 'static' and the type qualifiers.
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: ... and then only in the outermost array type
// derivation.
if (hasOuterPointerLikeChunk(D, chunkIndex)) {
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
}
const AutoType *AT = T->getContainedAutoType();
// Allow arrays of auto if we are a generic lambda parameter.
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
if (AT &&
D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
// We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Name) << T;
T = QualType();
break;
}
// Array parameters can be marked nullable as well, although it's not
// necessary if they're marked 'static'.
if (complainAboutMissingNullability == CAMN_Yes &&
!hasNullabilityAttr(DeclType.getAttrs()) &&
ASM != ArrayType::Static &&
D.isPrototypeContext() &&
!hasOuterPointerLikeChunk(D, chunkIndex)) {
checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
}
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
break;
}
case DeclaratorChunk::Function: {
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
IsQualifiedFunction =
FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
// Check for auto functions and trailing return type and adjust the
// return type accordingly.
if (!D.isInvalidType()) {
// trailing-return-type is only required if we're declaring a function,
// and not, for instance, a pointer to a function.
if (D.getDeclSpec().hasAutoTypeSpec() &&
!FTI.hasTrailingReturnType() && chunkIndex == 0) {
if (!S.getLangOpts().CPlusPlus14) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
? diag::err_auto_missing_trailing_return
: diag::err_deduced_return_type);
T = Context.IntTy;
D.setInvalidType(true);
} else {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::warn_cxx11_compat_deduced_return_type);
}
} else if (FTI.hasTrailingReturnType()) {
// T must be exactly 'auto' at this point. See CWG issue 681.
if (isa<ParenType>(T)) {
S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
<< T << D.getSourceRange();
D.setInvalidType(true);
} else if (D.getName().getKind() ==
UnqualifiedIdKind::IK_DeductionGuideName) {
if (T != Context.DependentTy) {
S.Diag(D.getDeclSpec().getBeginLoc(),
diag::err_deduction_guide_with_complex_decl)
<< D.getSourceRange();
D.setInvalidType(true);
}
} else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
(T.hasQualifiers() || !isa<AutoType>(T) ||
cast<AutoType>(T)->getKeyword() !=
AutoTypeKeyword::Auto)) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_without_auto)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
}
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
if (T.isNull()) {
// An error occurred parsing the trailing return type.
T = Context.IntTy;
D.setInvalidType(true);
}
} else {
// This function type is not the type of the entity being declared,
// so checking the 'auto' is not the responsibility of this chunk.
}
}
// C99 6.7.5.3p1: The return type may not be a function or array type.
// For conversion functions, we'll diagnose this particular error later.
if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
(D.getName().getKind() !=
UnqualifiedIdKind::IK_ConversionFunctionId)) {
unsigned diagID = diag::err_func_returning_array_function;
// Last processing chunk in block context means this function chunk
// represents the block.
if (chunkIndex == 0 &&
D.getContext() == DeclaratorContext::BlockLiteralContext)
diagID = diag::err_block_returning_array_function;
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
T = Context.IntTy;
D.setInvalidType(true);
}
// Do not allow returning half FP value.
// FIXME: This really should be in BuildFunctionType.
if (T->isHalfType()) {
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
<< T << 0 /*pointer hint*/;
D.setInvalidType(true);
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(D.getIdentifierLoc(),
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
D.setInvalidType(true);
}
}
if (LangOpts.OpenCL) {
// OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
// function.
if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
T->isPipeType()) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
<< T << 1 /*hint off*/;
D.setInvalidType(true);
}
// OpenCL doesn't support variadic functions and blocks
// (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
// We also allow here any toolchain reserved identifiers.
if (FTI.isVariadic &&
!(D.getIdentifier() &&
((D.getIdentifier()->getName() == "printf" &&
(LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
D.getIdentifier()->getName().startswith("__")))) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
D.setInvalidType(true);
}
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
SourceLocation DiagLoc, FixitLoc;
if (TInfo) {
DiagLoc = TInfo->getTypeLoc().getBeginLoc();
FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
} else {
DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
}
S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T
<< FixItHint::CreateInsertion(FixitLoc, "*");
T = Context.getObjCObjectPointerType(T);
if (TInfo) {
TypeLocBuilder TLB;
TLB.pushFullCopy(TInfo->getTypeLoc());
ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
TLoc.setStarLoc(FixitLoc);
TInfo = TLB.getTypeSourceInfo(Context, T);
}
D.setInvalidType(true);
}
// cv-qualifiers on return types are pointless except when the type is a
// class type in C++.
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
!(S.getLangOpts().CPlusPlus &&
(T->isDependentType() || T->isRecordType()))) {
if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
D.getFunctionDefinitionKind() == FDK_Definition) {
// [6.9.1/3] qualified void return is invalid on a C
// function definition. Apparently ok on declarations and
// in C++ though (!)
S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
} else
diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
// C++2a [dcl.fct]p12:
// A volatile-qualified return type is deprecated
if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a)
S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
}
// Objective-C ARC ownership qualifiers are ignored on the function
// return type (by type canonicalization). Complain if this attribute
// was written here.
if (T.getQualifiers().hasObjCLifetime()) {
SourceLocation AttrLoc;
if (chunkIndex + 1 < D.getNumTypeObjects()) {
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
AttrLoc = AL.getLoc();
break;
}
}
}
if (AttrLoc.isInvalid()) {
for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
AttrLoc = AL.getLoc();
break;
}
}
}
if (AttrLoc.isValid()) {
// The ownership attributes are almost always written via
// the predefined
// __strong/__weak/__autoreleasing/__unsafe_unretained.
if (AttrLoc.isMacroID())
AttrLoc =
S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
<< T.getQualifiers().getObjCLifetime();
}
}
if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
<< Context.getTypeDeclType(Tag);
}
// Exception specs are not allowed in typedefs. Complain, but add it
// anyway.
if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
S.Diag(FTI.getExceptionSpecLocBeg(),
diag::err_exception_spec_in_typedef)
<< (D.getContext() == DeclaratorContext::AliasDeclContext ||
D.getContext() == DeclaratorContext::AliasTemplateContext);
// If we see "T var();" or "T var(T());" at block scope, it is probably
// an attempt to initialize a variable, not a function declaration.
if (FTI.isAmbiguous)
warnAboutAmbiguousFunction(S, D, DeclType, T);
FunctionType::ExtInfo EI(
getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
&& !LangOpts.OpenCL) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionNoProtoType(T, EI);
} else {
// We allow a zero-parameter variadic function in C if the
// function is marked with the "overloadable" attribute. Scan
// for this attribute now.
if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
// definition.
S.Diag(FTI.Params[0].IdentLoc,
diag::err_ident_list_in_fn_declaration);
D.setInvalidType(true);
// Recover by creating a K&R-style function type.
T = Context.getFunctionNoProtoType(T, EI);
break;
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = EI;
EPI.Variadic = FTI.isVariadic;
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
EPI.TypeQuals.addCVRUQualifiers(
FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
: 0);
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
: FTI.RefQualifierIsLValueRef? RQ_LValue
: RQ_RValue;
// Otherwise, we have a function with a parameter list that is
// potentially variadic.
SmallVector<QualType, 16> ParamTys;
ParamTys.reserve(FTI.NumParams);
SmallVector<FunctionProtoType::ExtParameterInfo, 16>
ExtParameterInfos(FTI.NumParams);
bool HasAnyInterestingExtParameterInfos = false;
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
QualType ParamTy = Param->getType();
assert(!ParamTy.isNull() && "Couldn't parse type?");
// Look for 'void'. void is allowed only as a single parameter to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionProtoType with an empty parameter list.
if (ParamTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have parameters of incomplete type.
if (FTI.NumParams != 1 || FTI.isVariadic) {
S.Diag(DeclType.Loc, diag::err_void_only_param);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else if (FTI.Params[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else {
// Reject, but continue to parse 'float(const void)'.
if (ParamTy.hasQualifiers())
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the list.
break;
}
} else if (ParamTy->isHalfType()) {
// Disallow half FP parameters.
// FIXME: This really should be in BuildFunctionType.
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
S.Diag(Param->getLocation(),
diag::err_opencl_half_param) << ParamTy;
D.setInvalidType();
Param->setInvalidDecl();
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(Param->getLocation(),
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
D.setInvalidType();
}
} else if (!FTI.hasPrototype) {
if (ParamTy->isPromotableIntegerType()) {
ParamTy = Context.getPromotedIntegerType(ParamTy);
Param->setKNRPromoted(true);
} else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float) {
ParamTy = Context.DoubleTy;
Param->setKNRPromoted(true);
}
}
}
if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
HasAnyInterestingExtParameterInfos = true;
}
if (auto attr = Param->getAttr<ParameterABIAttr>()) {
ExtParameterInfos[i] =
ExtParameterInfos[i].withABI(attr->getABI());
HasAnyInterestingExtParameterInfos = true;
}
if (Param->hasAttr<PassObjectSizeAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
HasAnyInterestingExtParameterInfos = true;
}
if (Param->hasAttr<NoEscapeAttr>()) {
ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
HasAnyInterestingExtParameterInfos = true;
}
ParamTys.push_back(ParamTy);
}
if (HasAnyInterestingExtParameterInfos) {
EPI.ExtParameterInfos = ExtParameterInfos.data();
checkExtParameterInfos(S, ParamTys, EPI,
[&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
}
SmallVector<QualType, 4> Exceptions;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
Expr *NoexceptExpr = nullptr;
if (FTI.getExceptionSpecType() == EST_Dynamic) {
// FIXME: It's rather inefficient to have to split into two vectors
// here.
unsigned N = FTI.getNumExceptions();
DynamicExceptions.reserve(N);
DynamicExceptionRanges.reserve(N);
for (unsigned I = 0; I != N; ++I) {
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
}
} else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
NoexceptExpr = FTI.NoexceptExpr;
}
S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
FTI.getExceptionSpecType(),
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
Exceptions,
EPI.ExceptionSpec);
// FIXME: Set address space from attrs for C++ mode here.
// OpenCLCPlusPlus: A class member function has an address space.
auto IsClassMember = [&]() {
return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
state.getDeclarator()
.getCXXScopeSpec()
.getScopeRep()
->getKind() == NestedNameSpecifier::TypeSpec) ||
state.getDeclarator().getContext() ==
DeclaratorContext::MemberContext;
};
if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
LangAS ASIdx = LangAS::Default;
// Take address space attr if any and mark as invalid to avoid adding
// them later while creating QualType.
if (FTI.MethodQualifiers)
for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
LangAS ASIdxNew = attr.asOpenCLLangAS();
if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
attr.getLoc()))
D.setInvalidType(true);
else
ASIdx = ASIdxNew;
}
// If a class member function's address space is not set, set it to
// __generic.
LangAS AS =
(ASIdx == LangAS::Default ? LangAS::opencl_generic : ASIdx);
EPI.TypeQuals.addAddressSpace(AS);
}
T = Context.getFunctionType(T, ParamTys, EPI);
}
break;
}
case DeclaratorChunk::MemberPointer: {
// The scope spec must refer to a class, or be dependent.
