reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
//=-- SystemZHazardRecognizer.h - SystemZ Hazard Recognizer -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a hazard recognizer for the SystemZ scheduler.
//
// This class is used by the SystemZ scheduling strategy to maintain
// the state during scheduling, and provide cost functions for
// scheduling candidates. This includes:
//
// * Decoder grouping. A decoder group can maximally hold 3 uops, and
// instructions that always begin a new group should be scheduled when
// the current decoder group is empty.
// * Processor resources usage. It is beneficial to balance the use of
// resources.
//
// A goal is to consider all instructions, also those outside of any
// scheduling region. Such instructions are "advanced" past and include
// single instructions before a scheduling region, branches etc.
//
// A block that has only one predecessor continues scheduling with the state
// of it (which may be updated by emitting branches).
//
// ===---------------------------------------------------------------------===//

#include "SystemZHazardRecognizer.h"
#include "llvm/ADT/Statistic.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

// This is the limit of processor resource usage at which the
// scheduler should try to look for other instructions (not using the
// critical resource).
static cl::opt<int> ProcResCostLim("procres-cost-lim", cl::Hidden,
                                   cl::desc("The OOO window for processor "
                                            "resources during scheduling."),
                                   cl::init(8));

unsigned SystemZHazardRecognizer::
getNumDecoderSlots(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0; // IMPLICIT_DEF / KILL -- will not make impact in output.

  assert((SC->NumMicroOps != 2 || (SC->BeginGroup && !SC->EndGroup)) &&
         "Only cracked instruction can have 2 uops.");
  assert((SC->NumMicroOps < 3 || (SC->BeginGroup && SC->EndGroup)) &&
         "Expanded instructions always group alone.");
  assert((SC->NumMicroOps < 3 || (SC->NumMicroOps % 3 == 0)) &&
         "Expanded instructions fill the group(s).");

  return SC->NumMicroOps;
}

unsigned SystemZHazardRecognizer::getCurrCycleIdx(SUnit *SU) const {
  unsigned Idx = CurrGroupSize;
  if (GrpCount % 2)
    Idx += 3;

  if (SU != nullptr && !fitsIntoCurrentGroup(SU)) {
    if (Idx == 1 || Idx == 2)
      Idx = 3;
    else if (Idx == 4 || Idx == 5)
      Idx = 0;
  }

  return Idx;
}

ScheduleHazardRecognizer::HazardType SystemZHazardRecognizer::
getHazardType(SUnit *m, int Stalls) {
  return (fitsIntoCurrentGroup(m) ? NoHazard : Hazard);
}

void SystemZHazardRecognizer::Reset() {
  CurrGroupSize = 0;
  CurrGroupHas4RegOps = false;
  clearProcResCounters();
  GrpCount = 0;
  LastFPdOpCycleIdx = UINT_MAX;
  LastEmittedMI = nullptr;
  LLVM_DEBUG(CurGroupDbg = "";);
}

bool
SystemZHazardRecognizer::fitsIntoCurrentGroup(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return true;

  // A cracked instruction only fits into schedule if the current
  // group is empty.
  if (SC->BeginGroup)
    return (CurrGroupSize == 0);

  // An instruction with 4 register operands will not fit in last slot.
  assert ((CurrGroupSize < 2 || !CurrGroupHas4RegOps) &&
          "Current decoder group is already full!");
  if (CurrGroupSize == 2 && has4RegOps(SU->getInstr()))
    return false;

  // Since a full group is handled immediately in EmitInstruction(),
  // SU should fit into current group. NumSlots should be 1 or 0,
  // since it is not a cracked or expanded instruction.
  assert ((getNumDecoderSlots(SU) <= 1) && (CurrGroupSize < 3) &&
          "Expected normal instruction to fit in non-full group!");

  return true;
}

bool SystemZHazardRecognizer::has4RegOps(const MachineInstr *MI) const {
  const MachineFunction &MF = *MI->getParent()->getParent();
  const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
  const MCInstrDesc &MID = MI->getDesc();
  unsigned Count = 0;
  for (unsigned OpIdx = 0; OpIdx < MID.getNumOperands(); OpIdx++) {
    const TargetRegisterClass *RC = TII->getRegClass(MID, OpIdx, TRI, MF);
    if (RC == nullptr)
      continue;
    if (OpIdx >= MID.getNumDefs() &&
        MID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
      continue;
    Count++;
  }
  return Count >= 4;
}

void SystemZHazardRecognizer::nextGroup() {
  if (CurrGroupSize == 0)
    return;

