reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
//===-- SIModeRegister.cpp - Mode Register --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass inserts changes to the Mode register settings as required.
/// Note that currently it only deals with the Double Precision Floating Point
/// rounding mode setting, but is intended to be generic enough to be easily
/// expanded.
///
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <queue>

#define DEBUG_TYPE "si-mode-register"

STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");

using namespace llvm;

struct Status {
  // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
  // known value
  unsigned Mask;
  unsigned Mode;

  Status() : Mask(0), Mode(0){};

  Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
    Mode &= Mask;
  };

  // merge two status values such that only values that don't conflict are
  // preserved
  Status merge(const Status &S) const {
    return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
  }

  // merge an unknown value by using the unknown value's mask to remove bits
  // from the result
  Status mergeUnknown(unsigned newMask) {
    return Status(Mask & ~newMask, Mode & ~newMask);
  }

  // intersect two Status values to produce a mode and mask that is a subset
  // of both values
  Status intersect(const Status &S) const {
    unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
    unsigned NewMode = (Mode & NewMask);
    return Status(NewMask, NewMode);
  }

  // produce the delta required to change the Mode to the required Mode
  Status delta(const Status &S) const {
    return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
  }

  bool operator==(const Status &S) const {
    return (Mask == S.Mask) && (Mode == S.Mode);
  }

  bool operator!=(const Status &S) const { return !(*this == S); }

  bool isCompatible(Status &S) {
    return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
  }

  bool isCombinable(Status &S) {
    return !(Mask & S.Mask) || isCompatible(S);
  }
};

class BlockData {
public:
  // The Status that represents the mode register settings required by the
  // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
  Status Require;

  // The Status that represents the net changes to the Mode register made by
  // this block, Calculated in Phase 1.
  Status Change;

  // The Status that represents the mode register settings on exit from this
  // block. Calculated in Phase 2.
  Status Exit;

  // The Status that represents the intersection of exit Mode register settings
  // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
  Status Pred;

  // In Phase 1 we record the first instruction that has a mode requirement,
  // which is used in Phase 3 if we need to insert a mode change.
  MachineInstr *FirstInsertionPoint;

  BlockData() : FirstInsertionPoint(nullptr) {};
};

namespace {

class SIModeRegister : public MachineFunctionPass {
public:
  static char ID;

  std::vector<std::unique_ptr<BlockData>> BlockInfo;
  std::queue<MachineBasicBlock *> Phase2List;

  // The default mode register setting currently only caters for the floating
  // point double precision rounding mode.
  // We currently assume the default rounding mode is Round to Nearest
  // NOTE: this should come from a per function rounding mode setting once such
  // a setting exists.
  unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
  Status DefaultStatus =
      Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));

public:
  SIModeRegister() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);

  Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);

  void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
                    const SIInstrInfo *TII, Status InstrMode);
};
} // End anonymous namespace.

INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
                "Insert required mode register values", false, false)

char SIModeRegister::ID = 0;

char &llvm::SIModeRegisterID = SIModeRegister::ID;

FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }

// Determine the Mode register setting required for this instruction.
// Instructions which don't use the Mode register return a null Status.
// Note this currently only deals with instructions that use the floating point
// double precision setting.
Status SIModeRegister::getInstructionMode(MachineInstr &MI,
                                          const SIInstrInfo *TII) {
  if (TII->usesFPDPRounding(MI)) {
    switch (MI.getOpcode()) {
    case AMDGPU::V_INTERP_P1LL_F16:
    case AMDGPU::V_INTERP_P1LV_F16:
    case AMDGPU::V_INTERP_P2_F16:
      // f16 interpolation instructions need double precision round to zero
      return Status(FP_ROUND_MODE_DP(3),
                    FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
    default:
      return DefaultStatus;
    }
  }
  return Status();
}

// Insert a setreg instruction to update the Mode register.
// It is possible (though unlikely) for an instruction to require a change to
// the value of disjoint parts of the Mode register when we don't know the
// value of the intervening bits. In that case we need to use more than one
// setreg instruction.
void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
                                  const SIInstrInfo *TII, Status InstrMode) {
  while (InstrMode.Mask) {
    unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
    unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
    unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
    BuildMI(MBB, MI, 0, TII->get(AMDGPU::S_SETREG_IMM32_B32))
        .addImm(Value)
        .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
                (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
    ++NumSetregInserted;
    InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
  }
}

// In Phase 1 we iterate through the instructions of the block and for each
// instruction we get its mode usage. If the instruction uses the Mode register
// we:
// - update the Change status, which tracks the changes to the Mode register
//   made by this block
// - if this instruction's requirements are compatible with the current setting
//   of the Mode register we merge the modes
// - if it isn't compatible and an InsertionPoint isn't set, then we set the
//   InsertionPoint to the current instruction, and we remember the current
//   mode
// - if it isn't compatible and InsertionPoint is set we insert a seteg before
//   that instruction (unless this instruction forms part of the block's
//   entry requirements in which case the insertion is deferred until Phase 3
//   when predecessor exit values are known), and move the insertion point to
//   this instruction
// - if this is a setreg instruction we treat it as an incompatible instruction.
//   This is sub-optimal but avoids some nasty corner cases, and is expected to
//   occur very rarely.
// - on exit we have set the Require, Change, and initial Exit modes.
void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
  auto NewInfo = std::make_unique<BlockData>();
  MachineInstr *InsertionPoint = nullptr;
  // RequirePending is used to indicate whether we are collecting the initial
  // requirements for the block, and need to defer the first InsertionPoint to
  // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
  // we discover an explict setreg that means this block doesn't have any
  // initial requirements.
  bool RequirePending = true;
  Status IPChange;
  for (MachineInstr &MI : MBB) {
    Status InstrMode = getInstructionMode(MI, TII);
    if ((MI.getOpcode() == AMDGPU::S_SETREG_B32) ||
        (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32)) {
      // We preserve any explicit mode register setreg instruction we encounter,
      // as we assume it has been inserted by a higher authority (this is
      // likely to be a very rare occurrence).
      unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
      if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
          AMDGPU::Hwreg::ID_MODE)
        continue;

      unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
                        AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
                       1;
      unsigned Offset =
          (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
      unsigned Mask = ((1 << Width) - 1) << Offset;