CXXScopeSpec &SS = DeclType.Mem.Scope();
QualType ClsType;
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
DeclType.EndLoc, DeclType.getAttrs(),
state.getDeclarator().getAttributePool());
if (SS.isInvalid()) {
// Avoid emitting extra errors if we already errored on the scope.
D.setInvalidType(true);
} else if (S.isDependentScopeSpecifier(SS) ||
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
NestedNameSpecifier *NNS = SS.getScopeRep();
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
ClsType = QualType(NNS->getAsType(), 0);
// Note: if the NNS has a prefix and ClsType is a nondependent
// TemplateSpecializationType, then the NNS prefix is NOT included
// in ClsType; hence we wrap ClsType into an ElaboratedType.
// NOTE: in particular, no wrap occurs if ClsType already is an
// Elaborated, DependentName, or DependentTemplateSpecialization.
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
break;
}
} else {
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
diag::err_illegal_decl_mempointer_in_nonclass)
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
<< DeclType.Mem.Scope().getRange();
D.setInvalidType(true);
}
if (!ClsType.isNull())
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
D.getIdentifier());
if (T.isNull()) {
T = Context.IntTy;
D.setInvalidType(true);
} else if (DeclType.Mem.TypeQuals) {
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
}
break;
}
case DeclaratorChunk::Pipe: {
T = S.BuildReadPipeType(T, DeclType.Loc);
processTypeAttrs(state, T, TAL_DeclSpec,
D.getMutableDeclSpec().getAttributes());
break;
}
}
if (T.isNull()) {
D.setInvalidType(true);
T = Context.IntTy;
}
// See if there are any attributes on this declarator chunk.
processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
if (DeclType.Kind != DeclaratorChunk::Paren) {
if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
ExpectNoDerefChunk = state.didParseNoDeref();
}
}
if (ExpectNoDerefChunk)
S.Diag(state.getDeclarator().getBeginLoc(),
diag::warn_noderef_on_non_pointer_or_array);
// GNU warning -Wstrict-prototypes
// Warn if a function declaration is without a prototype.
// This warning is issued for all kinds of unprototyped function
// declarations (i.e. function type typedef, function pointer etc.)
// C99 6.7.5.3p14:
// The empty list in a function declarator that is not part of a definition
// of that function specifies that no information about the number or types
// of the parameters is supplied.
if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
bool IsBlock = false;
for (const DeclaratorChunk &DeclType : D.type_objects()) {
switch (DeclType.Kind) {
case DeclaratorChunk::BlockPointer:
IsBlock = true;
break;
case DeclaratorChunk::Function: {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
// We supress the warning when there's no LParen location, as this
// indicates the declaration was an implicit declaration, which gets
// warned about separately via -Wimplicit-function-declaration.
if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
<< IsBlock
<< FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
IsBlock = false;
break;
}
default:
break;
}
}
}
assert(!T.isNull() && "T must not be null after this point");
if (LangOpts.CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
// C++ 8.3.5p4:
// A cv-qualifier-seq shall only be part of the function type
// for a nonstatic member function, the function type to which a pointer
// to member refers, or the top-level function type of a function typedef
// declaration.
//
// Core issue 547 also allows cv-qualifiers on function types that are
// top-level template type arguments.
enum { NonMember, Member, DeductionGuide } Kind = NonMember;
if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
Kind = DeductionGuide;
else if (!D.getCXXScopeSpec().isSet()) {
if ((D.getContext() == DeclaratorContext::MemberContext ||
D.getContext() == DeclaratorContext::LambdaExprContext) &&
!D.getDeclSpec().isFriendSpecified())
Kind = Member;
} else {
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
if (!DC || DC->isRecord())
Kind = Member;
}
// C++11 [dcl.fct]p6 (w/DR1417):
// An attempt to specify a function type with a cv-qualifier-seq or a
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
// - the function type for a non-static member function,
// - the function type to which a pointer to member refers,
// - the top-level function type of a function typedef declaration or
// alias-declaration,
// - the type-id in the default argument of a type-parameter, or
// - the type-id of a template-argument for a type-parameter
//
// FIXME: Checking this here is insufficient. We accept-invalid on:
//
// template<typename T> struct S { void f(T); };
// S<int() const> s;
//
// ... for instance.
if (IsQualifiedFunction &&
!(Kind == Member &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
!IsTypedefName &&
D.getContext() != DeclaratorContext::TemplateArgContext &&
D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
SourceLocation Loc = D.getBeginLoc();
SourceRange RemovalRange;
unsigned I;
if (D.isFunctionDeclarator(I)) {
SmallVector<SourceLocation, 4> RemovalLocs;
const DeclaratorChunk &Chunk = D.getTypeObject(I);
assert(Chunk.Kind == DeclaratorChunk::Function);
if (Chunk.Fun.hasRefQualifier())
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
if (Chunk.Fun.hasMethodTypeQualifiers())
Chunk.Fun.MethodQualifiers->forEachQualifier(
[&](DeclSpec::TQ TypeQual, StringRef QualName,
SourceLocation SL) { RemovalLocs.push_back(SL); });
if (!RemovalLocs.empty()) {
llvm::sort(RemovalLocs,
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
Loc = RemovalLocs.front();
}
}
S.Diag(Loc, diag::err_invalid_qualified_function_type)
<< Kind << D.isFunctionDeclarator() << T
<< getFunctionQualifiersAsString(FnTy)
<< FixItHint::CreateRemoval(RemovalRange);
// Strip the cv-qualifiers and ref-qualifiers from the type.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals.removeCVRQualifiers();
EPI.RefQualifier = RQ_None;
T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
}
// Apply any undistributed attributes from the declarator.
processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
// Diagnose any ignored type attributes.
state.diagnoseIgnoredTypeAttrs(T);
// C++0x [dcl.constexpr]p9:
// A constexpr specifier used in an object declaration declares the object
// as const.
if (D.getDeclSpec().getConstexprSpecifier() == CSK_constexpr &&
T->isObjectType())
T.addConst();
// C++2a [dcl.fct]p4:
// A parameter with volatile-qualified type is deprecated
if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a &&
(D.getContext() == DeclaratorContext::PrototypeContext ||
D.getContext() == DeclaratorContext::LambdaExprParameterContext))
S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
// If there was an ellipsis in the declarator, the declaration declares a
// parameter pack whose type may be a pack expansion type.
if (D.hasEllipsis()) {
// C++0x [dcl.fct]p13:
// A declarator-id or abstract-declarator containing an ellipsis shall
// only be used in a parameter-declaration. Such a parameter-declaration
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case DeclaratorContext::PrototypeContext:
case DeclaratorContext::LambdaExprParameterContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
// of the declarator-id of the function parameter pack shall contain
// a template parameter pack; each template parameter pack in T is
// expanded by the function parameter pack.
//
// We represent function parameter packs as function parameters whose
// type is a pack expansion.
if (!T->containsUnexpandedParameterPack()) {
S.Diag(D.getEllipsisLoc(),
diag::err_function_parameter_pack_without_parameter_packs)
<< T << D.getSourceRange();
D.setEllipsisLoc(SourceLocation());
} else {
T = Context.getPackExpansionType(T, None);
}
break;
case DeclaratorContext::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that
// declares a parameter pack (8.3.5), then the template-parameter is a
// template parameter pack (14.5.3).
//
// Note: core issue 778 clarifies that, if there are any unexpanded
// parameter packs in the type of the non-type template parameter, then
// it expands those parameter packs.
if (T->containsUnexpandedParameterPack())
T = Context.getPackExpansionType(T, None);
else
S.Diag(D.getEllipsisLoc(),
LangOpts.CPlusPlus11
? diag::warn_cxx98_compat_variadic_templates
: diag::ext_variadic_templates);
break;
case DeclaratorContext::FileContext:
case DeclaratorContext::KNRTypeListContext:
case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
// here?
case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
// here?
case DeclaratorContext::TypeNameContext:
case DeclaratorContext::FunctionalCastContext:
case DeclaratorContext::CXXNewContext:
case DeclaratorContext::AliasDeclContext:
case DeclaratorContext::AliasTemplateContext:
case DeclaratorContext::MemberContext:
case DeclaratorContext::BlockContext:
case DeclaratorContext::ForContext:
case DeclaratorContext::InitStmtContext:
case DeclaratorContext::ConditionContext:
case DeclaratorContext::CXXCatchContext:
case DeclaratorContext::ObjCCatchContext:
case DeclaratorContext::BlockLiteralContext:
case DeclaratorContext::LambdaExprContext:
case DeclaratorContext::ConversionIdContext:
case DeclaratorContext::TrailingReturnContext:
case DeclaratorContext::TrailingReturnVarContext:
case DeclaratorContext::TemplateArgContext:
case DeclaratorContext::TemplateTypeArgContext:
// FIXME: We may want to allow parameter packs in block-literal contexts
// in the future.
S.Diag(D.getEllipsisLoc(),
diag::err_ellipsis_in_declarator_not_parameter);
D.setEllipsisLoc(SourceLocation());
break;
}
}
assert(!T.isNull() && "T must not be null at the end of this function");
if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return GetTypeSourceInfoForDeclarator(state, T, TInfo);
}
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// Determine the type of the declarator. Not all forms of declarator
// have a type.
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
inferARCWriteback(state, T);
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}
static void transferARCOwnershipToDeclSpec(Sema &S,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
if (declSpecTy->isObjCRetainableType() &&
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
Qualifiers qs;
qs.addObjCLifetime(ownership);
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
}
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
// Look for an explicit lifetime attribute.
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
return;
const char *attrStr = nullptr;
switch (ownership) {
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
}
IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
Arg->Ident = &S.Context.Idents.get(attrStr);
Arg->Loc = SourceLocation();
ArgsUnion Args(Arg);
// If there wasn't one, add one (with an invalid source location
// so that we don't make an AttributedType for it).
ParsedAttr *attr = D.getAttributePool().create(
&S.Context.Idents.get("objc_ownership"), SourceLocation(),
/*scope*/ nullptr, SourceLocation(),
/*args*/ &Args, 1, ParsedAttr::AS_GNU);
chunk.getAttrs().addAtEnd(attr);
// TODO: mark whether we did this inference?
}
/// Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
int inner = -1;
bool hasIndirection = false;
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
if (inner != -1)
hasIndirection = true;
inner = i;
break;
case DeclaratorChunk::BlockPointer:
if (inner != -1)
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
return;
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return;
}
}
if (inner == -1)
return;
DeclaratorChunk &chunk = D.getTypeObject(inner);
if (chunk.Kind == DeclaratorChunk::Pointer) {
if (declSpecTy->isObjCRetainableType())
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
if (declSpecTy->isObjCObjectType() && hasIndirection)
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
} else {
assert(chunk.Kind == DeclaratorChunk::Array ||
chunk.Kind == DeclaratorChunk::Reference);
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
}
}
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (getLangOpts().ObjC) {
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
if (ownership != Qualifiers::OCL_None)
transferARCOwnership(state, declSpecTy, ownership);
}
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
TypeProcessingState &State) {
TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
}
namespace {
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
ASTContext &Context;
TypeProcessingState &State;
const DeclSpec &DS;
public:
TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
const DeclSpec &DS)
: Context(Context), State(State), DS(DS) {}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
Visit(TL.getModifiedLoc());
fillAttributedTypeLoc(TL, State);
}
void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
Visit(TL.getInnerLoc());
TL.setExpansionLoc(
State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
Visit(TL.getUnqualifiedLoc());
}
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
// addition field. What we have is good enough for dispay of location
// of 'fixit' on interface name.