  LLVM_DEBUG(dumpCurrGroup("Completed decode group"));
  LLVM_DEBUG(CurGroupDbg = "";);

  int NumGroups = ((CurrGroupSize > 3) ? (CurrGroupSize / 3) : 1);
  assert((CurrGroupSize <= 3 || CurrGroupSize % 3 == 0) &&
         "Current decoder group bad.");

  // Reset counter for next group.
  CurrGroupSize = 0;
  CurrGroupHas4RegOps = false;

  GrpCount += ((unsigned) NumGroups);

  // Decrease counters for execution units.
  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    ProcResourceCounters[i] = ((ProcResourceCounters[i] > NumGroups)
                                   ? (ProcResourceCounters[i] - NumGroups)
                                   : 0);

  // Clear CriticalResourceIdx if it is now below the threshold.
  if (CriticalResourceIdx != UINT_MAX &&
      (ProcResourceCounters[CriticalResourceIdx] <=
       ProcResCostLim))
    CriticalResourceIdx = UINT_MAX;

  LLVM_DEBUG(dumpState(););
}

#ifndef NDEBUG // Debug output
void SystemZHazardRecognizer::dumpSU(SUnit *SU, raw_ostream &OS) const {
  OS << "SU(" << SU->NodeNum << "):";
  OS << TII->getName(SU->getInstr()->getOpcode());

  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return;

  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    const MCProcResourceDesc &PRD =
      *SchedModel->getProcResource(PI->ProcResourceIdx);
    std::string FU(PRD.Name);
    // trim e.g. Z13_FXaUnit -> FXa
    FU = FU.substr(FU.find("_") + 1);
    size_t Pos = FU.find("Unit");
    if (Pos != std::string::npos)
      FU.resize(Pos);
    if (FU == "LS") // LSUnit -> LSU
      FU = "LSU";
    OS << "/" << FU;

    if (PI->Cycles > 1)
      OS << "(" << PI->Cycles << "cyc)";
  }

  if (SC->NumMicroOps > 1)
    OS << "/" << SC->NumMicroOps << "uops";
  if (SC->BeginGroup && SC->EndGroup)
    OS << "/GroupsAlone";
  else if (SC->BeginGroup)
    OS << "/BeginsGroup";
  else if (SC->EndGroup)
    OS << "/EndsGroup";
  if (SU->isUnbuffered)
    OS << "/Unbuffered";
  if (has4RegOps(SU->getInstr()))
    OS << "/4RegOps";
}

void SystemZHazardRecognizer::dumpCurrGroup(std::string Msg) const {
  dbgs() << "++ " << Msg;
  dbgs() << ": ";

  if (CurGroupDbg.empty())
    dbgs() << " <empty>\n";
  else {
    dbgs() << "{ " << CurGroupDbg << " }";
    dbgs() << " (" << CurrGroupSize << " decoder slot"
           << (CurrGroupSize > 1 ? "s":"")
           << (CurrGroupHas4RegOps ? ", 4RegOps" : "")
           << ")\n";
  }
}

void SystemZHazardRecognizer::dumpProcResourceCounters() const {
  bool any = false;