      // If an InsertionPoint is set we will insert a setreg there.
      if (InsertionPoint) {
        insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
        InsertionPoint = nullptr;
      }
      // If this is an immediate then we know the value being set, but if it is
      // not an immediate then we treat the modified bits of the mode register
      // as unknown.
      if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32) {
        unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
        unsigned Mode = (Val << Offset) & Mask;
        Status Setreg = Status(Mask, Mode);
        // If we haven't already set the initial requirements for the block we
        // don't need to as the requirements start from this explicit setreg.
        RequirePending = false;
        NewInfo->Change = NewInfo->Change.merge(Setreg);
      } else {
        NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
      }
    } else if (!NewInfo->Change.isCompatible(InstrMode)) {
      // This instruction uses the Mode register and its requirements aren't
      // compatible with the current mode.
      if (InsertionPoint) {
        // If the required mode change cannot be included in the current
        // InsertionPoint changes, we need a setreg and start a new
        // InsertionPoint.
        if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
          if (RequirePending) {
            // This is the first insertionPoint in the block so we will defer
            // the insertion of the setreg to Phase 3 where we know whether or
            // not it is actually needed.
            NewInfo->FirstInsertionPoint = InsertionPoint;
            NewInfo->Require = NewInfo->Change;
            RequirePending = false;
          } else {
            insertSetreg(MBB, InsertionPoint, TII,
                         IPChange.delta(NewInfo->Change));
            IPChange = NewInfo->Change;
          }
          // Set the new InsertionPoint
          InsertionPoint = &MI;
        }
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      } else {
        // No InsertionPoint is currently set - this is either the first in
        // the block or we have previously seen an explicit setreg.
        InsertionPoint = &MI;
        IPChange = NewInfo->Change;
        NewInfo->Change = NewInfo->Change.merge(InstrMode);
      }
    }
  }
  if (RequirePending) {
    // If we haven't yet set the initial requirements for the block we set them
    // now.
    NewInfo->FirstInsertionPoint = InsertionPoint;
    NewInfo->Require = NewInfo->Change;
  } else if (InsertionPoint) {
    // We need to insert a setreg at the InsertionPoint
    insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
  }
  NewInfo->Exit = NewInfo->Change;
  BlockInfo[MBB.getNumber()] = std::move(NewInfo);
}

// In Phase 2 we revisit each block and calculate the common Mode register
// value provided by all predecessor blocks. If the Exit value for the block
// is changed, then we add the successor blocks to the worklist so that the
// exit value is propagated.
void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
//  BlockData *BI = BlockInfo[MBB.getNumber()];
  unsigned ThisBlock = MBB.getNumber();
  if (MBB.pred_empty()) {
    // There are no predecessors, so use the default starting status.
    BlockInfo[ThisBlock]->Pred = DefaultStatus;
  } else {
    // Build a status that is common to all the predecessors by intersecting
    // all the predecessor exit status values.
    MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
    MachineBasicBlock &PB = *(*P);
    BlockInfo[ThisBlock]->Pred = BlockInfo[PB.getNumber()]->Exit;

    for (P = std::next(P); P != E; P = std::next(P)) {
      MachineBasicBlock *Pred = *P;
      BlockInfo[ThisBlock]->Pred = BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[Pred->getNumber()]->Exit);
    }
  }
  Status TmpStatus = BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
  if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
    BlockInfo[ThisBlock]->Exit = TmpStatus;
    // Add the successors to the work list so we can propagate the changed exit
    // status.
    for (MachineBasicBlock::succ_iterator S = MBB.succ_begin(),
                                          E = MBB.succ_end();
         S != E; S = std::next(S)) {
      MachineBasicBlock &B = *(*S);
      Phase2List.push(&B);
    }
  }
}

// In Phase 3 we revisit each block and if it has an insertion point defined we
// check whether the predecessor mode meets the block's entry requirements. If
// not we insert an appropriate setreg instruction to modify the Mode register.
void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
                                        const SIInstrInfo *TII) {
//  BlockData *BI = BlockInfo[MBB.getNumber()];
  unsigned ThisBlock = MBB.getNumber();
  if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
    Status Delta = BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
    if (BlockInfo[ThisBlock]->FirstInsertionPoint)
      insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
    else
      insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
  }
}

bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
  BlockInfo.resize(MF.getNumBlockIDs());
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Processing is performed in a number of phases

  // Phase 1 - determine the initial mode required by each block, and add setreg
  // instructions for intra block requirements.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase1(BB, TII);

  // Phase 2 - determine the exit mode from each block. We add all blocks to the
  // list here, but will also add any that need to be revisited during Phase 2
  // processing.
  for (MachineBasicBlock &BB : MF)
    Phase2List.push(&BB);
  while (!Phase2List.empty()) {
    processBlockPhase2(*Phase2List.front(), TII);
    Phase2List.pop();
  }

  // Phase 3 - add an initial setreg to each block where the required entry mode
  // is not satisfied by the exit mode of all its predecessors.
  for (MachineBasicBlock &BB : MF)
    processBlockPhase3(BB, TII);

  BlockInfo.clear();

  return NumSetregInserted > 0;
}