TL.setNameEndLoc(DS.getEndLoc());
}
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
// If we got no declarator info from previous Sema routines,
// just fill with the typespec loc.
if (!TInfo) {
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
return;
}
TypeLoc OldTL = TInfo->getTypeLoc();
if (TInfo->getType()->getAs<ElaboratedType>()) {
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
.castAs<TemplateSpecializationTypeLoc>();
TL.copy(NamedTL);
} else {
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
}
}
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
}
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
// FIXME: This holds only because we only have one unary transform.
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
// By default, use the source location of the type specifier.
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
if (TL.needsExtraLocalData()) {
// Set info for the written builtin specifiers.
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
// Try to have a meaningful source location.
if (TL.getWrittenSignSpec() != TSS_unspecified)
TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
if (TL.getWrittenWidthSpec() != TSW_unspecified)
TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
}
}
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
if (DS.getTypeSpecType() == TST_typename) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
if (TInfo) {
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
return;
}
}
TL.setElaboratedKeywordLoc(Keyword != ETK_None
? DS.getTypeSpecTypeLoc()
: SourceLocation());
const CXXScopeSpec& SS = DS.getTypeSpecScope();
TL.setQualifierLoc(SS.getWithLocInContext(Context));
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
}
void VisitTagTypeLoc(TagTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
}
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
// or an _Atomic qualifier.
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
} else {
TL.setKWLoc(DS.getAtomicSpecLoc());
// No parens, to indicate this was spelled as an _Atomic qualifier.
TL.setParensRange(SourceRange());
Visit(TL.getValueLoc());
}
}
void VisitPipeTypeLoc(PipeTypeLoc TL) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
}
void VisitTypeLoc(TypeLoc TL) {
// FIXME: add other typespec types and change this to an assert.
TL.initialize(Context, DS.getTypeSpecTypeLoc());
}
};
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
ASTContext &Context;
TypeProcessingState &State;
const DeclaratorChunk &Chunk;
public:
DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
const DeclaratorChunk &Chunk)
: Context(Context), State(State), Chunk(Chunk) {}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
llvm_unreachable("qualified type locs not expected here!");
}
void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
llvm_unreachable("decayed type locs not expected here!");
}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, State);
}
void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing
}
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
TL.setCaretLoc(Chunk.Loc);
}
void VisitPointerTypeLoc(PointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
const CXXScopeSpec& SS = Chunk.Mem.Scope();
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
const Type* ClsTy = TL.getClass();
QualType ClsQT = QualType(ClsTy, 0);
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
// Now copy source location info into the type loc component.
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
{
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
}
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (isa<ElaboratedType>(ClsTy)) {
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
ETLoc.setElaboratedKeywordLoc(SourceLocation());
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
} else {
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
}
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
}
// Finally fill in MemberPointerLocInfo fields.
TL.setStarLoc(Chunk.Loc);
TL.setClassTInfo(ClsTInfo);
}
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
// 'Amp' is misleading: this might have been originally
/// spelled with AmpAmp.
TL.setAmpLoc(Chunk.Loc);
}
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
assert(!Chunk.Ref.LValueRef);
TL.setAmpAmpLoc(Chunk.Loc);
}
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Array);
TL.setLBracketLoc(Chunk.Loc);
TL.setRBracketLoc(Chunk.EndLoc);
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
}
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Function);
TL.setLocalRangeBegin(Chunk.Loc);
TL.setLocalRangeEnd(Chunk.EndLoc);
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
TL.setLParenLoc(FTI.getLParenLoc());
TL.setRParenLoc(FTI.getRParenLoc());
for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
TL.setParam(tpi++, Param);
}
TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
}
void VisitParenTypeLoc(ParenTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Paren);
TL.setLParenLoc(Chunk.Loc);
TL.setRParenLoc(Chunk.EndLoc);
}
void VisitPipeTypeLoc(PipeTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pipe);
TL.setKWLoc(Chunk.Loc);
}
void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
TL.setExpansionLoc(Chunk.Loc);
}
void VisitTypeLoc(TypeLoc TL) {
llvm_unreachable("unsupported TypeLoc kind in declarator!");
}
};
} // end anonymous namespace
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
SourceLocation Loc;
switch (Chunk.Kind) {
case DeclaratorChunk::Function:
case DeclaratorChunk::Array:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pipe:
llvm_unreachable("cannot be _Atomic qualified");
case DeclaratorChunk::Pointer:
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
// FIXME: Provide a source location for the _Atomic keyword.
break;
}
ATL.setKWLoc(Loc);
ATL.setParensRange(SourceRange());
}
static void
fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
const ParsedAttributesView &Attrs) {
for (const ParsedAttr &AL : Attrs) {
if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
DASTL.setAttrNameLoc(AL.getLoc());
DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
DASTL.setAttrOperandParensRange(SourceRange());
return;
}
}
llvm_unreachable(
"no address_space attribute found at the expected location!");
}
/// Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
static TypeSourceInfo *
GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
QualType T, TypeSourceInfo *ReturnTypeInfo) {
Sema &S = State.getSema();
Declarator &D = State.getDeclarator();
TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
// Handle parameter packs whose type is a pack expansion.
if (isa<PackExpansionType>(T)) {
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
// An AtomicTypeLoc might be produced by an atomic qualifier in this
// declarator chunk.
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
fillAtomicQualLoc(ATL, D.getTypeObject(i));
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
}
while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
TL.setExpansionLoc(
State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
fillAttributedTypeLoc(TL, State);
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
while (DependentAddressSpaceTypeLoc TL =
CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
}
// FIXME: Ordering here?
while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
// If we have different source information for the return type, use
// that. This really only applies to C++ conversion functions.
if (ReturnTypeInfo) {
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
} else {
TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
}
return TInfo;
}
/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
// and Sema during declaration parsing. Try deallocating/caching them when
// it's appropriate, instead of allocating them and keeping them around.
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
TypeAlignment);
new (LocT) LocInfoType(T, TInfo);
assert(LocT->getTypeClass() != T->getTypeClass() &&
"LocInfoType's TypeClass conflicts with an existing Type class");
return ParsedType::make(QualType(LocT, 0));
}
void LocInfoType::getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser");
}
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == nullptr &&
"Type name should have no identifier!");
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
// Make sure there are no unused decl attributes on the declarator.
// We don't want to do this for ObjC parameters because we're going
// to apply them to the actual parameter declaration.
// Likewise, we don't want to do this for alias declarations, because
// we are actually going to build a declaration from this eventually.
if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
D.getContext() != DeclaratorContext::AliasDeclContext &&
D.getContext() != DeclaratorContext::AliasTemplateContext)
checkUnusedDeclAttributes(D);
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
QualType T = Context.getObjCInstanceType();
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
return CreateParsedType(T, TInfo);
}
//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//
/// Build an AddressSpace index from a constant expression and diagnose any
/// errors related to invalid address_spaces. Returns true on successfully
/// building an AddressSpace index.
static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
const Expr *AddrSpace,
SourceLocation AttrLoc) {
if (!AddrSpace->isValueDependent()) {
llvm::APSInt addrSpace(32);
if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type)
<< "'address_space'" << AANT_ArgumentIntegerConstant
<< AddrSpace->getSourceRange();
return false;
}
// Bounds checking.
if (addrSpace.isSigned()) {
if (addrSpace.isNegative()) {
S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
<< AddrSpace->getSourceRange();
return false;
}
addrSpace.setIsSigned(false);
}
llvm::APSInt max(addrSpace.getBitWidth());
max =
Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
if (addrSpace > max) {
S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
<< (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
return false;
}
ASIdx =
getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
return true;
}
// Default value for DependentAddressSpaceTypes
ASIdx = LangAS::Default;
return true;
}
/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
/// is uninstantiated. If instantiated it will apply the appropriate address
/// space to the type. This function allows dependent template variables to be
/// used in conjunction with the address_space attribute
QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
SourceLocation AttrLoc) {
if (!AddrSpace->isValueDependent()) {
if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
AttrLoc))
return QualType();
return Context.getAddrSpaceQualType(T, ASIdx);
}
// A check with similar intentions as checking if a type already has an
// address space except for on a dependent types, basically if the
// current type is already a DependentAddressSpaceType then its already
// lined up to have another address space on it and we can't have
// multiple address spaces on the one pointer indirection
if (T->getAs<DependentAddressSpaceType>()) {
Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
return QualType();
}
return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
}
QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
SourceLocation AttrLoc) {
LangAS ASIdx;
if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
return QualType();
return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
}
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type. The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
const ParsedAttr &Attr,
TypeProcessingState &State) {
Sema &S = State.getSema();
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
// qualified by an address-space qualifier."
if (Type->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
Attr.setInvalid();
return;
}
LangAS ASIdx;
if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
Expr *ASArgExpr;
if (Attr.isArgIdent(0)) {
// Special case where the argument is a template id.
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult AddrSpace = S.ActOnIdExpression(
S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (AddrSpace.isInvalid())
return;
ASArgExpr = static_cast<Expr *>(AddrSpace.get());
} else {
ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
}
LangAS ASIdx;
if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
Attr.setInvalid();
return;
}
ASTContext &Ctx = S.Context;
auto *ASAttr =
::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
// If the expression is not value dependent (not templated), then we can
// apply the address space qualifiers just to the equivalent type.
// Otherwise, we make an AttributedType with the modified and equivalent
// type the same, and wrap it in a DependentAddressSpaceType. When this
// dependent type is resolved, the qualifier is added to the equivalent type
// later.
QualType T;
if (!ASArgExpr->isValueDependent()) {
QualType EquivType =
S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
if (EquivType.isNull()) {
Attr.setInvalid();
return;
}
T = State.getAttributedType(ASAttr, Type, EquivType);
} else {
T = State.getAttributedType(ASAttr, Type, Type);
T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
}
if (!T.isNull())
Type = T;
else
Attr.setInvalid();
} else {
// The keyword-based type attributes imply which address space to use.
ASIdx = Attr.asOpenCLLangAS();
if (ASIdx == LangAS::Default)
llvm_unreachable("Invalid address space");
if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
Attr.getLoc())) {
Attr.setInvalid();
return;
}
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
}
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
ParsedAttr &attr, QualType &type) {
bool NonObjCPointer = false;
if (!type->isDependentType() && !type->isUndeducedType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType())
return false;
// It is important not to lose the source info that there was an attribute
// applied to non-objc pointer. We will create an attributed type but
// its type will be the same as the original type.