  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    if (ProcResourceCounters[i] > 0) {
      any = true;
      break;
    }

  if (!any)
    return;

  dbgs() << "++ | Resource counters: ";
  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    if (ProcResourceCounters[i] > 0)
      dbgs() << SchedModel->getProcResource(i)->Name
             << ":" << ProcResourceCounters[i] << " ";
  dbgs() << "\n";

  if (CriticalResourceIdx != UINT_MAX)
    dbgs() << "++ | Critical resource: "
           << SchedModel->getProcResource(CriticalResourceIdx)->Name
           << "\n";
}

void SystemZHazardRecognizer::dumpState() const {
  dumpCurrGroup("| Current decoder group");
  dbgs() << "++ | Current cycle index: "
         << getCurrCycleIdx() << "\n";
  dumpProcResourceCounters();
  if (LastFPdOpCycleIdx != UINT_MAX)
    dbgs() << "++ | Last FPd cycle index: " << LastFPdOpCycleIdx << "\n";
}

#endif //NDEBUG

void SystemZHazardRecognizer::clearProcResCounters() {
  ProcResourceCounters.assign(SchedModel->getNumProcResourceKinds(), 0);
  CriticalResourceIdx = UINT_MAX;
}

static inline bool isBranchRetTrap(MachineInstr *MI) {
  return (MI->isBranch() || MI->isReturn() ||
          MI->getOpcode() == SystemZ::CondTrap);
}

// Update state with SU as the next scheduled unit.
void SystemZHazardRecognizer::
EmitInstruction(SUnit *SU) {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  LLVM_DEBUG(dbgs() << "++ HazardRecognizer emitting "; dumpSU(SU, dbgs());
             dbgs() << "\n";);
  LLVM_DEBUG(dumpCurrGroup("Decode group before emission"););

  // If scheduling an SU that must begin a new decoder group, move on
  // to next group.
  if (!fitsIntoCurrentGroup(SU))
    nextGroup();

  LLVM_DEBUG(raw_string_ostream cgd(CurGroupDbg);
             if (CurGroupDbg.length()) cgd << ", "; dumpSU(SU, cgd););

  LastEmittedMI = SU->getInstr();

  // After returning from a call, we don't know much about the state.
  if (SU->isCall) {
    LLVM_DEBUG(dbgs() << "++ Clearing state after call.\n";);
    Reset();
    LastEmittedMI = SU->getInstr();
    return;
  }

  // Increase counter for execution unit(s).
  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    // Don't handle FPd together with the other resources.
    if (SchedModel->getProcResource(PI->ProcResourceIdx)->BufferSize == 1)
      continue;
    int &CurrCounter =
      ProcResourceCounters[PI->ProcResourceIdx];
    CurrCounter += PI->Cycles;
    // Check if this is now the new critical resource.
    if ((CurrCounter > ProcResCostLim) &&
        (CriticalResourceIdx == UINT_MAX ||
         (PI->ProcResourceIdx != CriticalResourceIdx &&
          CurrCounter >
          ProcResourceCounters[CriticalResourceIdx]))) {
      LLVM_DEBUG(
          dbgs() << "++ New critical resource: "
                 << SchedModel->getProcResource(PI->ProcResourceIdx)->Name
                 << "\n";);
      CriticalResourceIdx = PI->ProcResourceIdx;
    }
  }

  // Make note of an instruction that uses a blocking resource (FPd).
  if (SU->isUnbuffered) {
    LastFPdOpCycleIdx = getCurrCycleIdx(SU);
    LLVM_DEBUG(dbgs() << "++ Last FPd cycle index: " << LastFPdOpCycleIdx
                      << "\n";);
  }

  // Insert SU into current group by increasing number of slots used
  // in current group.
  CurrGroupSize += getNumDecoderSlots(SU);
  CurrGroupHas4RegOps |= has4RegOps(SU->getInstr());
  unsigned GroupLim = (CurrGroupHas4RegOps ? 2 : 3);
  assert((CurrGroupSize <= GroupLim || CurrGroupSize == getNumDecoderSlots(SU))
         && "SU does not fit into decoder group!");

  // Check if current group is now full/ended. If so, move on to next
  // group to be ready to evaluate more candidates.
  if (CurrGroupSize >= GroupLim || SC->EndGroup)
    nextGroup();
}

int SystemZHazardRecognizer::groupingCost(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0;

  // If SU begins new group, it can either break a current group early
  // or fit naturally if current group is empty (negative cost).
  if (SC->BeginGroup) {
    if (CurrGroupSize)
      return 3 - CurrGroupSize;
    return -1;
  }

  // Similarly, a group-ending SU may either fit well (last in group), or
  // end the group prematurely.
  if (SC->EndGroup) {
    unsigned resultingGroupSize =
      (CurrGroupSize + getNumDecoderSlots(SU));
    if (resultingGroupSize < 3)
      return (3 - resultingGroupSize);
    return -1;
  }

  // An instruction with 4 register operands will not fit in last slot.
  if (CurrGroupSize == 2 && has4RegOps(SU->getInstr()))
    return 1;

  // Most instructions can be placed in any decoder slot.
  return 0;
}

bool SystemZHazardRecognizer::isFPdOpPreferred_distance(SUnit *SU) const {
  assert (SU->isUnbuffered);
  // If this is the first FPd op, it should be scheduled high.
  if (LastFPdOpCycleIdx == UINT_MAX)
    return true;
  // If this is not the first PFd op, it should go into the other side
  // of the processor to use the other FPd unit there. This should
  // generally happen if two FPd ops are placed with 2 other
  // instructions between them (modulo 6).
  unsigned SUCycleIdx = getCurrCycleIdx(SU);
  if (LastFPdOpCycleIdx > SUCycleIdx)
    return ((LastFPdOpCycleIdx - SUCycleIdx) == 3);
  return ((SUCycleIdx - LastFPdOpCycleIdx) == 3);
}

int SystemZHazardRecognizer::
resourcesCost(SUnit *SU) {
  int Cost = 0;

  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0;

  // For a FPd op, either return min or max value as indicated by the
  // distance to any prior FPd op.
  if (SU->isUnbuffered)
    Cost = (isFPdOpPreferred_distance(SU) ? INT_MIN : INT_MAX);
  // For other instructions, give a cost to the use of the critical resource.
  else if (CriticalResourceIdx != UINT_MAX) {
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI)
      if (PI->ProcResourceIdx == CriticalResourceIdx)
        Cost = PI->Cycles;
  }

  return Cost;
}

void SystemZHazardRecognizer::emitInstruction(MachineInstr *MI,
                                              bool TakenBranch) {
  // Make a temporary SUnit.
  SUnit SU(MI, 0);

  // Set interesting flags.
  SU.isCall = MI->isCall();

  const MCSchedClassDesc *SC = SchedModel->resolveSchedClass(MI);
  for (const MCWriteProcResEntry &PRE :
         make_range(SchedModel->getWriteProcResBegin(SC),
                    SchedModel->getWriteProcResEnd(SC))) {
    switch (SchedModel->getProcResource(PRE.ProcResourceIdx)->BufferSize) {
    case 0:
      SU.hasReservedResource = true;
      break;
    case 1:
      SU.isUnbuffered = true;
      break;
    default:
      break;
    }
  }

  unsigned GroupSizeBeforeEmit = CurrGroupSize;
  EmitInstruction(&SU);

  if (!TakenBranch && isBranchRetTrap(MI)) {
    // NT Branch on second slot ends group.
    if (GroupSizeBeforeEmit == 1)
      nextGroup();
  }

  if (TakenBranch && CurrGroupSize > 0)
    nextGroup();

  assert ((!MI->isTerminator() || isBranchRetTrap(MI)) &&
          "Scheduler: unhandled terminator!");
}

void SystemZHazardRecognizer::
copyState(SystemZHazardRecognizer *Incoming) {
  // Current decoder group
  CurrGroupSize = Incoming->CurrGroupSize;
  LLVM_DEBUG(CurGroupDbg = Incoming->CurGroupDbg;);

  // Processor resources
  ProcResourceCounters = Incoming->ProcResourceCounters;
  CriticalResourceIdx = Incoming->CriticalResourceIdx;

  // FPd
  LastFPdOpCycleIdx = Incoming->LastFPdOpCycleIdx;
  GrpCount = Incoming->GrpCount;
}