NonObjCPointer = true;
} else if (!type->isObjCRetainableType()) {
return false;
}
// Don't accept an ownership attribute in the declspec if it would
// just be the return type of a block pointer.
if (state.isProcessingDeclSpec()) {
Declarator &D = state.getDeclarator();
if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
/*onlyBlockPointers=*/true))
return false;
}
}
Sema &S = state.getSema();
SourceLocation AttrLoc = attr.getLoc();
if (AttrLoc.isMacroID())
AttrLoc =
S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
if (!attr.isArgIdent(0)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
<< AANT_ArgumentString;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
Qualifiers::ObjCLifetime lifetime;
if (II->isStr("none"))
lifetime = Qualifiers::OCL_ExplicitNone;
else if (II->isStr("strong"))
lifetime = Qualifiers::OCL_Strong;
else if (II->isStr("weak"))
lifetime = Qualifiers::OCL_Weak;
else if (II->isStr("autoreleasing"))
lifetime = Qualifiers::OCL_Autoreleasing;
else {
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
attr.setInvalid();
return true;
}
// Just ignore lifetime attributes other than __weak and __unsafe_unretained
// outside of ARC mode.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime != Qualifiers::OCL_Weak &&
lifetime != Qualifiers::OCL_ExplicitNone) {
return true;
}
SplitQualType underlyingType = type.split();
// Check for redundant/conflicting ownership qualifiers.
if (Qualifiers::ObjCLifetime previousLifetime
= type.getQualifiers().getObjCLifetime()) {
// If it's written directly, that's an error.
if (S.Context.hasDirectOwnershipQualifier(type)) {
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
<< type;
return true;
}
// Otherwise, if the qualifiers actually conflict, pull sugar off
// and remove the ObjCLifetime qualifiers.
if (previousLifetime != lifetime) {
// It's possible to have multiple local ObjCLifetime qualifiers. We
// can't stop after we reach a type that is directly qualified.
const Type *prevTy = nullptr;
while (!prevTy || prevTy != underlyingType.Ty) {
prevTy = underlyingType.Ty;
underlyingType = underlyingType.getSingleStepDesugaredType();
}
underlyingType.Quals.removeObjCLifetime();
}
}
underlyingType.Quals.addObjCLifetime(lifetime);
if (NonObjCPointer) {
StringRef name = attr.getAttrName()->getName();
switch (lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
break;
case Qualifiers::OCL_Strong: name = "__strong"; break;
case Qualifiers::OCL_Weak: name = "__weak"; break;
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
}
S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
<< TDS_ObjCObjOrBlock << type;
}
// Don't actually add the __unsafe_unretained qualifier in non-ARC files,
// because having both 'T' and '__unsafe_unretained T' exist in the type
// system causes unfortunate widespread consistency problems. (For example,
// they're not considered compatible types, and we mangle them identicially
// as template arguments.) These problems are all individually fixable,
// but it's easier to just not add the qualifier and instead sniff it out
// in specific places using isObjCInertUnsafeUnretainedType().
//
// Doing this does means we miss some trivial consistency checks that
// would've triggered in ARC, but that's better than trying to solve all
// the coexistence problems with __unsafe_unretained.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime == Qualifiers::OCL_ExplicitNone) {
type = state.getAttributedType(
createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
type, type);
return true;
}
QualType origType = type;
if (!NonObjCPointer)
type = S.Context.getQualifiedType(underlyingType);
// If we have a valid source location for the attribute, use an
// AttributedType instead.
if (AttrLoc.isValid()) {
type = state.getAttributedType(::new (S.Context)
ObjCOwnershipAttr(S.Context, attr, II),
origType, type);
}
auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
unsigned diagnostic, QualType type) {
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(
S.getSourceManager().getExpansionLoc(loc),
diagnostic, type, /*ignored*/ 0));
} else {
S.Diag(loc, diagnostic);
}
};
// Sometimes, __weak isn't allowed.
if (lifetime == Qualifiers::OCL_Weak &&
!S.getLangOpts().ObjCWeak && !NonObjCPointer) {
// Use a specialized diagnostic if the runtime just doesn't support them.
unsigned diagnostic =
(S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
: diag::err_arc_weak_no_runtime);
// In any case, delay the diagnostic until we know what we're parsing.
diagnoseOrDelay(S, AttrLoc, diagnostic, type);
attr.setInvalid();
return true;
}
// Forbid __weak for class objects marked as
// objc_arc_weak_reference_unavailable
if (lifetime == Qualifiers::OCL_Weak) {
if (const ObjCObjectPointerType *ObjT =
type->getAs<ObjCObjectPointerType>()) {
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
if (Class->isArcWeakrefUnavailable()) {
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
diag::note_class_declared);
}
}
}
}
return true;
}
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type. Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type) {
Sema &S = state.getSema();
// Delay if this isn't some kind of pointer.
if (!type->isPointerType() &&
!type->isObjCObjectPointerType() &&
!type->isBlockPointerType())
return false;
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
attr.setInvalid();
return true;
}
// Check the attribute arguments.
if (!attr.isArgIdent(0)) {
S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
<< attr << AANT_ArgumentString;
attr.setInvalid();
return true;
}
Qualifiers::GC GCAttr;
if (attr.getNumArgs() > 1) {
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
<< 1;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
if (II->isStr("weak"))
GCAttr = Qualifiers::Weak;
else if (II->isStr("strong"))
GCAttr = Qualifiers::Strong;
else {
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
<< attr << II;
attr.setInvalid();
return true;
}
QualType origType = type;
type = S.Context.getObjCGCQualType(origType, GCAttr);
// Make an attributed type to preserve the source information.
if (attr.getLoc().isValid())
type = state.getAttributedType(
::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
return true;
}
namespace {
/// A helper class to unwrap a type down to a function for the
/// purposes of applying attributes there.
///
/// Use:
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
/// if (unwrapped.isFunctionType()) {
/// const FunctionType *fn = unwrapped.get();
/// // change fn somehow
/// T = unwrapped.wrap(fn);
/// }
struct FunctionTypeUnwrapper {
enum WrapKind {
Desugar,
Attributed,
Parens,
Pointer,
BlockPointer,
Reference,
MemberPointer
};
QualType Original;
const FunctionType *Fn;
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
while (true) {
const Type *Ty = T.getTypePtr();
if (isa<FunctionType>(Ty)) {
Fn = cast<FunctionType>(Ty);
return;
} else if (isa<ParenType>(Ty)) {
T = cast<ParenType>(Ty)->getInnerType();
Stack.push_back(Parens);
} else if (isa<PointerType>(Ty)) {
T = cast<PointerType>(Ty)->getPointeeType();
Stack.push_back(Pointer);
} else if (isa<BlockPointerType>(Ty)) {
T = cast<BlockPointerType>(Ty)->getPointeeType();
Stack.push_back(BlockPointer);
} else if (isa<MemberPointerType>(Ty)) {
T = cast<MemberPointerType>(Ty)->getPointeeType();
Stack.push_back(MemberPointer);
} else if (isa<ReferenceType>(Ty)) {
T = cast<ReferenceType>(Ty)->getPointeeType();
Stack.push_back(Reference);
} else if (isa<AttributedType>(Ty)) {
T = cast<AttributedType>(Ty)->getEquivalentType();
Stack.push_back(Attributed);
} else {
const Type *DTy = Ty->getUnqualifiedDesugaredType();
if (Ty == DTy) {
Fn = nullptr;
return;
}
T = QualType(DTy, 0);
Stack.push_back(Desugar);
}
}
}
bool isFunctionType() const { return (Fn != nullptr); }
const FunctionType *get() const { return Fn; }
QualType wrap(Sema &S, const FunctionType *New) {
// If T wasn't modified from the unwrapped type, do nothing.
if (New == get()) return Original;
Fn = New;
return wrap(S.Context, Original, 0);
}
private:
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
if (I == Stack.size())
return C.getQualifiedType(Fn, Old.getQualifiers());
// Build up the inner type, applying the qualifiers from the old
// type to the new type.
SplitQualType SplitOld = Old.split();
// As a special case, tail-recurse if there are no qualifiers.
if (SplitOld.Quals.empty())
return wrap(C, SplitOld.Ty, I);
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
}
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
if (I == Stack.size()) return QualType(Fn, 0);
switch (static_cast<WrapKind>(Stack[I++])) {
case Desugar:
// This is the point at which we potentially lose source
// information.
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
case Attributed:
return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
case Parens: {
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
return C.getParenType(New);
}
case Pointer: {
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
return C.getPointerType(New);
}
case BlockPointer: {
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
return C.getBlockPointerType(New);
}
case MemberPointer: {
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
QualType New = wrap(C, OldMPT->getPointeeType(), I);
return C.getMemberPointerType(New, OldMPT->getClass());
}
case Reference: {
const ReferenceType *OldRef = cast<ReferenceType>(Old);
QualType New = wrap(C, OldRef->getPointeeType(), I);
if (isa<LValueReferenceType>(OldRef))
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
else
return C.getRValueReferenceType(New);
}
}
llvm_unreachable("unknown wrapping kind");
}
};
} // end anonymous namespace
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
ParsedAttr &PAttr, QualType &Type) {
Sema &S = State.getSema();
Attr *A;
switch (PAttr.getKind()) {
default: llvm_unreachable("Unknown attribute kind");
case ParsedAttr::AT_Ptr32:
A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
break;
case ParsedAttr::AT_Ptr64:
A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
break;
case ParsedAttr::AT_SPtr:
A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
break;
case ParsedAttr::AT_UPtr:
A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
break;
}
attr::Kind NewAttrKind = A->getKind();
QualType Desugared = Type;
const AttributedType *AT = dyn_cast<AttributedType>(Type);
while (AT) {
attr::Kind CurAttrKind = AT->getAttrKind();
// You cannot specify duplicate type attributes, so if the attribute has
// already been applied, flag it.
if (NewAttrKind == CurAttrKind) {
S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
return true;
}
// You cannot have both __sptr and __uptr on the same type, nor can you
// have __ptr32 and __ptr64.
if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
(CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__ptr32'" << "'__ptr64'";
return true;
} else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
(CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__sptr'" << "'__uptr'";
return true;
}
Desugared = AT->getEquivalentType();
AT = dyn_cast<AttributedType>(Desugared);
}
// Pointer type qualifiers can only operate on pointer types, but not
// pointer-to-member types.
//
// FIXME: Should we really be disallowing this attribute if there is any
// type sugar between it and the pointer (other than attributes)? Eg, this
// disallows the attribute on a parenthesized pointer.
// And if so, should we really allow *any* type attribute?
if (!isa<PointerType>(Desugared)) {
if (Type->isMemberPointerType())
S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
else
S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
return true;
}
Type = State.getAttributedType(A, Type, Type);
return false;
}
/// Map a nullability attribute kind to a nullability kind.
static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
switch (kind) {
case ParsedAttr::AT_TypeNonNull:
return NullabilityKind::NonNull;
case ParsedAttr::AT_TypeNullable:
return NullabilityKind::Nullable;
case ParsedAttr::AT_TypeNullUnspecified:
return NullabilityKind::Unspecified;
default:
llvm_unreachable("not a nullability attribute kind");
}
}
/// Applies a nullability type specifier to the given type, if possible.
///
/// \param state The type processing state.
///
/// \param type The type to which the nullability specifier will be
/// added. On success, this type will be updated appropriately.
///
/// \param attr The attribute as written on the type.
///
/// \param allowOnArrayType Whether to accept nullability specifiers on an
/// array type (e.g., because it will decay to a pointer).
///
/// \returns true if a problem has been diagnosed, false on success.
static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
QualType &type,
ParsedAttr &attr,
bool allowOnArrayType) {
Sema &S = state.getSema();
NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
SourceLocation nullabilityLoc = attr.getLoc();
bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
recordNullabilitySeen(S, nullabilityLoc);
// Check for existing nullability attributes on the type.
QualType desugared = type;
while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
// Check whether there is already a null
if (auto existingNullability = attributed->getImmediateNullability()) {
// Duplicated nullability.
if (nullability == *existingNullability) {
S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< FixItHint::CreateRemoval(nullabilityLoc);
break;
}
// Conflicting nullability.
S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
return true;
}
desugared = attributed->getModifiedType();
}
// If there is already a different nullability specifier, complain.
// This (unlike the code above) looks through typedefs that might
// have nullability specifiers on them, which means we cannot
// provide a useful Fix-It.
if (auto existingNullability = desugared->getNullability(S.Context)) {
if (nullability != *existingNullability) {
S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
// Try to find the typedef with the existing nullability specifier.
if (auto typedefType = desugared->getAs<TypedefType>()) {
TypedefNameDecl *typedefDecl = typedefType->getDecl();
QualType underlyingType = typedefDecl->getUnderlyingType();
if (auto typedefNullability
= AttributedType::stripOuterNullability(underlyingType)) {
if (*typedefNullability == *existingNullability) {
S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
<< DiagNullabilityKind(*existingNullability, false);
}
}
}
return true;
}
}
// If this definitely isn't a pointer type, reject the specifier.
if (!desugared->canHaveNullability() &&
!(allowOnArrayType && desugared->isArrayType())) {
S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
<< DiagNullabilityKind(nullability, isContextSensitive) << type;
return true;
}
// For the context-sensitive keywords/Objective-C property
// attributes, require that the type be a single-level pointer.
if (isContextSensitive) {
// Make sure that the pointee isn't itself a pointer type.
const Type *pointeeType;
if (desugared->isArrayType())
pointeeType = desugared->getArrayElementTypeNoTypeQual();
else
pointeeType = desugared->getPointeeType().getTypePtr();
if (pointeeType->isAnyPointerType() ||
pointeeType->isObjCObjectPointerType() ||
pointeeType->isMemberPointerType()) {
S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
<< DiagNullabilityKind(nullability, true)
<< type;
S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
<< DiagNullabilityKind(nullability, false)
<< type
<< FixItHint::CreateReplacement(nullabilityLoc,
getNullabilitySpelling(nullability));
return true;
}
}
// Form the attributed type.
type = state.getAttributedType(
createNullabilityAttr(S.Context, attr, nullability), type, type);
return false;
}
/// Check the application of the Objective-C '__kindof' qualifier to
/// the given type.
static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
ParsedAttr &attr) {
Sema &S = state.getSema();
if (isa<ObjCTypeParamType>(type)) {
// Build the attributed type to record where __kindof occurred.
type = state.getAttributedType(
createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
return false;
}
// Find out if it's an Objective-C object or object pointer type;
const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
: type->getAs<ObjCObjectType>();
// If not, we can't apply __kindof.
if (!objType) {
// FIXME: Handle dependent types that aren't yet object types.
S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
<< type;
return true;
}
// Rebuild the "equivalent" type, which pushes __kindof down into
// the object type.
// There is no need to apply kindof on an unqualified id type.
QualType equivType = S.Context.getObjCObjectType(
objType->getBaseType(), objType->getTypeArgsAsWritten(),
objType->getProtocols(),
/*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
// If we started with an object pointer type, rebuild it.
if (ptrType) {
equivType = S.Context.getObjCObjectPointerType(equivType);
if (auto nullability = type->getNullability(S.Context)) {
// We create a nullability attribute from the __kindof attribute.
// Make sure that will make sense.
assert(attr.getAttributeSpellingListIndex() == 0 &&
"multiple spellings for __kindof?");
Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
A->setImplicit(true);
equivType = state.getAttributedType(A, equivType, equivType);
}
}
// Build the attributed type to record where __kindof occurred.
type = state.getAttributedType(
createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
return false;
}
/// Distribute a nullability type attribute that cannot be applied to
/// the type specifier to a pointer, block pointer, or member pointer
/// declarator, complaining if necessary.
///
/// \returns true if the nullability annotation was distributed, false
/// otherwise.
static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
QualType type, ParsedAttr &attr) {
Declarator &declarator = state.getDeclarator();
/// Attempt to move the attribute to the specified chunk.
auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
// If there is already a nullability attribute there, don't add
// one.
if (hasNullabilityAttr(chunk.getAttrs()))
return false;
// Complain about the nullability qualifier being in the wrong
// place.
enum {
PK_Pointer,
PK_BlockPointer,
PK_MemberPointer,
PK_FunctionPointer,
PK_MemberFunctionPointer,
} pointerKind
= chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
: PK_Pointer)
: chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
: inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
auto diag = state.getSema().Diag(attr.getLoc(),
diag::warn_nullability_declspec)
<< DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
attr.isContextSensitiveKeywordAttribute())
<< type
<< static_cast<unsigned>(pointerKind);
// FIXME: MemberPointer chunks don't carry the location of the *.
if (chunk.Kind != DeclaratorChunk::MemberPointer) {
diag << FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getSema().getPreprocessor().getLocForEndOfToken(
chunk.Loc),
" " + attr.getAttrName()->getName().str() + " ");
}
moveAttrFromListToList(attr, state.getCurrentAttributes(),
chunk.getAttrs());
return true;
};
// Move it to the outermost pointer, member pointer, or block
// pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return moveToChunk(chunk, false);
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
// Try to move past the return type to a function/block/member
// function pointer.
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/false)) {
return moveToChunk(*dest, true);
}
return false;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pipe:
return false;
}
}
return false;
}
static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
assert(!Attr.isInvalid());
switch (Attr.getKind()) {
default:
llvm_unreachable("not a calling convention attribute");
case ParsedAttr::AT_CDecl:
return createSimpleAttr<CDeclAttr>(Ctx, Attr);
case ParsedAttr::AT_FastCall:
return createSimpleAttr<FastCallAttr>(Ctx, Attr);
case ParsedAttr::AT_StdCall:
return createSimpleAttr<StdCallAttr>(Ctx, Attr);
case ParsedAttr::AT_ThisCall:
return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
case ParsedAttr::AT_RegCall:
return createSimpleAttr<RegCallAttr>(Ctx, Attr);
case ParsedAttr::AT_Pascal:
return createSimpleAttr<PascalAttr>(Ctx, Attr);
case ParsedAttr::AT_SwiftCall:
return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
case ParsedAttr::AT_VectorCall:
return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
case ParsedAttr::AT_AArch64VectorPcs:
return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
case ParsedAttr::AT_Pcs: {
// The attribute may have had a fixit applied where we treated an
// identifier as a string literal. The contents of the string are valid,
// but the form may not be.
StringRef Str;
if (Attr.isArgExpr(0))
Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
else
Str = Attr.getArgAsIdent(0)->Ident->getName();
PcsAttr::PCSType Type;
if (!PcsAttr::ConvertStrToPCSType(Str, Type))
llvm_unreachable("already validated the attribute");
return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
}
case ParsedAttr::AT_IntelOclBicc:
return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
case ParsedAttr::AT_MSABI:
return createSimpleAttr<MSABIAttr>(Ctx, Attr);
case ParsedAttr::AT_SysVABI:
return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
case ParsedAttr::AT_PreserveMost:
return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
case ParsedAttr::AT_PreserveAll:
return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
}
llvm_unreachable("unexpected attribute kind!");
}
/// Process an individual function attribute. Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
QualType &type) {
Sema &S = state.getSema();
FunctionTypeUnwrapper unwrapped(S, type);
if (attr.getKind() == ParsedAttr::AT_NoReturn) {
if (S.CheckAttrNoArgs(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Otherwise we can process right away.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// ns_returns_retained is not always a type attribute, but if we got
// here, we're treating it as one right now.
if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
if (attr.getNumArgs()) return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Check whether the return type is reasonable.
if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
unwrapped.get()->getReturnType()))
return true;
// Only actually change the underlying type in ARC builds.
QualType origType = type;
if (state.getSema().getLangOpts().ObjCAutoRefCount) {
FunctionType::ExtInfo EI
= unwrapped.get()->getExtInfo().withProducesResult(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
}
type = state.getAttributedType(
createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
origType, type);
return true;
}
if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
if (!S.getLangOpts().CFProtectionBranch) {
S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
attr.setInvalid();
return true;
}
if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
return true;
// If this is not a function type, warning will be asserted by subject
// check.
if (!unwrapped.isFunctionType())
return true;
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withNoCfCheck(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_Regparm) {
unsigned value;
if (S.CheckRegparmAttr(attr, value))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Diagnose regparm with fastcall.
const FunctionType *fn = unwrapped.get();
CallingConv CC = fn->getCallConv();
if (CC == CC_X86FastCall) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< "regparm";
attr.setInvalid();
return true;
}
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withRegParm(value);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == ParsedAttr::AT_NoThrow) {
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
if (S.CheckAttrNoArgs(attr)) {
attr.setInvalid();
return true;
}
// Otherwise we can process right away.
auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
// MSVC ignores nothrow if it is in conflict with an explicit exception
// specification.
if (Proto->hasExceptionSpec()) {
switch (Proto->getExceptionSpecType()) {
case EST_None:
llvm_unreachable("This doesn't have an exception spec!");
case EST_DynamicNone:
case EST_BasicNoexcept:
case EST_NoexceptTrue:
case EST_NoThrow:
// Exception spec doesn't conflict with nothrow, so don't warn.
LLVM_FALLTHROUGH;
case EST_Unparsed:
case EST_Uninstantiated:
case EST_DependentNoexcept:
case EST_Unevaluated:
// We don't have enough information to properly determine if there is a
// conflict, so suppress the warning.
break;
case EST_Dynamic:
case EST_MSAny:
case EST_NoexceptFalse:
S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
break;
}
return true;
}
type = unwrapped.wrap(
S, S.Context
.getFunctionTypeWithExceptionSpec(
QualType{Proto, 0},
FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
->getAs<FunctionType>());
return true;
}
// Delay if the type didn't work out to a function.
if (!unwrapped.isFunctionType()) return false;
// Otherwise, a calling convention.
CallingConv CC;
if (S.CheckCallingConvAttr(attr, CC))
return true;
const FunctionType *fn = unwrapped.get();
CallingConv CCOld = fn->getCallConv();
Attr *CCAttr = getCCTypeAttr(S.Context, attr);
if (CCOld != CC) {
// Error out on when there's already an attribute on the type
// and the CCs don't match.
if (S.getCallingConvAttributedType(type)) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< FunctionType::getNameForCallConv(CCOld);
attr.setInvalid();
return true;
}
}
// Diagnose use of variadic functions with calling conventions that
// don't support them (e.g. because they're callee-cleanup).
// We delay warning about this on unprototyped function declarations
// until after redeclaration checking, just in case we pick up a
// prototype that way. And apparently we also "delay" warning about
// unprototyped function types in general, despite not necessarily having
// much ability to diagnose it later.
if (!supportsVariadicCall(CC)) {
const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
if (FnP && FnP->isVariadic()) {
// stdcall and fastcall are ignored with a warning for GCC and MS
// compatibility.
if (CC == CC_X86StdCall || CC == CC_X86FastCall)
return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
<< FunctionType::getNameForCallConv(CC)
<< (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
attr.setInvalid();
return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
<< FunctionType::getNameForCallConv(CC);
}
}
// Also diagnose fastcall with regparm.
if (CC == CC_X86FastCall && fn->getHasRegParm()) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
attr.setInvalid();
return true;
}
// Modify the CC from the wrapped function type, wrap it all back, and then
// wrap the whole thing in an AttributedType as written. The modified type
// might have a different CC if we ignored the attribute.
QualType Equivalent;
if (CCOld == CC) {
Equivalent = type;
} else {
auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
Equivalent =
unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
}
type = state.getAttributedType(CCAttr, type, Equivalent);
return true;
}
bool Sema::hasExplicitCallingConv(QualType T) {
const AttributedType *AT;
// Stop if we'd be stripping off a typedef sugar node to reach the
// AttributedType.
while ((AT = T->getAs<AttributedType>()) &&
AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
if (AT->isCallingConv())
return true;
T = AT->getModifiedType();
}
return false;
}
void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
SourceLocation Loc) {
FunctionTypeUnwrapper Unwrapped(*this, T);
const FunctionType *FT = Unwrapped.get();
bool IsVariadic = (isa<FunctionProtoType>(FT) &&
cast<FunctionProtoType>(FT)->isVariadic());
CallingConv CurCC = FT->getCallConv();
CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
if (CurCC == ToCC)
return;
// MS compiler ignores explicit calling convention attributes on structors. We
// should do the same.
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
// Issue a warning on ignored calling convention -- except of __stdcall.
// Again, this is what MS compiler does.
if (CurCC != CC_X86StdCall)
Diag(Loc, diag::warn_cconv_unsupported)
<< FunctionType::getNameForCallConv(CurCC)
<< (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
// Default adjustment.
} else {
// Only adjust types with the default convention. For example, on Windows
// we should adjust a __cdecl type to __thiscall for instance methods, and a
// __thiscall type to __cdecl for static methods.
CallingConv DefaultCC =
Context.getDefaultCallingConvention(IsVariadic, IsStatic);
if (CurCC != DefaultCC || DefaultCC == ToCC)
return;
if (hasExplicitCallingConv(T))
return;
}
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
QualType Wrapped = Unwrapped.wrap(*this, FT);
T = Context.getAdjustedType(T, Wrapped);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
Expr *SizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId Id;
Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
Id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (Size.isInvalid())
return;
SizeExpr = Size.get();
} else {
SizeExpr = Attr.getArgAsExpr(0);
}
QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
else
Attr.setInvalid();
}
/// Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
return;
}
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
id, /*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
sizeExpr = Attr.getArgAsExpr(0);
}
// Create the vector type.
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
}
static bool isPermittedNeonBaseType(QualType &Ty,
VectorType::VectorKind VecKind, Sema &S) {
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (!BTy)
return false;
llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
// Signed poly is mathematically wrong, but has been baked into some ABIs by
// now.
bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (VecKind == VectorType::NeonPolyVector) {
if (IsPolyUnsigned) {
// AArch64 polynomial vectors are unsigned and support poly64.
return BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::ULongLong;
} else {
// AArch32 polynomial vector are signed.
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::Short;
}
}
// Non-polynomial vector types: the usual suspects are allowed, as well as
// float64_t on AArch64.
bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (Is64Bit && BTy->getKind() == BuiltinType::Double)
return true;
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::Short ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::Int ||
BTy->getKind() == BuiltinType::UInt ||
BTy->getKind() == BuiltinType::Long ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::LongLong ||
BTy->getKind() == BuiltinType::ULongLong ||
BTy->getKind() == BuiltinType::Float ||
BTy->getKind() == BuiltinType::Half;
}
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI. Otherwise, these types are identical
/// to those created with the "vector_size" attribute. Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes. The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S, VectorType::VectorKind VecKind) {
// Target must have NEON (or MVE, whose vectors are similar enough
// not to need a separate attribute)
if (!S.Context.getTargetInfo().hasFeature("neon") &&
!S.Context.getTargetInfo().hasFeature("mve")) {
S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
Attr.setInvalid();
return;
}
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
<< 1;
Attr.setInvalid();
return;
}
// The number of elements must be an ICE.
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt numEltsInt(32);
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr << AANT_ArgumentIntegerConstant
<< numEltsExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Only certain element types are supported for Neon vectors.
if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
// The total size of the vector must be 64 or 128 bits.
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
unsigned vecSize = typeSize * numElts;
if (vecSize != 64 && vecSize != 128) {
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
Attr.setInvalid();
return;
}
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}
/// Handle OpenCL Access Qualifier Attribute.
static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
Sema &S) {
// OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
if (!(CurType->isImageType() || CurType->isPipeType())) {
S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
Attr.setInvalid();
return;
}
if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
QualType BaseTy = TypedefTy->desugar();
std::string PrevAccessQual;
if (BaseTy->isPipeType()) {
if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
OpenCLAccessAttr *Attr =
TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
PrevAccessQual = Attr->getSpelling();
} else {
PrevAccessQual = "read_only";
}
} else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
switch (ImgType->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
PrevAccessQual = #Access; \
break;
#include "clang/Basic/OpenCLImageTypes.def"
default:
llvm_unreachable("Unable to find corresponding image type.");
}
} else {
llvm_unreachable("unexpected type");
}
StringRef AttrName = Attr.getAttrName()->getName();
if (PrevAccessQual == AttrName.ltrim("_")) {
// Duplicated qualifiers
S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
<< AttrName << Attr.getRange();
} else {
// Contradicting qualifiers
S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
}
S.Diag(TypedefTy->getDecl()->getBeginLoc(),
diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
} else if (CurType->isPipeType()) {
if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
QualType ElemType = CurType->getAs<PipeType>()->getElementType();
CurType = S.Context.getWritePipeType(ElemType);
}
}
}
static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
QualType &T, TypeAttrLocation TAL) {
Declarator &D = State.getDeclarator();
// Handle the cases where address space should not be deduced.
//
// The pointee type of a pointer type is always deduced since a pointer always
// points to some memory location which should has an address space.
//
// There are situations that at the point of certain declarations, the address
// space may be unknown and better to be left as default. For example, when
// defining a typedef or struct type, they are not associated with any
// specific address space. Later on, they may be used with any address space
// to declare a variable.
//
// The return value of a function is r-value, therefore should not have
// address space.
//
// The void type does not occupy memory, therefore should not have address
// space, except when it is used as a pointee type.
//
// Since LLVM assumes function type is in default address space, it should not
// have address space.
auto ChunkIndex = State.getCurrentChunkIndex();
bool IsPointee =
ChunkIndex > 0 &&
(D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference ||
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
// For pointers/references to arrays the next chunk is always an array
// followed by any number of parentheses.
if (!IsPointee && ChunkIndex > 1) {
auto AdjustedCI = ChunkIndex - 1;
if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Array)
AdjustedCI--;
// Skip over all parentheses.
while (AdjustedCI > 0 &&
D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Paren)
AdjustedCI--;
if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Pointer ||
D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Reference)
IsPointee = true;
}
bool IsFuncReturnType =
ChunkIndex > 0 &&
D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
bool IsFuncType =
ChunkIndex < D.getNumTypeObjects() &&
D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
if ( // Do not deduce addr space for function return type and function type,
// otherwise it will fail some sema check.
IsFuncReturnType || IsFuncType ||
// Do not deduce addr space for member types of struct, except the pointee
// type of a pointer member type or static data members.
(D.getContext() == DeclaratorContext::MemberContext &&
(!IsPointee &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)) ||
// Do not deduce addr space of non-pointee in type alias because it
// doesn't define any object.
(D.getContext() == DeclaratorContext::AliasDeclContext && !IsPointee) ||
// Do not deduce addr space for types used to define a typedef and the
// typedef itself, except the pointee type of a pointer type which is used
// to define the typedef.
(D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
!IsPointee) ||
// Do not deduce addr space of the void type, e.g. in f(void), otherwise
// it will fail some sema check.
(T->isVoidType() && !IsPointee) ||
// Do not deduce addr spaces for dependent types because they might end
// up instantiating to a type with an explicit address space qualifier.
// Except for pointer or reference types because the addr space in
// template argument can only belong to a pointee.
(T->isDependentType() && !T->isPointerType() && !T->isReferenceType()) ||
// Do not deduce addr space of decltype because it will be taken from
// its argument.
T->isDecltypeType() ||
// OpenCL spec v2.0 s6.9.b:
// The sampler type cannot be used with the __local and __global address
// space qualifiers.
// OpenCL spec v2.0 s6.13.14:
// Samplers can also be declared as global constants in the program
// source using the following syntax.
// const sampler_t <sampler name> = <value>
// In codegen, file-scope sampler type variable has special handing and
// does not rely on address space qualifier. On the other hand, deducing
// address space of const sampler file-scope variable as global address
// space causes spurious diagnostic about __global address space
// qualifier, therefore do not deduce address space of file-scope sampler
// type variable.
(D.getContext() == DeclaratorContext::FileContext && T->isSamplerT()))
return;
LangAS ImpAddr = LangAS::Default;
// Put OpenCL automatic variable in private address space.
// OpenCL v1.2 s6.5:
// The default address space name for arguments to a function in a
// program, or local variables of a function is __private. All function
// arguments shall be in the __private address space.
if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
!State.getSema().getLangOpts().OpenCLCPlusPlus) {
ImpAddr = LangAS::opencl_private;
} else {
// If address space is not set, OpenCL 2.0 defines non private default
// address spaces for some cases:
// OpenCL 2.0, section 6.5:
// The address space for a variable at program scope or a static variable
// inside a function can either be __global or __constant, but defaults to
// __global if not specified.
// (...)
// Pointers that are declared without pointing to a named address space
// point to the generic address space.
if (IsPointee) {
ImpAddr = LangAS::opencl_generic;
} else {
if (D.getContext() == DeclaratorContext::TemplateArgContext) {
// Do not deduce address space for non-pointee type in template arg.
} else if (D.getContext() == DeclaratorContext::FileContext) {
ImpAddr = LangAS::opencl_global;
} else {
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
ImpAddr = LangAS::opencl_global;
} else {
ImpAddr = LangAS::opencl_private;
}
}
}
}
T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
}
static void HandleLifetimeBoundAttr(TypeProcessingState &State,
QualType &CurType,
ParsedAttr &Attr) {
if (State.getDeclarator().isDeclarationOfFunction()) {
CurType = State.getAttributedType(
createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
CurType, CurType);
} else {
Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
}
}
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL,
ParsedAttributesView &attrs) {
// Scan through and apply attributes to this type where it makes sense. Some
// attributes (such as __address_space__, __vector_size__, etc) apply to the
// type, but others can be present in the type specifiers even though they
// apply to the decl. Here we apply type attributes and ignore the rest.
// This loop modifies the list pretty frequently, but we still need to make
// sure we visit every element once. Copy the attributes list, and iterate
// over that.
ParsedAttributesView AttrsCopy{attrs};
state.setParsedNoDeref(false);
for (ParsedAttr &attr : AttrsCopy) {
// Skip attributes that were marked to be invalid.
if (attr.isInvalid())
continue;
if (attr.isCXX11Attribute()) {
// [[gnu::...]] attributes are treated as declaration attributes, so may
// not appertain to a DeclaratorChunk. If we handle them as type
// attributes, accept them in that position and diagnose the GCC
// incompatibility.
if (attr.isGNUScope()) {
bool IsTypeAttr = attr.isTypeAttr();
if (TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(),
IsTypeAttr
? diag::warn_gcc_ignores_type_attr
: diag::warn_cxx11_gnu_attribute_on_type)
<< attr;
if (!IsTypeAttr)
continue;
}
} else if (TAL != TAL_DeclChunk &&
attr.getKind() != ParsedAttr::AT_AddressSpace) {
// Otherwise, only consider type processing for a C++11 attribute if
// it's actually been applied to a type.
// We also allow C++11 address_space attributes to pass through.
continue;
}
}
// If this is an attribute we can handle, do so now,
// otherwise, add it to the FnAttrs list for rechaining.
switch (attr.getKind()) {
default:
// A C++11 attribute on a declarator chunk must appertain to a type.
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
<< attr;
attr.setUsedAsTypeAttr();
}
break;
case ParsedAttr::UnknownAttribute:
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
state.getSema().Diag(attr.getLoc(),
diag::warn_unknown_attribute_ignored)
<< attr;
break;
case ParsedAttr::IgnoredAttribute:
break;
case ParsedAttr::AT_MayAlias:
// FIXME: This attribute needs to actually be handled, but if we ignore
// it it breaks large amounts of Linux software.
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_OpenCLPrivateAddressSpace:
case ParsedAttr::AT_OpenCLGlobalAddressSpace:
case ParsedAttr::AT_OpenCLLocalAddressSpace:
case ParsedAttr::AT_OpenCLConstantAddressSpace:
case ParsedAttr::AT_OpenCLGenericAddressSpace:
case ParsedAttr::AT_AddressSpace:
HandleAddressSpaceTypeAttribute(type, attr, state);
attr.setUsedAsTypeAttr();
break;
OBJC_POINTER_TYPE_ATTRS_CASELIST:
if (!handleObjCPointerTypeAttr(state, attr, type))
distributeObjCPointerTypeAttr(state, attr, type);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_VectorSize:
HandleVectorSizeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_ExtVectorType:
HandleExtVectorTypeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_NeonVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonVector);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_NeonPolyVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonPolyVector);
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_OpenCLAccess:
HandleOpenCLAccessAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case ParsedAttr::AT_LifetimeBound:
if (TAL == TAL_DeclChunk)
HandleLifetimeBoundAttr(state, type, attr);
break;
case ParsedAttr::AT_NoDeref: {
ASTContext &Ctx = state.getSema().Context;
type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
type, type);
attr.setUsedAsTypeAttr();
state.setParsedNoDeref(true);
break;
}
MS_TYPE_ATTRS_CASELIST:
if (!handleMSPointerTypeQualifierAttr(state, attr, type))
attr.setUsedAsTypeAttr();
break;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Either add nullability here or try to distribute it. We
// don't want to distribute the nullability specifier past any
// dependent type, because that complicates the user model.
if (type->canHaveNullability() || type->isDependentType() ||
type->isArrayType() ||
!distributeNullabilityTypeAttr(state, type, attr)) {
unsigned endIndex;
if (TAL == TAL_DeclChunk)
endIndex = state.getCurrentChunkIndex();
else
endIndex = state.getDeclarator().getNumTypeObjects();
bool allowOnArrayType =
state.getDeclarator().isPrototypeContext() &&
!hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
if (checkNullabilityTypeSpecifier(
state,
type,
attr,
allowOnArrayType)) {
attr.setInvalid();
}
attr.setUsedAsTypeAttr();
}
break;
case ParsedAttr::AT_ObjCKindOf:
// '__kindof' must be part of the decl-specifiers.
switch (TAL) {
case TAL_DeclSpec:
break;
case TAL_DeclChunk:
case TAL_DeclName:
state.getSema().Diag(attr.getLoc(),
diag::err_objc_kindof_wrong_position)
<< FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getDeclarator().getDeclSpec().getBeginLoc(),
"__kindof ");
break;
}
// Apply it regardless.
if (checkObjCKindOfType(state, type, attr))
attr.setInvalid();
break;
case ParsedAttr::AT_NoThrow:
// Exception Specifications aren't generally supported in C mode throughout
// clang, so revert to attribute-based handling for C.
if (!state.getSema().getLangOpts().CPlusPlus)
break;
LLVM_FALLTHROUGH;
FUNCTION_TYPE_ATTRS_CASELIST:
attr.setUsedAsTypeAttr();
// Never process function type attributes as part of the
// declaration-specifiers.
if (TAL == TAL_DeclSpec)
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
// Otherwise, handle the possible delays.
else if (!handleFunctionTypeAttr(state, attr, type))
distributeFunctionTypeAttr(state, attr, type);
break;
}
// Handle attributes that are defined in a macro. We do not want this to be
// applied to ObjC builtin attributes.
if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
!type.getQualifiers().hasObjCLifetime() &&
!type.getQualifiers().hasObjCGCAttr() &&
attr.getKind() != ParsedAttr::AT_ObjCGC &&
attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
const IdentifierInfo *MacroII = attr.getMacroIdentifier();
type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
state.setExpansionLocForMacroQualifiedType(
cast<MacroQualifiedType>(type.getTypePtr()),
attr.getMacroExpansionLoc());
}
}
if (!state.getSema().getLangOpts().OpenCL ||
type.getAddressSpace() != LangAS::Default)
return;
deduceOpenCLImplicitAddrSpace(state, type, TAL);
}
void Sema::completeExprArrayBound(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
auto *Def = Var->getDefinition();
if (!Def) {
SourceLocation PointOfInstantiation = E->getExprLoc();
runWithSufficientStackSpace(PointOfInstantiation, [&] {
InstantiateVariableDefinition(PointOfInstantiation, Var);
});
Def = Var->getDefinition();
// If we don't already have a point of instantiation, and we managed
// to instantiate a definition, this is the point of instantiation.
// Otherwise, we don't request an end-of-TU instantiation, so this is
// not a point of instantiation.
// FIXME: Is this really the right behavior?
if (Var->getPointOfInstantiation().isInvalid() && Def) {
assert(Var->getTemplateSpecializationKind() ==
TSK_ImplicitInstantiation &&
"explicit instantiation with no point of instantiation");
Var->setTemplateSpecializationKind(
Var->getTemplateSpecializationKind(), PointOfInstantiation);
}
}
// Update the type to the definition's type both here and within the
// expression.
if (Def) {
DRE->setDecl(Def);
QualType T = Def->getType();
DRE->setType(T);
// FIXME: Update the type on all intervening expressions.
E->setType(T);
}
// We still go on to try to complete the type independently, as it
// may also require instantiations or diagnostics if it remains
// incomplete.
}
}
}
}
/// Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
QualType T = E->getType();
// Incomplete array types may be completed by the initializer attached to
// their definitions. For static data members of class templates and for
// variable templates, we need to instantiate the definition to get this
// initializer and complete the type.
if (T->isIncompleteArrayType()) {
completeExprArrayBound(E);
T = E->getType();
}
// FIXME: Are there other cases which require instantiating something other
// than the type to complete the type of an expression?
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireCompleteExprType(E, Diagnoser);
}
/// Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
return true;
if (const TagType *Tag = T->getAs<TagType>()) {
if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
Tag->getDecl()->setCompleteDefinitionRequired();
Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
}
}
return false;
}
bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
if (!Suggested)
return false;
// FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
// and isolate from other C++ specific checks.
StructuralEquivalenceContext Ctx(
D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
StructuralEquivalenceKind::Default,
false /*StrictTypeSpelling*/, true /*Complain*/,
true /*ErrorOnTagTypeMismatch*/);
return Ctx.IsEquivalent(D, Suggested);
}
/// Determine whether there is any declaration of \p D that was ever a
/// definition (perhaps before module merging) and is currently visible.
/// \param D The definition of the entity.
/// \param Suggested Filled in with the declaration that should be made visible
/// in order to provide a definition of this entity.
/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
/// not defined. This only matters for enums with a fixed underlying
/// type, since in all other cases, a type is complete if and only if it
/// is defined.
bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete) {
// Easy case: if we don't have modules, all declarations are visible.
if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
return true;
// If this definition was instantiated from a template, map back to the
// pattern from which it was instantiated.
if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
// We're in the middle of defining it; this definition should be treated
// as visible.
return true;
} else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (auto *Pattern = RD->getTemplateInstantiationPattern())
RD = Pattern;
D = RD->getDefinition();
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
if (auto *Pattern = ED->getTemplateInstantiationPattern())
ED = Pattern;
if (OnlyNeedComplete && ED->isFixed()) {
// If the enum has a fixed underlying type, and we're only looking for a
// complete type (not a definition), any visible declaration of it will
// do.
*Suggested = nullptr;
for (auto *Redecl : ED->redecls()) {
if (isVisible(Redecl))
return true;
if (Redecl->isThisDeclarationADefinition() ||
(Redecl->isCanonicalDecl() && !*Suggested))
*Suggested = Redecl;
}
return false;
}
D = ED->getDefinition();
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
if (auto *Pattern = FD->getTemplateInstantiationPattern())
FD = Pattern;
D = FD->getDefinition();
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
if (auto *Pattern = VD->getTemplateInstantiationPattern())
VD = Pattern;
D = VD->getDefinition();
}
assert(D && "missing definition for pattern of instantiated definition");
*Suggested = D;
auto DefinitionIsVisible = [&] {
// The (primary) definition might be in a visible module.
if (isVisible(D))
return true;
// A visible module might have a merged definition instead.
if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
: hasVisibleMergedDefinition(D)) {
if (CodeSynthesisContexts.empty() &&
!getLangOpts().ModulesLocalVisibility) {
// Cache the fact that this definition is implicitly visible because
// there is a visible merged definition.
D->setVisibleDespiteOwningModule();
}
return true;
}
return false;
};
if (DefinitionIsVisible())
return true;
// The external source may have additional definitions of this entity that are
// visible, so complete the redeclaration chain now and ask again.
if (auto *Source = Context.getExternalSource()) {
Source->CompleteRedeclChain(D);
return DefinitionIsVisible();
}
return false;
}
/// Locks in the inheritance model for the given class and all of its bases.
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
RD = RD->getMostRecentNonInjectedDecl();
if (!RD->hasAttr<MSInheritanceAttr>()) {
MSInheritanceAttr::Spelling IM;
switch (S.MSPointerToMemberRepresentationMethod) {
case LangOptions::PPTMK_BestCase:
IM = RD->calculateInheritanceModel();
break;
case LangOptions::PPTMK_FullGeneralitySingleInheritance:
IM = MSInheritanceAttr::Keyword_single_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
IM = MSInheritanceAttr::Keyword_multiple_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
break;
}
SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
? S.ImplicitMSInheritanceAttrLoc
: RD->getSourceRange();
RD->addAttr(MSInheritanceAttr::CreateImplicit(
S.getASTContext(),
/*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
LangOptions::PPTMK_BestCase,
Loc, AttributeCommonInfo::AS_Microsoft, IM));
S.Consumer.AssignInheritanceModel(RD);
}
}
/// The implementation of RequireCompleteType
bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
TypeDiagnoser *Diagnoser) {
// FIXME: Add this assertion to make sure we always get instantiation points.
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
// FIXME: Add this assertion to help us flush out problems with
// checking for dependent types and type-dependent expressions.
//
// assert(!T->isDependentType() &&
// "Can't ask whether a dependent type is complete");
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
if (!MPTy->getClass()->isDependentType()) {
if (getLangOpts().CompleteMemberPointers &&
!MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
diag::err_memptr_incomplete))
return true;
// We lock in the inheritance model once somebody has asked us to ensure
// that a pointer-to-member type is complete.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
(void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
}
}
}
NamedDecl *Def = nullptr;
bool Incomplete = T->isIncompleteType(&Def);
// Check that any necessary explicit specializations are visible. For an
// enum, we just need the declaration, so don't check this.
if (Def && !isa<EnumDecl>(Def))
checkSpecializationVisibility(Loc, Def);
// If we have a complete type, we're done.
if (!Incomplete) {
// If we know about the definition but it is not visible, complain.
NamedDecl *SuggestedDef = nullptr;
if (Def &&
!hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
// If the user is going to see an error here, recover by making the
// definition visible.
bool TreatAsComplete = Diagnoser && !isSFINAEContext();
if (Diagnoser && SuggestedDef)
diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
/*Recover*/TreatAsComplete);
return !TreatAsComplete;
} else if (Def && !TemplateInstCallbacks.empty()) {
CodeSynthesisContext TempInst;
TempInst.Kind = CodeSynthesisContext::Memoization;
TempInst.Template = Def;
TempInst.Entity = Def;
TempInst.PointOfInstantiation = Loc;
atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
}
return false;
}
TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
// Give the external source a chance to provide a definition of the type.
// This is kept separate from completing the redeclaration chain so that
// external sources such as LLDB can avoid synthesizing a type definition
// unless it's actually needed.
if (Tag || IFace) {
// Avoid diagnosing invalid decls as incomplete.
if (Def->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (auto *Source = Context.getExternalSource()) {
if (Tag && Tag->hasExternalLexicalStorage())
Source->CompleteType(Tag);
if (IFace && IFace->hasExternalLexicalStorage())
Source->CompleteType(IFace);
// If the external source completed the type, go through the motions
// again to ensure we're allowed to use the completed type.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// If we have a class template specialization or a class member of a
// class template specialization, or an array with known size of such,
// try to instantiate it.
if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
bool Instantiated = false;
bool Diagnosed = false;
if (RD->isDependentContext()) {
// Don't try to instantiate a dependent class (eg, a member template of
// an instantiated class template specialization).
// FIXME: Can this ever happen?
} else if (auto *ClassTemplateSpec =
dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
runWithSufficientStackSpace(Loc, [&] {
Diagnosed = InstantiateClassTemplateSpecialization(
Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
/*Complain=*/Diagnoser);
});
Instantiated = true;
}
} else {
CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
if (!RD->isBeingDefined() && Pattern) {
MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
assert(MSI && "Missing member specialization information?");
// This record was instantiated from a class within a template.
if (MSI->getTemplateSpecializationKind() !=
TSK_ExplicitSpecialization) {
runWithSufficientStackSpace(Loc, [&] {
Diagnosed = InstantiateClass(Loc, RD, Pattern,
getTemplateInstantiationArgs(RD),
TSK_ImplicitInstantiation,
/*Complain=*/Diagnoser);
});
Instantiated = true;
}
}
}
if (Instantiated) {
// Instantiate* might have already complained that the template is not
// defined, if we asked it to.
if (Diagnoser && Diagnosed)
return true;
// If we instantiated a definition, check that it's usable, even if
// instantiation produced an error, so that repeated calls to this
// function give consistent answers.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// FIXME: If we didn't instantiate a definition because of an explicit
// specialization declaration, check that it's visible.
if (!Diagnoser)
return true;
Diagnoser->diagnose(*this, Loc, T);
// If the type was a forward declaration of a class/struct/union
// type, produce a note.
if (Tag && !Tag->isInvalidDecl())
Diag(Tag->getLocation(),
Tag->isBeingDefined() ? diag::note_type_being_defined
: diag::note_forward_declaration)
<< Context.getTagDeclType(Tag);
// If the Objective-C class was a forward declaration, produce a note.
if (IFace && !IFace->isInvalidDecl())
Diag(IFace->getLocation(), diag::note_forward_class);
// If we have external information that we can use to suggest a fix,
// produce a note.
if (ExternalSource)
ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
return true;
}
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
}
}
/// Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
assert(!T->isDependentType() && "type should not be dependent");
QualType ElemType = Context.getBaseElementType(T);
if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
T->isLiteralType(Context))
return false;
Diagnoser.diagnose(*this, Loc, T);
if (T->isVariableArrayType())
return true;
const RecordType *RT = ElemType->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// A partially-defined class type can't be a literal type, because a literal
// class type must have a trivial destructor (which can't be checked until
// the class definition is complete).
if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
return true;
// [expr.prim.lambda]p3:
// This class type is [not] a literal type.
if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
Diag(RD->getLocation(), diag::note_non_literal_lambda);
return true;
}
// If the class has virtual base classes, then it's not an aggregate, and
// cannot have any constexpr constructors or a trivial default constructor,
// so is non-literal. This is better to diagnose than the resulting absence
// of constexpr constructors.
if (RD->getNumVBases()) {
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
for (const auto &I : RD->vbases())
Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
<< I.getSourceRange();
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
!RD->hasTrivialDefaultConstructor()) {
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
for (const auto &I : RD->bases()) {
if (!I.getType()->isLiteralType(Context)) {
Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
<< RD << I.getType() << I.getSourceRange();
return true;
}
}
for (const auto *I : RD->fields()) {
if (!I->getType()->isLiteralType(Context) ||
I->getType().isVolatileQualified()) {
Diag(I->getLocation(), diag::note_non_literal_field)
<< RD << I << I->getType()
<< I->getType().isVolatileQualified();
return true;
}
}
} else if (getLangOpts().CPlusPlus2a ? !RD->hasConstexprDestructor()
: !RD->hasTrivialDestructor()) {
// All fields and bases are of literal types, so have trivial or constexpr
// destructors. If this class's destructor is non-trivial / non-constexpr,
// it must be user-declared.
CXXDestructorDecl *Dtor = RD->getDestructor();
assert(Dtor && "class has literal fields and bases but no dtor?");
if (!Dtor)
return true;
if (getLangOpts().CPlusPlus2a) {
Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
<< RD;
} else {
Diag(Dtor->getLocation(), Dtor->isUserProvided()
? diag::note_non_literal_user_provided_dtor
: diag::note_non_literal_nontrivial_dtor)
<< RD;
if (!Dtor->isUserProvided())
SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
/*Diagnose*/ true);
}
}
return true;
}
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
BoundTypeDiagnoser<> Diagnoser(DiagID);
return RequireLiteralType(Loc, T, Diagnoser);
}
/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
/// by the nested-name-specifier contained in SS, and that is (re)declared by
/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T,
TagDecl *OwnedTagDecl) {
if (T.isNull())
return T;
NestedNameSpecifier *NNS;
if (SS.isValid())
NNS = SS.getScopeRep();
else {
if (Keyword == ETK_None)
return T;
NNS = nullptr;
}
return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
}
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
assert(!E->hasPlaceholderType() && "unexpected placeholder");
if (!getLangOpts().CPlusPlus && E->refersToBitField())
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
if (!E->isTypeDependent()) {
QualType T = E->getType();
if (const TagType *TT = T->getAs<TagType>())
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
}
return Context.getTypeOfExprType(E);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
if (E->isTypeDependent())
return S.Context.DependentTy;
// C++11 [dcl.type.simple]p4:
// The type denoted by decltype(e) is defined as follows:
//
// - if e is an unparenthesized id-expression or an unparenthesized class
// member access (5.2.5), decltype(e) is the type of the entity named
// by e. If there is no such entity, or if e names a set of overloaded
// functions, the program is ill-formed;
//
// We apply the same rules for Objective-C ivar and property references.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
const ValueDecl *VD = DRE->getDecl();
return VD->getType();
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (const ValueDecl *VD = ME->getMemberDecl())
if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
return VD->getType();
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
return IR->getDecl()->getType();
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PR->isExplicitProperty())
return PR->getExplicitProperty()->getType();
} else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
return PE->getType();
}
// C++11 [expr.lambda.prim]p18:
// Every occurrence of decltype((x)) where x is a possibly
// parenthesized id-expression that names an entity of automatic
// storage duration is treated as if x were transformed into an
// access to a corresponding data member of the closure type that
// would have been declared if x were an odr-use of the denoted
// entity.
using namespace sema;
if (S.getCurLambda()) {
if (isa<ParenExpr>(E)) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
if (!T.isNull())
return S.Context.getLValueReferenceType(T);
}
}
}
}
// C++11 [dcl.type.simple]p4:
// [...]
QualType T = E->getType();
switch (E->getValueKind()) {
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
// type of e;
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
// type of e;
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
// - otherwise, decltype(e) is the type of e.
case VK_RValue: break;
}
return T;
}
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
bool AsUnevaluated) {
assert(!E->hasPlaceholderType() && "unexpected placeholder");
if (AsUnevaluated && CodeSynthesisContexts.empty() &&
E->HasSideEffects(Context, false)) {
// The expression operand for decltype is in an unevaluated expression
// context, so side effects could result in unintended consequences.
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
}
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}
QualType Sema::BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
switch (UKind) {
case UnaryTransformType::EnumUnderlyingType:
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
Diag(Loc, diag::err_only_enums_have_underlying_types);
return QualType();
} else {
QualType Underlying = BaseType;
if (!BaseType->isDependentType()) {
// The enum could be incomplete if we're parsing its definition or
// recovering from an error.
NamedDecl *FwdDecl = nullptr;
if (BaseType->isIncompleteType(&FwdDecl)) {
Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
return QualType();
}
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
assert(ED && "EnumType has no EnumDecl");
DiagnoseUseOfDecl(ED, Loc);
Underlying = ED->getIntegerType();
assert(!Underlying.isNull());
}
return Context.getUnaryTransformType(BaseType, Underlying,
UnaryTransformType::EnumUnderlyingType);
}
}
llvm_unreachable("unknown unary transform type");
}
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
if (!T->isDependentType()) {
// FIXME: It isn't entirely clear whether incomplete atomic types
// are allowed or not; for simplicity, ban them for the moment.
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
return QualType();
int DisallowedKind = -1;
if (T->isArrayType())
DisallowedKind = 1;
else if (T->isFunctionType())
DisallowedKind = 2;
else if (T->isReferenceType())
DisallowedKind = 3;
else if (T->isAtomicType())
DisallowedKind = 4;
else if (T.hasQualifiers())
DisallowedKind = 5;
else if (!T.isTriviallyCopyableType(Context))
// Some other non-trivially-copyable type (probably a C++ class)
DisallowedKind = 6;
if (DisallowedKind != -1) {
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
return QualType();
}
// FIXME: Do we need any handling for ARC here?
}
// Build the pointer type.
return Context.getAtomicType(T);
}
|